首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin and evolution of bacterial introns are still controversial issues. Here we present data on the distribution and evolution of a recently discovered divergent tRNA(Leu)(UAA) intron. The intron shows a higher sequence affiliation with introns in tRNA(Ile)(CAU) and tRNA(Arg)(CCU) genes in alpha- and beta-proteobacteria, respectively, than with other cyanobacterial tRNA(Leu)(UAA) group I introns. The divergent tRNA(Leu)(UAA) intron is sporadically distributed both within the Nostoc and the Microcystis radiations. The complete tRNA gene, including flanking regions and intron from Microcystis aeruginosa strain NIVA-CYA 57, was sequenced in order to elucidate the evolutionary pattern of this intron. Phylogenetic reconstruction gave statistical evidence for different phylogenies for the intron and exon sequences, supporting an evolutionary model involving horizontal intron transfer. The distribution of the tRNA gene, its flanking regions, and the introns were addressed by Southern hybridization and PCR amplification. The tRNA gene, including the flanking regions, were absent in the intronless stains but present in the intron-containing strains. This suggests that the sporadic distribution of this intron within the Microcystis genus cannot be attributed to intron mobility but rather to an instability of the entire tRNA(Leu)(UAA) intron-containing genome region. Taken together, the complete data set for the evolution of this intron can best be explained by a model involving a nested evolution of the intron, i.e., wherein the intron has been transferred horizontally (probably through a single or a few events) to a tRNA(Leu)(UAA) gene which is located within a unstable genome region.  相似文献   

2.
Antifreeze protein type IV (AFPIV) cDNAs and genomic DNAs from the Antarctic fishes Pleuragramma antarcticum (Pa) and Notothenia coriiceps (Nc) were cloned and sequenced, respectively. Each cDNA encoded 128 amino acids, with 94% similarity between the two and 83% similarity with AFPIV of the longhorn sculpin, Myoxocephalus octodecemspinosus. The genome structures of both genes consisted of four exons and three introns, and were highly conserved in terms of sequences and positions. In contrast, the third intron of PaAFPIV had additional nucleotides with inverted repeats at each end, which appeared to be a MITE-like transposable element. Comparative analysis revealed that fish AFPIVs were widely distributed across teleost fishes, well conserved in their intron positions, but more variable in intron sequences and sizes. However, the intron sequences of two Antarctic fishes were highly conserved, indicating recent radiation of notothenioids in the evolutionary lineage. The recombinant PaAFPIV and NcAFPIV were expressed in E. coli, and examined antifreeze activity. PaAFPIV and NcAFPIV gave ice crystals with star-shaped morphology, and thermal hysteresis (TH) values were 0.08°C at the concentration of 0.5mg/ml.  相似文献   

3.
The nucleotide sequence of Korean ginseng (Panax schinseng Nees) chloroplast genome has been completed (AY582139). The circular double-stranded DNA, which consists of 156,318 bp, contains a pair of inverted repeat regions (IRa and IRb) with 26,071 bp each, which are separated by small and large single copy regions of 86,106 bp and 18,070 bp, respectively. The inverted repeat region is further extended into a large single copy region which includes the 5' parts of the rpsl9 gene. Four short inversions associated with short palindromic sequences that form stem-loop structures were also observed in the chloroplast genome of P. schinseng compared to that of Nicotiana tabacum. The genome content and the relative positions of 114 genes (75 peptide-encoding genes, 30 tRNA genes, 4 rRNA genes, and 5 conserved open reading frames [ycfs]), however, are identical with the chloroplast DNA of N. tabacum. Sixteen genes contain one intron while two genes have two introns. Of these introns, only one (trnL-UAA) belongs to the self-splicing group I; all remaining introns have the characteristics of six domains belonging to group II. Eighteen simple sequence repeats have been identified from the chloroplast genome of Korean ginseng. Several of these SSR loci show infra-specific variations. A detailed comparison of 17 known completed chloroplast genomes from the vascular plants allowed the identification of evolutionary modes of coding segments and intron sequences, as well as the evaluation of the phylogenetic utilities of chloroplast genes. Furthermore, through the detailed comparisons of several chloroplast genomes, evolutionary hotspots predominated by the inversion end points, indel mutation events, and high frequencies of base substitutions were identified. Large-sized indels were often associated with direct repeats at the end of the sequences facilitating intra-molecular recombination.  相似文献   

4.
The human alpha-fetoprotein gene spans 19,489 base pairs from the putative "Cap" site to the polyadenylation site. It is composed of 15 exons separated by 14 introns, which are symmetrically placed within the three domains of alpha-fetoprotein. In the 5' region, a putative TATAAA box is at position -21, and a variant sequence, CCAAC, of the common CAT box is at -65. Enhancer core sequences GTGGTTTAAAG are found in introns 3 and 4, and several copies of glucocorticoid response sequences AGATACAGTA are found on the template strand of the gene. There are six polymorphic sites within 4690 base pairs of contiguous DNA derived from two allelic alpha-fetoprotein genes. This amounts to a measured polymorphic frequency of 0.13%, or 6.4 X 10(-4)/site, which is about 5-10 times lower than values estimated from studies on polymorphic restriction sites in other regions of the human genome. There are four types of repetitive sequence elements in the introns and flanking regions of the human alpha-fetoprotein gene. At least one of these is apparently a novel structure (designated Xba) and is found as a pair of direct repeats, with one copy in intron 7 and the other in intron 8. It is conceivable that within the last 2 million years the copy in intron 8 gave rise to the repeat in intron 7. Their present location on both sides of exon 8 gives these sequences a potential for disrupting the functional integrity of the gene in the event of an unequal crossover between them. There are three Alu elements, one of which is in intron 4; the others are located in the 3' flanking region. A solitary Kpn repeat is found in intron 3. The Xba and Kpn repeats were only detected by complete sequencing of the introns. Neither X, Xba, nor Kpn elements are present in the related human albumin gene, whereas Alu's are present in different positions. From phylogenetic evidence, it appears that Alu elements were inserted into the alpha-fetoprotein gene at some time postdating the mammalian radiation 85 million years ago.  相似文献   

5.
6.
Nucleotide sequence of the gene for human factor IX (antihemophilic factor B)   总被引:97,自引:0,他引:97  
Two different human genomic DNA libraries were screened for the gene for blood coagulation factor IX by employing a cDNA for the human protein as a hybridization probe. Five overlapping lambda phages were identified that contained the gene for factor IX. The complete DNA sequence of about 38 kilobases for the gene and the adjacent 5' and 3' flanking regions was established by the dideoxy chain termination and chemical degradation methods. The gene contained about 33.5 kilobases of DNA, including seven introns and eight exons within the coding and 3' noncoding regions of the gene. The eight exons code for a prepro leader sequence and 415 amino acids that make up the mature protein circulating in plasma. The intervening sequences range in size from 188 to 9473 nucleotides and contain four Alu repetitive sequences, including one in intron A and three in intron F. A fifth Alu repetitive sequence was found immediately flanking the 3' end of the gene. A 50 base pair insert in intron A was found in a clone from one of the genomic libraries but was absent in clones from the other library. Intron A as well as the 3' noncoding region of the gene also contained alternating purine-pyrimidine sequences that provide potential left-handed helical DNA or Z-DNA structures for the gene. KpnI repetitive sequences were identified in intron D and the region flanking the 5' end of the gene. The 5' flanking region also contained a 1.9-kb HindIII subfamily repeat. The seven introns in the gene for factor IX were located in essentially the same position as the seven introns in the gene for human protein C, while the first three were found in positions identical with those in the gene for human prothrombin.  相似文献   

7.
Irimia M  Roy SW 《PLoS genetics》2008,4(8):e1000148
The presence of spliceosomal introns in eukaryotes raises a range of questions about genomic evolution. Along with the fundamental mysteries of introns' initial proliferation and persistence, the evolutionary forces acting on intron sequences remain largely mysterious. Intron number varies across species from a few introns per genome to several introns per gene, and the elements of intron sequences directly implicated in splicing vary from degenerate to strict consensus motifs. We report a 50-species comparative genomic study of intron sequences across most eukaryotic groups. We find two broad and striking patterns. First, we find that some highly intron-poor lineages have undergone evolutionary convergence to strong 3' consensus intron structures. This finding holds for both branch point sequence and distance between the branch point and the 3' splice site. Interestingly, this difference appears to exist within the genomes of green alga of the genus Ostreococcus, which exhibit highly constrained intron sequences through most of the intron-poor genome, but not in one much more intron-dense genomic region. Second, we find evidence that ancestral genomes contained highly variable branch point sequences, similar to more complex modern intron-rich eukaryotic lineages. In addition, ancestral structures are likely to have included polyT tails similar to those in metazoans and plants, which we found in a variety of protist lineages. Intriguingly, intron structure evolution appears to be quite different across lineages experiencing different types of genome reduction: whereas lineages with very few introns tend towards highly regular intronic sequences, lineages with very short introns tend towards highly degenerate sequences. Together, these results attest to the complex nature of ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron structures across modern lineages, and the impressive evolutionary malleability of eukaryotic gene structures.  相似文献   

8.
Our previous study of the North American biogeography of Bangia revealed the presence of two introns inserted at positions 516 and 1506 in the nuclear-encoded SSU rRNA gene. We subsequently sequenced nuclear SSU rRNA in additional representatives of this genus and the sister genus Porphyra in order to examine the distribution, phylogeny, and structural characteristics of these group I introns. The lengths of these introns varied considerably, ranging from 467 to 997 nt for intron 516 and from 509 to 1,082 nt for intron 1506. The larger introns contained large insertions in the P2 domain of intron 516 and the P1 domain of intron 1506 that correspond to open reading frames (ORFs) with His-Cys box homing endonuclease motifs. These ORFs were found on the complementary strand of the 1506 intron in Porphyra fucicola and P. umbilicalis (HG), unlike the 516 intron in P. abbottae, P. kanakaensis, P. tenera (SK), Bangia fuscopurpurea (Helgoland), and B. fuscopurpurea (MA). Frameshifts were noted in the ORFs of the 516 introns in P. kanakaensis and B. fuscopurpurea (HL), and all ORFs terminated prematurely relative to the amino acid sequence for the homing endonuclease I-Ppo I. This raises the possibility that these sequences are pseudogenes. Phylogenies generated using sequences of both introns and the 18S rRNA gene were congruent, which indicated long-term immobility and vertical inheritance of the introns followed by subsequent loss in more derived lineages. The introns within the florideophyte species Hildenbrandia rubra (position 1506) were included to determine relationships with those in the Bangiales. The two sequences of intron 1506 analyzed in Hildenbrandia were positioned on a well-supported branch associated with members of the Bangiales, indicating possible common ancestry. Structural analysis of the intron sequences revealed a signature structural feature in the P5b domain of intron 516 that is unique to all Bangialean introns in this position and not seen in intron 1506 or other group IC1 introns.  相似文献   

9.
10.
11.
Group I introns were reported for the first time in the large subunit of Rubisco (rbcL) genes, using two colonial green algae, Pleodorina californica and Gonium multicoccum (Volvocales). The rbcL gene of P. californica contained an intron (PlC intron) of 1320 bp harboring an open reading frame (ORF). The G. multicoccum rbcL gene had two ORF-lacking introns of 549 (GM1 intron) and 295 (GM2 intron) base pairs. Based on the conserved nucleotide sequences of the secondary structure, the PlC and GM1 introns were assigned to group IA2 whereas the GM2 intron belonged to group IA1. Southern hybridization analyses of nuclear and chloroplast DNAs indicated that such intron-containing rbcL genes are located in the chloroplast genome. Sequencing RNAs from the two algae revealed that these introns are spliced out during mRNA maturation. In addition, the PlC and GM1 introns were inserted in the same position of the rbcL exons, and phylogenetic analysis of group IA introns indicated a close phylogenetic relationship between the PlC and GM1 introns within the lineage of bacteriophage group IA2 introns. However, P. californica and G. multicoccum occupy distinct clades in the phylogenetic trees of the colonial Volvocales, and the majority of other colonial volvocalean species do not have such introns in the rbcL genes. Therefore, these introns might have been recently inserted in the rbcL genes independently by horizontal transmission by viruses or bacteriophage.  相似文献   

12.
The human alpha-fetoprotein (AFP) gene was isolated into three overlapping clones in bacteriophage lambda vectors and its sequence organization analyzed by restriction endonuclease mapping and nucleotide sequencing. The human AFP gene is about 20 kilobase pairs long and contains 15 exons and 14 introns. The overall organization of the human AFP gene is similar to that of the mouse AFP gene, with all but two exons showing identical sizes. Nucleotide sequences at all exon/intron junctions display similarity to the consensus boundary sequence (Breathnach, R., and Chambon, P. (1981) Annu. Rev. Biochem. 50, 349-383), with the GT-AG rule applied to the splicing point. The cap site maps 44 nucleotides upstream from the translation initiation site. The "TATA box" is located 27 nucleotides upstream from the putative cap site and is flanked by sequences with dyad symmetry. The TATA box can thus be placed in the loop portion of a possible stem-loop structure formed by intrastrand base-pairing. Other characteristic nucleotide sequences in the 5' flanking region include a CCAAC pentamer, a 14-base pair (bp) enhancer-like sequence, and a 9-bp sequence homologous to the glucocorticoid responsive element. A long (90 bp) direct repeat and several alternating purine/pyrimidine sequences are also present in the 5' flanking region. A 736-bp sequence of the 5' flanking region adjacent to the cap site of the human AFP gene shows a 61% similarity with the corresponding region of the mouse AFP gene. There are two Alu family sequences and two poly(dT-dG) repeats in the human AFP gene that show different distribution patterns from those in the mouse AFP gene.  相似文献   

13.
Nucleotide sequence of the gene for the b subunit of human factor XIII   总被引:9,自引:0,他引:9  
R E Bottenus  A Ichinose  E W Davie 《Biochemistry》1990,29(51):11195-11209
Factor XIII (Mr 320,000) is a blood coagulation factor that stabilizes and strengthens the fibrin clot. It circulates in blood as a tetramer composed of two a subunits (Mr 75,000 each) and two b subunits (Mr 80,000 each). The b subunit consists of 641 amino acids and includes 10 tandem repeats of 60 amino acids known as GP-I structures, short consensus repeats (SCR), or sushi domains. In the present study, the human gene for the b subunit has been isolated from three different genomic libraries prepared in lambda phage. Fifteen independent phage with inserts coding for the entire gene were isolated and characterized by restriction mapping, Southern blotting, and DNA sequencing. The gene was found to be 28 kilobases in length and consisted of 12 exons (I-XII) separated by 11 intervening sequences. The leader sequence was encoded by exon I, while the carbonyl-terminal region of the protein was encoded by exon XII. Exons II-XI each coded for a single sushi domain, suggesting that the gene evolved through exon shuffling and duplication. The 12 exons in the gene ranged in size from 64 to 222 base pairs, while the introns ranged in size from 87 to 9970 nucleotides and made up 92% of the gene. The introns contained four Alu repetitive sequences, one each in introns A, E, I, and J. A fifth Alu repeat was present in the flanking 3' end of the gene. Two partial KpnI repeats were also found in the introns, including one in intron I and one in intron J. The KpnI repeat in intron J was 89% homologous to a sequence of approximately 2200 nucleotides flanking the gene coding for human beta globin and approximately 3800 nucleotides from the L1 insertion present in the gene for human factor VIII. Intron H also contained an "O" family repeat, while two potential regions for Z-DNA were identified within introns G and J. One nucleotide change was found in the coding region of the gene when its sequence was compared to that of the cDNA. This difference, however, did not result in a change in the amino acid sequence of the protein.  相似文献   

14.
We isolated DNA fragments containing various repetitive elements from the genome of a sea bream Acanthopagrus latus. Sequence analysis indicated that two fragments have particularly interesting features. Fragment AL87 contained a tetranucleotide repeat and a quasipalindromic sequence. Sequence comparison suggested that AL87 may be a part of a gene encoding a serine/threonine protein kinase, and that the quasipalindrome is situated at the junction of an intron and an exon. Moreover, the quasipalindrome is conserved in several other fishes, even though it has the potential to form a stem-loop structure at the splicing site. Fragment AL79 contained a minisatellite sequence made up of six 30-bp units in tandem. DNase I sensitivity assays and statistical analyses showed the repeat region to be flexible when subjected to bending stress. In addition, atomic force microscopic imaging of AL79 showed the presence of highly curved (kinked) segments flanking the repeat region. The structural features of these repetitive elements may be key factors facilitating the amplification of the repeats.  相似文献   

15.
Group I introns were discovered inserted at the same position in the nuclear small-subunit ribosomal DNA (nuc-ssu-rDNA) in several species of homobasidiomycetes (mushroom-forming fungi). Based on conserved intron sequences, a pair of intron-specific primers was designed for PCR amplification and sequencing of intron-containing rDNA repeats. Using the intron-specific primers together with flanking rDNA primers, a PCR assay was conducted to determine presence or absence of introns in 39 species of homobasidiomycetes. Introns were confined to the genera Panellus, Clavicorona, and Lentinellus. Phylogenetic analyses of nuc-ssu-rDNA and mitochondrial ssu-rDNA sequences suggest that Clavicorona and Lentinellus are closely related, but that Panellus is not closely related to these. The simplest explanation for the distribution of the introns is that they have been twice independently gained via horizontal transmission, once on the lineage leading to Panellus, and once on the lineage leading to Lentinellus and Clavicorona. BLAST searches using the introns from Panellus and Lentinellus as query sequences retrieved 16 other similar group I introns of nuc-ssu-rDNA and nuclear large-subunit rDNA (nuc-lsu-rDNA) from fungal and green algal hosts. Phylogenetic analyses of intron sequences suggest that the mushroom introns are monophyletic, and are nested within a clade that contains four other introns that insert at the same position as the mushroom introns, two from different groups of fungi and two from green algae. The distribution of host lineages and insertion sites among the introns suggests that horizontal and vertical transmission, homing, and transposition have been factors in intron evolution. As distinctive, heritable features of nuclear rDNAs in certain lineages, group I introns have promise as phylogenetic markers. Nevertheless, the possibility of horizontal transmission and homing also suggest that their use poses certain pitfalls.   相似文献   

16.
The complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.  相似文献   

17.
Patterns of photobiont diversity were examined in some Nostoc -containing lichens using the nucleotide sequence of the cyanobacterial tRNALeu (UAA) intron. Lichen specimens collected in northwestern USA were analysed and the sequence data were compared with tRNALeu(UAA) intron sequences previously obtained from lichens in northern Europe. Generally, it is the species identity of a lichen rather than the geographical origin of the specimen that determines the identity of the cyanobiont. Identical intron sequences were found in Peltigera membranacea specimens collected in Oregon (USA) and in Sweden, and very similar sequences were also found in Nephroma resupinatum thalli collected in Oregon and Finland. Furthermore, in mixed assemblages where two Peltigera species grew in physical contact with each other, the different lichen species housed different photobiont strains. There is however not a one-to-one relation between mycobiont and photobiont as some intron sequences were found in more than one lichen species, and different intron sequences were found in different samples of some lichen taxa. Peltigera venosa exhibited a higher level of photobiont diversity than any other lichen species studied, and several intron sequences could for the first time be obtained from a single thallus. It is not clear whether this is evidence of lower cyanobiont specificity, or reflects an ability to exhibit different degrees of lichenization with different Nostoc strains. In one specimen of P. venosa , which contained bipartite cyanosymbiodemes and tripartite, cephalodiate thalli, both thallus types contained the same intron sequence.  相似文献   

18.
The polymerase chain reaction was used to identify novel IAI subgroup introns in cpDNA-enriched preparations from the interfertile green algae Chlamydomonas eugametos and Chlamydomonas moewusii. These experiments along with sequence analysis disclosed the presence, in both green algae, of a single IA1 intron in the psaB gene and of two group I introns (IA2 and IA1) in the psbC gene. In addition, two group I introns (IA1 and IB4) were found in the peptidyltransferase region of the mitochondrial large subunit rRNA gene at the same positions as previously reported Chlamydomonas chloroplast introns. The 188 bp segment preceding the first mitochondrial intron revealed extensive sequence similarity to the distantly spaced rRNA-coding modules L7 and L8 in the Chlamydomonas reinhardtii mitochondrial DNA, indicating that these two modules have undergone rearrangements in Chlamydomonas. The IA1 introns in psaB and psbC were found to be related in sequence to the first intron in the C. moewusii chloroplast psbA gene. The similarity between the former introns extends to the immediate 5' flanking exon sequence, suggesting that group I intron transposition occurred from one of the two genes to the other through reverse splicing.  相似文献   

19.
The human albumin-alpha-fetoprotein genomic domain contains 13 repetitive DNA elements randomly distributed throughout the symmetrical structures of these genes. These repeated sequences are located at different sites within the two genes. The human albumin gene contains five Alu elements within four of its 14 intervening sequences. Two of these repeats are located in intron 2, and the remaining three are located in introns 7, 8, and 11. The human alpha-fetoprotein gene contains three of these Alu elements, one in intron 4 and the remaining two in the 3'-untranslated region. In addition, the human alpha-fetoprotein gene contains a Kpn repeat and two classes of novel repeats that are absent from the human albumin gene. Six of the Alu elements within the two genes are bound by short direct repeats that harbor five base substitutions in 120 possible positions (60 bp times 2 termini). The absence of Alu repeats from analogous positions in rodents indicates that these repeats invaded the albumin-alpha-fetoprotein domain less than 85 Myr ago (the time of mammalian radiation). Furthermore, considering the conservation of terminal repeats flanking the Alu sequences of the albumin-alpha-fetoprotein domain (0.042 changes per site), we submit that the average time of Alu insertion into this gene family could have been as recently as 15-30 Myr ago.  相似文献   

20.
Two classes of genes in plants   总被引:19,自引:0,他引:19  
Carels N  Bernardi G 《Genetics》2000,154(4):1819-1825
Two classes of genes were identified in three Gramineae (maize, rice, barley) and six dicots (Arabidopsis, soybean, pea, tobacco, tomato, potato). One class, the GC-rich class, contained genes with no, or few, short introns. In contrast, the GC-poor class contained genes with numerous, long introns. The similarity of the properties of each class, as present in the genomes of maize and Arabidopsis, is particularly remarkable in view of the fact that these plants exhibit large differences in genome size, average intron size, and DNA base composition. The functional relevance of the two classes of genes is stressed by (1) the conservation in homologous genes from maize and Arabidopsis not only of the number of introns and of their positions, but also of the relative size of concatenated introns; and (2) the existence of two similar classes of genes in vertebrates; interestingly, the differences in intron sizes and numbers in genes from the GC-poor and GC-rich classes are much more striking in plants than in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号