首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concerted gene duplications in the two keratin gene families   总被引:1,自引:0,他引:1  
Summary Evolutionary trees were derived from the keratin protein sequences using the Phylogeny Analysis Using Parsimony (PAUP) set of programs. Three major unexpected conclusions were derived from the analysis: The smallest keratin protein subunit, K#19 (Moll et al. 1982), is not the most primitive one, but has evolved to fulfill a highly specialized function, presumably to redress the unbalanced synthesis of keratin subunits. Second, the ancestors of keratins expressed in the early embryonic stages, K#8 and K#18, were the first to diverge from the ancestors of all the other keratins. The branches leading to these two keratins are relatively short, indicating a comparatively strong selection against changes in the sequences of these two proteins. Third, the two keratin families show extraodinary parallelism in their patterns of gene duplications. In both families the genes expressed in embryos diverged first, later bursts of gene duplications created the subfamilies expressed in various differentiated cells, and relatively recent gene duplications gave rise to the hair keratin genes and separated the basal cell-specific keratin from those expressed under hyperproliferative conditions. The parallelism of gene duplications in the two keratin gene families implies a mechanism in which duplications in one family influence duplication events in the other family.  相似文献   

2.
M Lussier  T Ouellet  C Lampron  L Lapointe  A Royal 《Gene》1989,85(2):435-444
The complete amino acid sequence of the mouse keratin 19 (K19) was determined from a partial sequence of cDNA isolated from a mouse (day 10.5) embryo library and an amplified genomic fragment. Analysis of the sequence reveals strong evolutionary conservation with other K19s. Examination of the expression of the gene encoding K19 (K19) during development using an RNase protection assay reveals it is expressed in extra-embryonic tissues by day 8.5 and in the embryo proper by at least day 9.5. Furthermore, the K19 gene is induced in differentiating F9 embryonal carcinoma cells. These results indicate that K19 is another keratin, in addition to the K8-K18 pair, which is synthesized early during mouse development. Finally, Southern analysis of the K19 gene reveals that it is found as a unique copy in the mouse genome, in contrast to what is found in humans, which have at least one processed pseudogene.  相似文献   

3.
A Waseem  A C Gough  N K Spurr  E B Lane 《Genomics》1990,7(2):188-194
Many human genes encoding keratin intermediate filament proteins are clustered on chromosomes 17 (the type I genes) and 12 (the type II genes). Some have not yet been localized, notably the genes for the primary embryonic keratins 8 and 18, normally expressed in simple epithelia: this is because the numerous pseudogenes for these keratins have made it difficult to identify the true functional gene in each case. Through the use of human-specific primers from within introns of the published gene sequence for human type I keratin 18, human genomic DNA has been specifically amplified using the polymerase chain reaction. A single reaction product was obtained. DNA from a characterized series of mouse-human somatic cell hybrid lines was tested for the presence of sequences able to initiate the chain reaction from these primers, and the presence or absence of this genomic DNA PCR product allowed us to assign a gene for human keratin 18 to chromosome 12 unambiguously. This differs from the location of other human type I keratins on chromosome 17 and may indicate the early divergence of the genes for stratifying cell keratins from that of simple, or embryonic, keratin 18.  相似文献   

4.
Hesse M  Franz T  Tamai Y  Taketo MM  Magin TM 《The EMBO journal》2000,19(19):5060-5070
It has been reported previously that keratin 8 (K8)-deficient mice of one strain die from a liver defect at around E12.5, while those of another strain suffer from colorectal hyperplasia. These findings have generated considerable confusion about the function of K8, K18 and K19 that are co-expressed in the mouse blastocyst and internal epithelia. To resolve this issue, we produced mice doubly deficient for K18 and K19 leading to complete loss of keratin filaments in early mouse development. These embryos died at around day E9.5 with 100% penetrance. The absence of keratins caused cytolysis restricted to trophoblast giant cells, followed by haematomas in the trophoblast layer. Up to that stage, embryonic development proceeded unaffected in the absence of keratin filaments. K18/19-deficient mouse embryos die earlier than any other intermediate filament knockouts reported so far, suggesting that keratins, in analogy to their well established role in epidermis, are essential for the integrity of a specialized embryonic epithelium. Our data also offer a rationale to explore the involvement of keratin mutations in early abortions during human pregnancies.  相似文献   

5.
Summary The expression of vimentin and keratins is analysed in the early postimplantation embryo of the rabbit at 11 days post conceptionem (d.p.c.) using a panel of monoclonal antibodies specific for single intermediate filament polypeptides (keratins 7, 8, 18, 19 and vimentin) and a pan-epithelial monoclonal keratin antibody. Electrophoretic separation of cytoskeletal preparations obtained from embryonic tissues, in combination with immunoblotting of the resulting polypeptide bands, demonstrates the presence of the rabbit equivalents of human keratins 8, 18, and vimentin in 11-day-old rabbit embryonic tissues. Immunohistochemical staining shows that several embryonic epithelia such as notochord, surface ectoderm, primitive intestinal tube, and mesonephric duct, express keratins, while others (neural tube, dermomyotome) express vimentin, and a third group (coelomic epithelia) can express both. Similarly, of the mesenchymal tissues sclerotomal mesenchyme expresses vimentin, while somatopleuric mesenchyme (abdominal wall) expresses keratins, and splanchnopleuric mesenchyme (dorsal mesentery) expresses both keratins and vimentin. While these results are in accordance with most results of keratin and vimentin expression in embryos of other species, they stand against the common concept of keratin and vimentin specificity in adult vertebrate tissues. Furthermore, keratin and vimentin are not expressed in accordance with germ layer origin of tissues in the mammalian embryo; rather the expression of these proteins seems to be related to cellular function during embryonic development.Supported by the Deutsche Forschungsgemeinschaft and by the Netherlands Cancer Foundation  相似文献   

6.
We analysed the expression of intermediate-filament proteins in the developing mesonephric duct (the precursor of the male genital ducts) and the paramesonephric duct (the precursor of the female genital ducts) of golden-hamster embryos using immunohistochemical methods. Embryos were investigated from the early stages of duct development, i.e. at 9.5 days post conceptionem (dpc), through sexual differentiation, until birth (15.5 dpc). Monospecific antibodies to vimentin or keratins 7, 8, 18 or 19 as well as two keratin antibodies that are pan-epithelial in human tissues were tested. Both ducts expressed vimentin to some degree from their early stages (mesonephric duct from 9.5 dpc onwards; paramesonephric duct from 10.5 dpc onwards) until birth. No keratins were detectable at these earliest stages. In the mesonephric duct, keratins 7, 18 and 19 appeared simultaneously at 10.5 dpc and persisted until birth. In the paramesonephric duct, only keratin 18 was detectable at first (at 12.0 dpc), with the expression of keratins 7 and 19 being delayed until 14.5 dpc. This feature was irrespective of sexual differentiation, which begins at 11.0 dpc, so that, in males, these keratins appeared on cue, even though the paramesonephric duct was regressing at this time. The expression of keratin 8 could not be demonstrated in either duct using the antibodies tested in our study. By 14.5 dpc, the differentiated male mesonephric duct and the differentiated female paramesonephric duct exhibited the same intermediate-filament protein pattern (weak vimentin expression and strong expression of keratins 7, 18 and 19), in spite of differences in the intermediate-filament protein patterns exhibited by the two ducts during early development. These different programmes of intermediate-filament protein regulation do not support the concept that the mesonephric duct makes a cellular contribution to the paramesonephric duct during the development of the latter.  相似文献   

7.
The keratins 8 and 18 of simple epithelia differ from stratified epithelial keratins in tissue expression and regulation. To examine the specific properties of human keratin 8, we cloned and sequenced the cDNA from a placental mRNA expression library and defined the optimum state of such clones for expression in bacterial plasmid vectors. Using the polymerase chain reaction we identified and sequenced three introns and located the single active gene for keratin 8, out of a background of 9 to 24 pseudogenes, on chromosome 12. This chromosome contains several genes for type II keratins and also the gene for keratin 18, the type I keratin that is coexpressed with keratin 8. This location of both members of a keratin pair on a single chromosome is thus far unique among the keratin genes; it is consistent with the hypothesis that keratins 8 and 18 may be closer to an ancestral keratin gene than the keratins of more highly differentiated epithelia.  相似文献   

8.
We have previously shown that the targeted deletions of both type I keratins (K) 18 and 19 cause lethality by embryonic day (e) 9.5 due to fragility and cytolysis of trophoblast giant cells. The development of the embryo proper appeared to be unaffected and its death was caused by nutrient deficiency. In order to address the function of keratins within the embryo proper, lethality due to extraembryonic tissue failure must be overcome. One approach to rescue doubly deficient embryos is by aggregating knockout embryos with tetraploid wild-type embryos. As a general tool, tetraploid aggregation can be used to rescue embryonic lethality caused by defects in extraembryonic tissues like the placenta, trophoblast or yolk sac. We rescued K18-/- K19-/- embryos until e11.5, using this approach, proving that the loss of the keratin cytoskeleton causes defects in the trophoblast giant cell layer, but has no effect on early development of the embryo proper.  相似文献   

9.
10.
人类基因组上的假基因   总被引:5,自引:0,他引:5  
周光金  余龙  赵寿元 《生命科学》2004,16(4):210-214,230
假基因是基因组上与编码基因序列非常相似的非功能性基因组DNA拷贝,一般情况都不被转录,且没有明确生理意义。假基因根据其来源可分为复制假基因和已加工假基因。迄今为止,明确鉴定的人类假基因多为已加工假基因,有8000个之多。在Swiss-Prot/TrEMBL收录的编码蛋白质的将近25500个基因序列中,约10%在基因组中有一个或多个近全长已加工假基因。其余的功能基因都没有已加工假基因。核糖体蛋白基因具有最多数量的已加工假基因,约有l700个(占已加工假基因数的22%),少数基因,如cyclophilinA、肌动蛋白(actin)、角蛋白(keratin)、GAPDH、细胞色素C(cytochromec)和nucleophosmin等则有很多份已加工假基因。总体上讲,假基因在人类染色体上的分布与染色体长度成比例,但已加工假基因在GC含量为41%~46%的染色体区域密度最高。已加工假基因的拷贝数和功能基因在生殖器官中的表达高度一致,说明许多假基因发生在胚胎阶段,另外也和基因中GC含量和基因大小密切相关。假基因的准确鉴定对基因组进化、分子医学研究和医学应用具有重要意义。  相似文献   

11.
12.
13.
Two regions of human genomic DNA, each containing several keratin genes, were isolated and partially sequenced. The keratin genes are inactive, having suffered deleterious mutations. Both regions contain at least four keratin genes arranged in a head-to-tail orientation including a pseudogene for keratin K#16. Within each segment there are two keratin genes in close linkage with only 1.5 kb of DNA between them. Sequence comparison of the two regions showed 98.9% identity in both the coding and the intronic segments of the pseudogenes. The pseudogenes show 94% identity to their functional counterparts. Southern hybridization analysis showed that the segments are paralogous, not allelic. The regions are products of two independent, recent duplication events. The first occurred approximately 24 million years ago, after the separation of primates from the rhesus/baboon line. The second is specific for the human lineage, having occurred approximately 3.8 million years ago. Analysis of the genomic DNAs of primates showed the presence of only one of the regions in the DNAs of gibbon and gorilla, while rhesus monkey and baboon were missing both copies. We conclude that the human keratin genes are still actively evolving, with new duplications having occurred as recently as after the separation of human and gorilla ancestors.  相似文献   

14.
Structural proteins of the intermediate filament family are an early indicator of differentiation before organogenesis becomes apparent. Keratin intermediate filaments are characteristically expressed only by epithelial and not by mesenchymal cells. Here we show, using monoclonal antibodies, a transient expression of the keratin pair 8 and 18 in a population of mesenchymal cells in the regenerating newt limb, specifically in the undifferentiated progenitor cells (blastemal cells) which give rise to the new tissues. These keratins are also expressed in cultured limb cells that can differentiate into muscle. In contrast no reactivity with anti-keratin 8 and 18 antibodies was observed in the newt limb bud at an early stage of development, indicating a molecular difference between the developing and regenerating limb. The molecular weights of the newt proteins detected by these antibodies are very similar to those of human keratins 8 and 18, further supporting the immunocytochemical evidence that the newt homologs of these keratins are expressed in blastemal cells. This is the first demonstration of keratin expression in mesenchymal progenitor cells in an adult animal.  相似文献   

15.
The chromosomal assignments of an expressed beta-tubulin gene and two related sequences have been determined by Southern blot analysis of DNA from a panel of human x Chinese hamster somatic cell hybrids cleaved with Hind III or EcoRI. Probes containing the 3' untranslated regions of the expressed gene M40 and of pseudogene 21 beta were used to localize the M40 sequence (gene symbol TUBB) to chromosome 6 region 6p21----6pter, the 21 beta pseudogene (TUBBP1) to chromosome 8 region 8q21----8pter and a third related sequence (TUBBP2) to chromosome 13. Asynteny of expressed genes and related processed pseudogenes has now been demonstrated for several gene families.  相似文献   

16.
K T Trevor 《The New biologist》1990,2(11):1004-1014
The murine keratins Endo B and Endo A, which are homologs of the human keratins K18 and K8, constitute the intermediate filaments (IFs) that are found in all simple epithelia of the adult and in the first epithelial derivatives of the early embryo. The cellular role of simple epithelial keratins in development and differentiation was investigated by inducing filament collapse in HR9 endoderm and F9 embryonal carcinoma cells in which mutant Endo B protein was constitutively expressed. By immunolocalization techniques a perturbation of the keratin network was revealed as well as concomitant disruption of vimentin IFs and displacement of surface desmosomal proteins, demonstrating an intimate structural association of Endo B/A filaments with these cellular components. In aggregates of differentiating F9 cells displaying altered Endo A/B IFs, the formation of a compact, polarized visceral endoderm layer was significantly compromised. These results indicate that an intact keratin network influences the three-dimensional formation of cell-cell or cell-substratum contacts in embryonic visceral endoderm.  相似文献   

17.
Eleven daughters of NANOG   总被引:6,自引:0,他引:6  
Booth HA  Holland PW 《Genomics》2004,84(2):229-238
Nanog is a recently discovered ANTP class homeobox gene. Mouse Nanog is expressed in the inner cell mass and in embryonic stem cells and has roles in self-renewal and maintenance of pluripotency. Here we describe the location, genomic organization, and relative ages of all human NANOG pseudogenes, comprising ten processed pseudogenes and one tandem duplicate. These are compared to the original, intact human NANOG gene. Eleven is an unusually high number of pseudogenes for a homeobox gene and must reflect expression in the human germ line. A pseudogene orthologous to NANOGP4 was found in chimpanzee and an expressed pseudogene in macaque. Examining pseudogenes of differing ages gives insight into pseudogene decay, which involves an excess of deletion mutations over insertions. The mouse genome has two processed pseudogenes, which are not clear orthologues of the primate pseudogenes.  相似文献   

18.
Three anti-keratin MAbs were used to identifykeratins expressed in early embryos of Bufo bufogargarizans.MAb AF5 recognized three polypeptides ofkeratin in oocytes,fertilized eggs,up to neurula withMr of 68,65 and 60Kd respectively.At tailbud stage,three other keratins(62,58 and 54Kd)began to expressand could be detected by AF5.MAbs D10 and K12 gavedifferent results,both of them could identify four keratin-like molecules with unusual molecular weights(Mr 98,95,30 and 27 Kd).Moreover,D10 could also detect a 54 Kdkeratin in neurula and tailbud stage embryos,while K12could reveal,beside 54Kd keratin,other four more kera-tins(68,65,62 and 60 Kd).The possible interpretation ofthese results and their implications are discussed.  相似文献   

19.
Monoclonal antibodies specific for vimentin (V9), keratin 7 (CK 7) and keratin 18 (CK5) have been microinjected into three human epithelial cell lines: HeLa, MCF-7 and RT-4. The effect of the injection on other keratin polypeptides and vimentin filaments has been observed by double label immunofluorescence and in some instances by immunoelectron microscopy using gold labels of different sizes. Microinjection of V9 into HeLa cells causes the vimentin to collapse into a perinuclear cap leaving the keratin filaments unaffected. Injection of CK5 does not affect the vimentin filaments but disrupts the keratin filaments revealing keratin aggregates similar to those seen in some epithelial cell lines during mitosis. The keratin aggregates obtained after microinjection in HeLa contain the keratins 8 and 18 and probably also other keratins, as no residual keratin filaments are observed with a keratin polyclonal antibody of broad specificity. Aggregates in mitotic HeLa cells contain at least the keratins 7, 8, and 18. In MCF-7 cells keratins 8, 18, and 19 are observed in the aggregates seen 3 h after microinjection which, however, show a different morphology from those seen in HeLa cells. In MCF-7 cells a new keratin filament is built within 6 h after the injection which is composed mainly of keratin 8 and 19. The antibody-complexed keratin 18 remains in spherical aggregates of different size. The results suggest that in HeLa cells vimentin and keratin form independent networks, and that individual 10 nm filaments in epithelial cell lines can contain more than two keratins.  相似文献   

20.
Keratin polypeptide 8 (K8) associates noncovalently with its partners K18 and/or K19 to form the intermediate filament cytoskeleton of hepatocytes and other simple-type epithelial cells. Human K8, K18, and K19 variants predispose to liver disease, whereas site-specific keratin phosphorylation confers hepatoprotection. Because stress-induced protein phosphorylation regulates sumoylation, we hypothesized that keratins are sumoylated in an injury-dependent manner and that keratin sumoylation is an important regulatory modification. We demonstrate that K8/K18/K19, epidermal keratins, and vimentin are sumoylated in vitro. Upon transfection, K8, K18, and K19 are modified by poly-SUMO-2/3 chains on Lys-285/Lys-364 (K8), Lys-207/Lys-372 (K18), and Lys-208 (K19). Sumoylation affects filament organization and stimulus-induced keratin solubility and is partially inhibited upon mutation of one of three known K8 phosphorylation sites. Extensive sumoylation occurs in cells transfected with individual K8, K18, or K19 but is limited upon heterodimerization (K8/K18 or K8/K19) in the absence of stress. In contrast, keratin sumoylation is significantly augmented in cells and tissues during apoptosis, oxidative stress, and phosphatase inhibition. Poly-SUMO-2/3 conjugates are present in chronically injured but not normal, human, and mouse livers along with polyubiquitinated and large insoluble keratin-containing complexes. Notably, common human K8 liver disease-associated variants trigger keratin hypersumoylation with consequent diminished solubility. In contrast, modest sumoylation of wild type K8 promotes solubility. Hence, conformational changes induced by keratin natural mutations and extensive tissue injury result in K8/K18/K19 hypersumoylation, which retains keratins in an insoluble compartment, thereby limiting their cytoprotective function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号