首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立一种以EV71 3C蛋白酶为靶标的抗肠病毒药物筛选模型,并应用于小分子化合物库筛选具有抗EV71活性的化合物.从临床手足口病例标本中分离肠道病毒进行PCR鉴定及基因组测序.通过插入突变在黄色荧光YFP编码框合适位点处引入EV71 3C酶切位点,构建对3C蛋白酶敏感的报告质粒pc DNA3-m YFP,然后将其与表达3C的质粒共转293A细胞,在3C抑制剂Rupintrivir存在与否的情况下通过荧光显微镜和酶标仪检测Ex(500nm)/Em(535nm)荧光信号的变化,判断建模是否成功;利用建好的筛选模型在高通量药物筛选平台对小分子化合物库进行初筛和复筛;再利用空斑分析检测筛选出的活性化合物是否对临床分离的EV71毒株具有抑制作用.m YFP在293A细胞中表达良好,3C的表达使荧光信号下降80%,Rupintrivir的存在则几乎不影响荧光表达,说明以3C为靶位的筛选模型构建成功.经过高通量初筛和复筛从26 000多种小分子化合物中获得26种能够显著回复m YFP表达的活性化合物;空斑分析显示其中2种化合物具有较为明显的抑制EV71复制的活性.因此,我们所构建的3C-m YFP共表达系统是一种简便有效的、可用于高通量筛选抗EV71 3C~(pro)药物的筛选模型.  相似文献   

2.
Crystal structure of human enterovirus 71 3C protease   总被引:2,自引:0,他引:2  
Human enterovirus 71 (EV71) is the major pathogen that causes hand, foot and mouth disease that particularly affects young children. Growing hand, foot and mouth disease outbreaks were observed worldwide in recent years and caused devastating losses both economically and politically. However, vaccines or effective drugs are unavailable to date. The genome of EV71 consists of a positive sense, single-stranded RNA of ∼ 7400 bp, encoding a large precursor polyprotein that requires proteolytic processing to generate mature viral proteins. The proteolytic processing mainly depends on EV71 3C protease (3Cpro) that possesses both proteolysis and RNA binding activities, which enable the protease to perform multiple tasks in viral replication and pathogen-host interactions. The central roles played by EV71 3Cpro make it an appealing target for antiviral drug development. We determined the first crystal structure of EV71 3Cpro and analyzed its enzymatic activity. The crystal structure shows that EV71 3Cpro has a typical chymotrypsin-like fold that is common in picornaviral 3Cpro. Strikingly, we found an important surface loop, also denoted as β-ribbon, which adopts a novel open conformation in EV71 3Cpro. We identified two important residues located at the base of the β-ribbon, Gly123 and His133, which form hinges that govern the intrinsic flexibility of the ribbon. Structure-guided mutagenesis studies revealed that the hinge residues are important to EV71 3Cpro proteolytic activities. In summary, our work provides the first structural insight into EV71 3Cpro, including a mobile β-ribbon, which is relevant to the proteolytic mechanism. Our data also provides a framework for structure-guided inhibitor design against EV71 3Cpro.  相似文献   

3.
Identification of novel cellular proteins as substrates to viral proteases would provide a new insight into the mechanism of cell–virus interplay. Eight nuclear proteins as potential targets for enterovirus 71 (EV71) 3C protease (3Cpro) cleavages were identified by 2D electrophoresis and MALDI-TOF analysis. Of these proteins, CstF-64, which is a critical factor for 3′ pre-mRNA processing in a cell nucleus, was selected for further study. A time-course study to monitor the expression levels of CstF-64 in EV71-infected cells also revealed that the reduction of CstF-64 during virus infection was correlated with the production of viral 3Cpro. CstF-64 was cleaved in vitro by 3Cpro but neither by mutant 3Cpro (in which the catalytic site was inactivated) nor by another EV71 protease 2Apro. Serial mutagenesis was performed in CstF-64, revealing that the 3Cpro cleavage sites are located at position 251 in the N-terminal P/G-rich domain and at multiple positions close to the C-terminus of CstF-64 (around position 500). An accumulation of unprocessed pre-mRNA and the depression of mature mRNA were observed in EV71-infected cells. An in vitro assay revealed the inhibition of the 3′-end pre-mRNA processing and polyadenylation in 3Cpro-treated nuclear extract, and this impairment was rescued by adding purified recombinant CstF-64 protein. In summing up the above results, we suggest that 3Cpro cleavage inactivates CstF-64 and impairs the host cell polyadenylation in vitro, as well as in virus-infected cells. This finding is, to our knowledge, the first to demonstrate that a picornavirus protein affects the polyadenylation of host mRNA.  相似文献   

4.
The global spread of enteroviruses (EVs) has become more frequent, severe and life-threatening. Intereron (IFN) I has been proved to control EVs by regulating IFN-stimulated genes (ISG) expression. 20-50-oligoadenylate synthetases 3 (OAS3) is an important ISG in the OAS/RNase L antiviral system. The relationship between OAS3 and EVs is still unclear. Here, we reveal that OAS3, superior to OAS1 and OAS2, significantly inhibited EV71 replication in vitro. However, EV71 utilized autologous 3C protease (3Cpro) to cleave intracellular OAS3 and enhance viral replication. Rupintrivir, a human rhinovirus 3C protease inhibitor, completely abolished the cleavage of EV71 3Cpro on OAS3. And the proteolytically deficient mutants H40G, E71A, and C147G of EV71 3Cpro also lost the ability of OAS3 cleavage. Mechanistically, the Q982-G983 motif in C-terminal of OAS3 was identified as a crucial 3Cpro cutting site. Further investigation indicated that OAS3 inhibited not only EV71 but also Coxsackievirus B3 (CVB3), Coxsackievirus A16 (CA16), Enterovirus D68 (EVD68), and Coxsackievirus A6 (CA6) subtypes. Notably, unlike other four subtypes, CA16 3Cpro could not cleave OAS3. Two key amino acids variation Ile36 and Val86 in CA16 3Cpro might result in weak and delayed virus replication of CA16 because of failure of OAS and 3AB cleavage. Our works elucidate the broad anti-EVs function of OAS3, and illuminate a novel mechanism by which EV71 use 3Cpro to escape the antiviral effect of OAS3. These findings can be an important entry point for developing novel therapeutic strategies for multiple EVs infection.  相似文献   

5.
The 3C proteases (3Cpro) of enterovirus 71 (EV71) is a good molecular target for drug discovery. Notably, this protease was found to possess RNA-binding activity. The regions responsible for RNA binding were classified as KFRDI (positions 82–86) and VGK (positions 154–156) in 3Cpro by mutagenesis study. Although the RNA-binding regions are structurally distinct from the catalytic site of EV71 3Cpro, mutations in the RNA-binding regions influenced 3Cpro proteolytic activity. In contrast, mutations at the catalytic site had almost no influence on RNA binding ability. We identified certain mutations within 3Cpro which abrogated both the RNA-binding activity of the expressed, recombinant, protease and the ability to rescue virus from an infectious full-length clone of EV71 (pEV71). Interestingly, mutation at position 84 from Arg(R) to Lys(K) was found to retain good RNA binding and proteolytic activity for the recombinant 3Cpro; however, no virus could be rescued when pEV71 with the R84K mutation was introduced into the infectious copy. Together, these results may provide useful information for using 3Cpro as the molecular target to develop anti-EV71 agents.The second and the third authors contributed equally to this work.  相似文献   

6.
Enterovirus 71 (EV71) is the causative agent of hand, foot and mouth disease and can spread its infections to the central nervous and other systems with severe consequences. The replication of EV71 depends on its 3C proteinase (3Cpro), a significant drug target. By X‐ray crystallography and functional assays, the interactions between inhibitors and EV71 3Cpro were evaluated. It was shown that improved interactions at S4 for the substrate binding could significantly enhance the potency. A new series of potent inhibitors with high ligand efficiency was generated for developing antivirals to treat and control the EV71‐associated diseases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
BackgroundEnterovirus 71 (EV71) is a causative agent of hand, foot and mouth disease (HFMD), which can spread its infection to central nervous and other systems with severe consequence. A key factor in the replication of EV71 is its 3C proteinase (3Cpro), a significant drug target. Peptidomimetics were employed as inhibitors of this enzyme for developing antivirals. However, the peptide bonds in these peptidomimetics are a source of low bioavailability due to their susceptibility to protease digestion. To produce non-peptidomimetic inhibitors by replacing these peptide bonds, it would be important to gain better understanding on the contribution of each component to the interaction and potency.MethodsA series of compounds of different lengths targeting 3Cpro and having an α,β-unsaturated ester as the warhead were synthesized and their interactions with the enzyme were evaluated by complex structure analyses and potency assays for a better understanding on the relationship between potency and evolution of interaction.ResultsThe P2 moiety of the compound would need to be oriented to interact in the S2 site in the substrate binding cleft and the P3–P4 moieties were required to generate sufficient potency. A hydrophobic terminal group will benefit the cellular uptake and improve the activity in vivo.Conclusions and general significanceThe data presented here provide a basis for designing a new generation of non-peptidomimetics to target EV71 3Cpro.  相似文献   

8.
Enterovirus 71 (EV71) is the major causative pathogen of hand, foot, and mouth disease (HFMD). Its pathogenicity is not fully understood, but innate immune evasion is likely a key factor. Strategies to circumvent the initiation and effector phases of anti-viral innate immunity are well known; less well known is whether EV71 evades the signal transduction phase regulated by a sophisticated interplay of cellular and viral proteins. Here, we show that EV71 inhibits anti-viral type I interferon (IFN) responses by targeting the mitochondrial anti-viral signaling (MAVS) protein—a unique adaptor molecule activated upon retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene (MDA-5) viral recognition receptor signaling—upstream of type I interferon production. MAVS was cleaved and released from mitochondria during EV71 infection. An in vitro cleavage assay demonstrated that the viral 2A protease (2Apro), but not the mutant 2Apro (2Apro-110) containing an inactivated catalytic site, cleaved MAVS. The Protease-Glo assay revealed that MAVS was cleaved at 3 residues between the proline-rich and transmembrane domains, and the resulting fragmentation effectively inactivated downstream signaling. In addition to MAVS cleavage, we found that EV71 infection also induced morphologic and functional changes to the mitochondria. The EV71 structural protein VP1 was detected on purified mitochondria, suggesting not only a novel role for mitochondria in the EV71 replication cycle but also an explanation of how EV71-derived 2Apro could approach MAVS. Taken together, our findings reveal a novel strategy employed by EV71 to escape host anti-viral innate immunity that complements the known EV71-mediated immune-evasion mechanisms.  相似文献   

9.
Members of the Enterovirus genus of the Picornaviridae family are abundant, with common human pathogens that belong to the rhinovirus (HRV) and enterovirus (EV) species, including diverse echo-, coxsackie- and polioviruses. They cause a wide spectrum of clinical manifestations ranging from asymptomatic to severe diseases with neurological and/or cardiac manifestations. Pandemic outbreaks of EVs may be accompanied by meningitis and/or paralysis and can be fatal. However, no effective prophylaxis or antiviral treatment against most EVs is available. The EV RNA genome directs the synthesis of a single polyprotein that is autocatalytically processed into mature proteins at Gln↓Gly cleavage sites by the 3C protease (3Cpro), which has narrow, conserved substrate specificity. These cleavages are essential for virus replication, making 3Cpro an excellent target for antivirus drug development. In this study, we report the first determination of the crystal structure of 3Cpro from an enterovirus B, EV-93, a recently identified pathogen, alone and in complex with the anti-HRV molecules compound 1 (AG7404) and rupintrivir (AG7088) at resolutions of 1.9, 1.3, and 1.5 Å, respectively. The EV-93 3Cpro adopts a chymotrypsin-like fold with a canonically configured oxyanion hole and a substrate binding pocket similar to that of rhino-, coxsackie- and poliovirus 3C proteases. We show that compound 1 and rupintrivir are both active against EV-93 in infected cells and inhibit the proteolytic activity of EV-93 3Cpro in vitro. These results provide a framework for further structure-guided optimization of the tested compounds to produce antiviral drugs against a broad range of EV species.  相似文献   

10.
Human rhinovirus 3C protease (HRV 3Cpro) is known to be a promising target for development of therapeutic agents against the common cold because of the importance of the protease in viral replication as well as its expression in a large number of serotypes. To explore non-peptidic inhibitors of HRV 3Cpro, a series of novel heteroaromatic esters was synthesized and evaluated for inhibitory activity against HRV 3Cpro, to determine the structure–activity relationships. The most potent inhibitor, 7, with a 5-bromopyridinyl group, had an IC50 value of 80 nM. In addition, the binding mode of a novel analog, 19, with the 4-hydroxyquinolinone moiety, was explored by molecular docking, suggesting a new interaction in the S1 pocket.  相似文献   

11.
The 2A proteinase (2Apro) is an enterovirally encoded cysteine protease that plays essential roles in both the processing of viral precursor polyprotein and the hijacking of host cell translation and other processes in the virus life cycle. Crystallographic studies of 2Apro from enterovirus 71 (EV71) and its interaction with the substrate are reported here. EV71 2Apro was comprised of an N-terminal domain of a four-stranded antiparallel β sheet and a C-terminal domain of a six-stranded antiparallel β barrel with a tightly bound zinc atom. Unlike in other 2Apro structures, there is an open cleft across the surface of the protein in an open conformation. As demonstrated by the crystallographic studies and modeling of the complex structure, the open cleft could be fitted with the substrate. On comparison 2Apro of EV71 to those of the human rhinovirus 2 and coxsackievirus B4, the open conformation could be closed with a hinge motion in the bII2 and cII β strands. This was supported by molecular dynamic simulation. The structural variation among different 2Apro structures indicates a conformational flexibility in the substrate-binding cleft. The open structure provides an accessible framework for the design and development of therapeutics against the viral target.  相似文献   

12.
13.
Enterovirus 71 (EV71) is the most important etiological agent of hand, foot, and mouth disease (HFMD) in young children, which is associated with severe neurological complications and has caused significant mortalities in recent HFMD outbreaks in Asia. However, there is no effective antiviral therapy against EV71. In this study, RNA interference (RNAi) was used as an antiviral strategy to inhibit EV71 replication. Three small interfering RNAs (siRNAs) targeting the 2Apro region of the EV71 genome were designed and synthesized. All the siRNAs were transfected individually into rhabdomyosarcoma (RD) cells, which were then infected with strain EV71-2006-52-9. The cytopathic effects (CPEs) in the infected RD cells, cell viability, viral titer, and viral RNA and protein expression were examined to evaluate the specific viral inhibition by the siRNAs. The results of cytopathogenicity and MTT tests indicated that the RD cells transfected with the three siRNAs showed slight CPEs and significantly high viability. The 50% tissue culture infective dose (TCID50) values demonstrated that the viral titer of the groups treated with three siRNAs were lower than those of the control groups. qRT–PCR and western blotting revealed that the levels of viral RNA and protein in the RD cells treated with the three siRNAs were lower than those in the controls. When RD cells transfected with siRNAs were also infected with strain EV71-2008-43-16, the expression of the VP1 protein was significantly inhibited. The levels of interferon α (IFN-α) and IFN-β did not differ significantly in any group. These results suggest that siRNAs targeting the 2Apro region of the EV71 genome exerted antiviral effects in vitro.  相似文献   

14.
The oncolytic picornavirus Seneca Valley Virus (SVV-001) demonstrates anti-tumor activity in models of small cell lung cancer (SCLC), but may ultimately need to be combined with cytotoxic therapies to improve responses observed in patients. Combining SVV-001 virotherapy with a peptide prodrug activated by the viral protease 3Cpro is a novel strategy that may increase the therapeutic potential of SVV-001. Using recombinant SVV-001 3Cpro, we measured cleavage kinetics of predicted SVV-001 3Cpro substrates. An efficient substrate, L/VP4 (kcat/KM = 1932 ± 183 M-1s-1), was further optimized by a P2’ N→P substitution yielding L/VP4.1 (kcat/KM = 17446 ± 2203 M-1s-1). We also determined essential substrate amino acids by sequential N-terminal deletion and substitution of amino acids found in other picornavirus genera. A peptide corresponding to the L/VP4.1 substrate was selectively cleaved by SVV-001 3Cpro in vitro and was stable in human plasma. These data define an optimized peptide substrate for SVV-001 3Cpro, with direct implications for anti-cancer therapeutic development.  相似文献   

15.
Enterovirus 71 (EV71) causes hand-foot-and-mouth disease, which can lead to fatal neurological complications in young children and infants. Few gastrointestinal symptoms are observed clinically, suggesting the presence of a unique immunity to EV71 in the gut. We reported a robust induction of interferons (IFNs) in human intestinal epithelial cells (HT-29), which was suppressed in other types such as RD and HeLa cells. The underlying mechanism for the apparent difference remains obscure. In this study we report that in EV71-infected HT-29 cells, TLR/TRIF signaling was essential to IFN induction; viral replication increased and the induction of IFN-α, -β, -ω, -κ, and -ε decreased markedly in TRIF-silenced HT-29 cells. Importantly, TRIF was degraded by viral 3Cpro in RD cells, but resisted cleavage, and IRF3 was activated and translocated into the nucleus in HT-29 cells. Taken together, our data suggest that IFNs were induced differentially in human HT-29 cells through an intact TLR/TRIF signaling, which differs from other cell types and may be implicated in viral pathogenesis in EV71 infection.  相似文献   

16.
The La autoantigen (also known as SS-B), a cellular RNA binding protein, may shuttle between the nucleus and cytoplasm, but it is mainly located in the nucleus. La protein is redistributed to the cytoplasm after poliovirus infection. An in vitro translation study demonstrated that La protein stimulated the internal initiation of poliovirus translation. In the present study, a part of the La protein was shown to be cleaved in poliovirus-infected HeLa cells, and this cleavage appeared to be mediated by poliovirus-specific protease 3C (3Cpro). Truncated La protein (dl-La) was produced in vitro from recombinant La protein by cleavage with purified 3Cpro at only one Gln358-Gly359 peptide bond in the 408-amino-acid (aa) sequence of La protein. The dl-La expressed in L cells was detected in the cytoplasm. However, green fluorescence protein linked to the C-terminal 50-aa sequence of La protein was localized in the nucleus, suggesting that this C-terminal region contributes to the steady-state nuclear localization of the intact La protein in uninfected cells. The dl-La retained the enhancing activity of translation initiation driven by poliovirus RNA in rabbit reticulocyte lysates. These results suggest that La protein is cleaved by 3Cpro in the course of poliovirus infection and that the dl-La is redistributed to the cytoplasm. dl-La, as well as La protein, may play a role in stimulating the internal initiation of poliovirus translation in the cytoplasm.  相似文献   

17.
Picornavirus infection can cause Golgi fragmentation and impose a block in the secretory pathway which reduces expression of major histocompatibility antigens at the plasma membrane and slows secretion of proinflammatory cytokines. In this study, we show that Golgi fragmentation and a block in secretion are induced by expression of foot-and-mouth disease virus (FMDV) 3Cpro and that this requires the protease activity of 3Cpro. 3Cpro caused fragmentation of early, medial, and late Golgi compartments, but the most marked effect was on early Golgi compartments, indicated by redistribution of ERGIC53 and membrin. Golgi fragments were dispersed in the cytoplasm and were able to receive a model membrane protein exported from the endoplasmic reticulum (ER). Golgi fragments were, however, unable to transfer the protein to the plasma membrane, indicating a block in intra-Golgi transport. Golgi fragmentation was coincident with a loss of microtubule organization resulting from an inhibition of microtubule regrowth from the centrosome. Inhibition of microtubule regrowth also required 3Cpro protease activity. The loss of microtubule organization induced by 3Cpro caused Golgi fragmentation, but loss of microtubule organization does not block intra-Golgi transport. It is likely that the block of intra-Golgi transport is imposed by separate actions of 3Cpro, possibly through degradation of proteins required for intra-Golgi transport.  相似文献   

18.
Proteolytic processing of the picornaviral polyprotein mediated by the differential action of virus-encoded proteinase(s) is pivotal to both RNA genome replication and capsid formation. Possibly to enlarge the array of viral proteins, picornaviral polyprotein processing results in intermediate and mature products which apparently have distinct functions within the viral life cycle. For hepatitis A virus (HAV), we report here on the autoproteolysis of precursor polypeptides comprising the only viral proteinase, 3Cpro, and on their role in viral particle formation. Following transient expression of a nested set of 3Cpro-containing proteins (P3, 3ABC, 3BCD, 3CD, 3BC, and 3C) in eukaryotic cells, the extent of processing was determined by analyzing the cleavage products. The 3C/3D site was more efficiently cleaved than those at the 3A/3B and 3B/3C sites, leading to the accumulation of the intermediate product 3ABC. In the absence of 3A from the precursor, cleavage at the 3B/3C site was further reduced and a switch to an alternative 3C/3D site was observed. Coexpression of various parts of P3 with the precursor of the viral structural proteins P1-2A showed that all 3C-containing intermediates cleaved P1-2A with almost equal efficiency; however, viral particles carrying the neutralizing epitope form much more readily in the presence of the complete P3 domain than with parts of it. These data support the notion that efficient liberation of structural proteins from P1-2A is necessary but not sufficient for productive HAV capsid formation and suggest that the polypeptides flanking 3Cpro promote the assembly of viral particles.  相似文献   

19.
Picornaviruses are non-enveloped viruses that represent a large family of positive-sense single-stranded RNA viruses including a number of causative agents of many human and animal diseases such as coxsackievirus B3 (CVB3) and rhinoviruses (HRV). In this study, we performed a high-throughput screening of a compound library composed of ~6000 small molecules in search of potential picornavirus 3C protease (3Cpro) inhibitors. As results, we identified quinone analogues that effectively inhibited both CVB3 3Cpro and HRV 3Cpro with IC50 values in low micromolar range. Together with predicted binding modes of these compounds to the active site of the viral protease, it is implied that structural features of these non-peptidic inhibitors may act as useful scaffold for further anti-picornavirus drug design and development.  相似文献   

20.
The Severe Acute Respiratory Syndrome (SARS) is a serious life-threatening and strikingly mortal respiratory illness caused by SARS-CoV. SARS-CoV which contains a chymotrypsin-like main protease analogous to that of the main picornavirus protease, 3CLpro. 3CLpro plays a pivotal role in the viral replication cycle and is a potential target for SARS inhibitor development. A series of isatin derivatives as possible SARS-CoV 3CLpro inhibitors was designed, synthesized, and evaluated by in vitro protease assay using fluorogenic substrate peptide, in which several showed potent inhibition against the 3CLpro. Structure–activity relationship was analyzed, and possible binding interaction modes were proposed by molecular docking studies. Among all compounds, 8k1 showed most potent inhibitory activity against 3CLpro (IC50 = 1.04 μM). These results indicated that these inhibitors could be potentially developed into anti-SARS drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号