首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal-cap cells isolated from Xenopus laevis morulae and blastulae are cultured for 2 to 6 hr in medium containing nocodazole, Colcemid or taxol, at concentrations completely inhibiting cell division. At 20°C, cells from each control embryo undergo synchronous cell cycles up to the 12th, with a period of 32 min, of which 60% represents the chromosome condensation (mitotic or M-) phase, and the average mitotic index remains near 50%. Cells treated with nocodazole, Colcemid or taxol before 12th cleavage undergo chromosome cycles with a similar period as controls, albeit without chromosome segregation, and the average mitotic index remains near 50%. From the 12th to 15th cycles, control cycles become asynchronous, their period gradually increases 2 to 3 times, and the mitotic index declines to 10%. In cells treated after 12th cleavage with taxol, the mitotic index declines, similarly to control cells. However, in nocodazole-treated cells, it increases steadily, and exceeds 70% at 2 hr of treatment, but gradually declines to 40% at 6 hr. Therefore, while inhibition of microtubule activities does not significantly alter the timing of chromosome condensation cycles during synchronous cleavage, inhibition of microtubule assembly can prolong M-phase during asynchronous cleavage after the midblastula transition.  相似文献   

2.
Michio Ito 《Planta》1969,90(1):22-31
Summary In protonemata of Pteris vittata grown for 6 days under red light, which brings about a marked depression of mitotic activity, the first division of the cells was synchronously induced by irradiation with blue light, and subsequent cell divisions were also promoted. The peak of the mitotic index reached a maximum of about 70% at 11.5 hrs, and 90% of all protonemata divided between the 11th and 13th hour after exposure to blue light. When the protonemata were continuously irradiated with blue light, synchronism of the next cell division in the apical cells decreased to a mitotic index of about 30%, and further divisions occurred randomly.The synchronization of cell division was found to be a combined effect of red and blue light. Red light maintained the cells in the early G1 phase of the cell cycle; blue light caused the cells to progress synchronously through the cell cycle, with an average duration of 12 hr. By using 3H-thymidine, the average duration of the G1, S, G2 and M phases was determined to be about 3.5, 5, 2.5 and 1 hr, respectively.Synchronous cell division could be induced in older protonemata grown for 6 to 12 days in red light and even in protonemata having two cells. It could be repeated in the same protonema by reexposure to red light for 24 hrs or more before another irradiation with blue light.  相似文献   

3.
Four different chemicals were tested in their ability to synchronize cell division in asynchronous cell cultures of Haplopappus gracilis. Twentyfour-hour treatments with 5-amino uracil resulted in a peak in the mitotic index about 14–16 hours after the end of the treatment. The increase in the frequency of mitoses was about three times that of the control. Hydroxyurea, at a concentration of 3 mM, gave after a treatment period of 12–24 hours an increase in the frequency of mitoses which appeared about 10 hours after the treatment. The mitotic index was about 35 per cent, which is 4 times that of the control. 5-Fluorodeoxyuridine (FUdR) at a concentration of 2 × 10?7M gave a mitotic burst about 16 hours after treatment. At that time about 15 per cent of the cells were dividing which was about twice that of the control. The block was reversed with 4 × 10?5M thymidine. Thymidine at a high concentration caused a reduction in the frequency of mitoses during the treatment. After 15 to 16 hours in a thymidine free medium a mitotic peak appeared with a doubling of the frequency of mitoses in treated cells. Cytological studies showed that parlicularly hydroxyurea but also 5-aminouracil and 5-fluorodeoxyuridine produced gaps and fragments at the concentrations which gave cell synchronization.  相似文献   

4.
The question was investigated of whether for crypt epithelia of the jejunum of the mouse all cells labelled after a single injection of 3H-TdR subsequently divide or whether cells exist in the crypt which synthesize metabolic DNA and, therefore, do not undergo division after labelling.
A double labelling experiment was performed with a first injection of 3H-TdR followed 1 hr later by an injection of 14C-TdR. Then from double emulsion autoradiographs of isolated squashed crypts the number of 3H-only, 14C-only and double labelled cells and mitoses were counted.
The double labelling produced a narrow, 1 hr wide sub-population of 3H-only labelled cells. This subpopulation of S cells completed its division before labelled cells were lost from the crypts by migration onto the villi. The results showed that this subpopulation of 3H-only cells completely doubled within 3 hr and then remained constant through 6 hr. From this result it was concluded that every cell labelled after a single injection of 3H-TdR divides.
From the same autoradiographs the flow rate through the end of mitosis was measured. From the flow rate and the mitotic index a mitotic duration of 0·5 hr was determined. The agreement of this measured mitotic time with the value calculated from the labelling index, mitotic index and S duration is also strong evidence that every labelled cell divides.
Both experiments show that the intestinal crypt does not contain cells synthesizing metabolic DNA.  相似文献   

5.
Seedlings of Datura stramonium L., although not photoperiodically sensitive, are useful for floral transition studies when raised in a growth chamber at a constant temperature of 25 C with a photoperiod of 8 hr of light (1,600-2,000 ft-c) and 16 hr of darkness. A terminal flower is formed after the seventh or eighth leaf primordium is produced. A constant rate of leaf initiation up to the time of flowering enables specific apical stages to be obtained and studied. Changes in the mitotic index, substantiated with calculated rates of cell division (measured by the accumulation of metaphases following treatment with colchicine) were studied in shoot apical zones during transition to flowering. Fluctuations in the mitotic index of each zone in the vegetative and transition apex with respect to apical stage as well as time of day were not statistically significant. The mitotic index of the summit zone of the vegetative apex was significantly lower than in the other zones whose mitotic indices were not significantly different from one another. During floral transition the mitotic index of the summit zone as well as the central zone (just below the summit zone) significantly increased while no significant changes were detected in the flank zones. It was shown that the mitotic index could be considered representative of the rates of cell division in Datura.  相似文献   

6.
Roots of Vicia faba were treated with solutions of colchicine or IAA or both. Mitotic indices and the frequencies of the different stages of mitosis were determined immediately after a three hour treatment or following a 24 hour period of recovery. Roots scored after treatment with colchicine for three hours showed several effects, none of which were reversed by simultaneous treatment with IAA. Treatment with IAA for three hours had little detectable effect on mitotic index (MI) on the frequencies of the various stages of mitosis. After a recovery period, following a three hour treatment, of 24 hours, colchicine treated roots showed a significant increase in their MI; this was due largely to an increase in the number of metaphases but it was also due in part to the presence of tetraploid cells in division. IAA treated roots revealed an inhibition of mitotic activity, which was most marked at 3.13–6.26×10–4 M IAA. The results from roots treated with mixtures of colchicine and IAA for three hours and fixed 24 hours later showed: 1) the increase in MI induced by colchicine is reversed by IAA, the intensity of the reversal increasing with increasing concentrations of IAA; 2) reductions in the total numbers of cells in prophase or in metaphase occur after treatment with different concentrations of IAA; 3) IAA leads to a reduction in the number of tetraploid cells seen in division.It appears that colchicine induces a change in the pattern of mitotic activity 24 hours after the end of treatment and its effects are reversed by IAA. At 4.2×10–4 M IAA a balance occurs between the opposing effects of colchicine and IAA and the MI is not significantly different from that of the controls. It is suggested that one result of a treatment with colchicine is a change in the level of growth factors in root meristems. This change, which appears to result in a temporary increase in MI is reversed by the addition of IAA. Thus one of the growth factors, the level of which has been affected, is replaceable by exogenous IAA.  相似文献   

7.
A callus of the common garden peony, Paeonia suffruticosa, was subcultured on solid and liquid media and analyzed intensively for a period of 153 days in order to test the effects of subculturing and the physical conditions of culture on the mitotic cycle kinetics of a population of cells, particularly in relation to the degree of heteroploidy. The parameters investigated in the kinetic studies included mitotic index values, cell generation time, and the time required for the cell population to double. The mitotic index of Paeonia cells cultured in liquid medium was found to be about two and a half times higher than for those cultured on solid; successive subculturing did not affect the mitotic index on either type of medium. The most significant results of the study came from the chromosome count data, in which diploid and tetraploid cells fluctuated in predominance in successive subcultures, and the apparent earlier manifestation of polyploidy on liquid medium. Mitotic index, cell generation, and population doubling times remained constant throughout the study.  相似文献   

8.
Experiments were performed with cultured primary root tips of sunflower (Helianthus annuus var. Russian Mammoth) to determine: (1) if progression in the mitotic cycle of meristematic cells was nutritionally controllable by carbohydrate starvation and replenishment; (2) where in the mitotic cycle control was effected; and (3) whether nutritional deprivation could be used to detect phenotypically different subpopulations in a complex tissue. Meristematic cells were rendered stationary by carbohydrate starvation, as indicated by the absence of cell division; this condition was reversed by carbohydrate provision. After 72 or 96 hr of starvation most cells stopped in G1 (80–90%) and G2 (10–20%), and a very few (“leaky” cells) continued to enter S. “Leaky” cells represent a small population with an S period of approximately 4.1 hr that either lack a principal control point in G1 or have an unusual metabolism whereby the control point requirements are met and have a carbohydrate dependence for mitosis. Though phenotypically different, no specific functions can be attributed to “leaky” cells at this time.  相似文献   

9.
Waves of mitosis are induced in Oedogonium cardiacum grown under a 15 hr light/9 hr dark cycle. Mitosis starts 4 to 5 hr after the start of the dark period. Each mitotic stage has a high initial rate which plateaus at a lower rate for several additional hours. Partial synchronization of mitotic stages results from this induction of cell division. Mitotic divisions last 9 to 10 hr after induction. During the remainder of the 24-hr light/dark cycle, cells are in interphase. Along a filament, several dividing cells tend to be adjacent, with the most advanced stage in the cap cell. Progressively earlier mitotic stages are basal to the dividing cap cell. This pattern of mitotic division differs from the state in nature where only the cap cell usually divides. Chromosomes probably maintain a telophase arrangement during interphase. The suitability and advantages of Oedogonium, a haploid alga with sexual reproduction, as an experimental plant for cytological, developmental, biochemical, and genetic studies is pointed out.  相似文献   

10.
Pea root segments cut 10–11 mm behind the tip of germinating seedlings were prepared by removal of the central cylinders with a tissue punch. These cortical explants were cultured aseptically on nutrient medium containing auxin with and without added cytokinin. In the absence of kinetin, the cortical cells enlarged and separated but failed to show DNA synthesis, mitosis, cell division or subsequent cytodifferentiation. In the presence of 1 ppm kinetin, cortical nuclei showed 3H-thymidine incorporation beginning between 24 and 32 hr; mitoses began about 48 hr, reaching a maximum of 6% at 60 hr. From an initial number of 8000 cells per segment, the cell count increased to 37,000 by day 7 and 140,000 by day 21. At the outset all mitoses were tetraploid; with time the proportion of tetraploid mitotic cells decreased and an octaploid population increased. A frequency of less than 10% diploid mitoses was observed after day 5. Only 25% of the cortical cells showed initial labeling. Beginning on day 7 tracheary elements differentiated from cortical derivatives. By day 14 about 25% and by day 21 about 35% of the total cell population had formed tracheary elements. As a system for analysis in biochemical and cytological terms, pea cortical explants represent an excellent system for the study of cytodifferentiation.  相似文献   

11.
Mitotic activity and cell proliferation of newt ( Triturus pyrrhogaster ) embryo were examined with special reference to primary induction.
Mitotic activity of gastrula ectoderm gradually decreases during gastrulation. The ectoderm, which is isolated from mid-gastrula (stage 12b) and cultured in vitro , also shows gradual decrease in mitotic activity during cultivation and the mitotic activity steeply decreases after 48 hr.
The ectoderm cultured with heterologous inductor (GPL-extract) shows a temporal suppression in mitotic activity. The ectoderm of the whole gastrula also shows a regional suppression where it is in contact with the chorda-mesoderm.
The number of the ectodermal cells increases about 2 times after 24 hr culture and to more than 3 times after 48 hr culture. Accordingly it is certain that the majority of the ectodermal cells divides at least one time in the course of 48 hr.
Histological examination of the ectoderm cultured together with the inductor reveals that differentiation of undifferentiated ectoderm to neural tissues is accomplished at least within 48 hr after cultivation with the inductor.
The present examination shows the possibility that the mitotic activity of the ectoderm may be temporarily suppressed by the inductor and that it then decreases along with neural cell differentiation after recovery of the activity.
The results also suggest that the determination of undifferentiated ectoderm to neural tissues occurs before the second cell division after the contact with the inductor and the events occurring during the first cell cycle after activating by the inducing stimulus are critical for the primary induction.  相似文献   

12.
Abstract Nocodazole, a temporary inhibitor of microtubule formation, has been used to partly synchronize Ehrlich ascites tumour cells growing in suspension. the gradual entry of cells into mitosis and into the next cell cycle without division during drug treatment has been studied by flow cytometric determination of mitotic cells, analysing red and green fluorescence after low pH treatment and acridine orange staining. Determination of the mitotic index (MI) by this method has been combined with DNA distribution analysis to measure cell-cycle phase durations in asynchronous populations growing in the presence of the drug. With synchronized cells, it was shown that in the concentration range 0.4–4.0 μg/l, cells could only be arrested in mitosis for about 7 hr and at 0.04 μg/ml, for about 5 hr. After these time intervals, the DNA content in nocodazole-blocked cells was found to be increased, and, in parallel, the ratio of red and green fluorescence was found to have changed, showing entry of cells into a next cell cycle without division (polyploidization). It was therefore only possible to partially synchronize an asynchronous population by nocodazole. However, a presynchronized population, e.g. selected G1 cells or metabolically blocked G1/S cells, were readily and without harmful effect resynchronized in M phase by a short treatment (0.4 μg/ml, 3–4 hr) with nocodazole; after removal of the drug, cells divided and progressed in a highly synchronized fashion through the next cell cycle.  相似文献   

13.
Summary Cultures of maize (Zea mays L.) endosperm grown in vitro for over 3 years were examined cytologically. Conditions of aneuploidy and polyploidy were noted. Chromosome numbers ranged from 21 to over 200, with 30 to 60 being observed most often. Although a few extra large cells with polyploid nuclei were scattered throughout the smear preparation, a large proportion of the interphase nuclei appeared similar in volume and probably contained a near normal complement of chromosomes. Anaphase bridges were the most commonly observed chromosome aberration. No cell divisions were observed the first 24 hr after transfer. From 2 to 8 days after transfer the proportion of cells in division was relatively constant with a mitotic index of approximately 5.5%. The proportion of cells in division began to decline 8 days after transfer and in the final sample taken after 13 days only 2.6% of the cells were in division. Examples of localized synchrony were observed and mitotic indices for individual cell clumps ranged from 0 to 17%. Authorized for publication on October 16, 1973 as paper number 4552 in the Journal Series of the Pennsylvania State Agricultural Experiment Station.  相似文献   

14.
Bone sarcomatous cells derived from human malignant tumors were cultured. The mitotic index was recorded for 39 hr. When the cultured cells originated from patients with cancer disease before any chemotherapy, ultradian mitotic rhythms of a 6-9-hr period were detected, but in many cases only after a sensitive statistical analysis was performed. When the cultured cells originated from cancer patients undergoing chemotherapy, the mitotic index was decreased, and the amplitudes of the 6-9-hr component oscillations of the mitotic index were highly significantly increased. Damping and fading out of an ultradian mitotic rhythmicity was a bad prognostic portent in bone cancer. With reference to chemotherapy, the restored and amplified ultradian rhythmicity disclosed an appreciable antitumor effect and better survival prospects for the patient.  相似文献   

15.
A system of synchronous cell division was established by starvation of auxin and its readdition to suspension cultures of cells of Catharanthus roseus L. cv. Little-Pinky. When cells in the stationary phase were transferred to fresh medium free of 2,4-dichlorophenoxyacetic acid (2,4-D), cells were arrested preferentially at the G1 phase. After cells had been cultured for 2 days in medium without 2,4-D, readdition of 2,4-D induced the synchronous division of cells. In this system, 70–80% of cells divided synchronously within 3 to 4h, and the mitotic index increased sharply in parallel with the increase in cell number. Active synthesis of DNA was demonstrated by measurements of incorporation of [3H]-thymidine into the DNA fraction. The induction of cell division by the addition of 2,4-D was inhibited by treating cells with analogues of auxin, such as 2,4,6-trichlorophenoxyacetic acid and p-chlorophenoxyisobutyric acid.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - DAPI 4,6-diamidino-2-phenylindole - IAA indole-3-acetic acid - MS Murashige & Skoog - NAA -naphthalenacetic acid - PCIB p-chlorophenoxyisobutyric acid - 2,4,6-T 2,4,6-trichlorophenoxyacetic acid  相似文献   

16.
The effect of a goitrogenic stimulus on thyroid weight and thyroid cell 3HTdR labeling of Sprague-Dawley rats varying from 2 to 40 weeks of age was determined. Propylthiouracil ad libitum in drinking water produced a spurt in follicle cell labeling index and thyroid weight evident after 24 hr for all age groups. The increase in labeling index reached a peak at 5–7 days and then decreased to a level a few times greater than that of the normal unstimulated thyroid. The tritiated thymidine labeling index for thyroid follicle cells and the effect of PTU thereon was determined for August male rats of 3 days to 12 weeks of age. In the older rats, the follicle cell labeling index rose to 5–6% after 4–5 days of PTU treatment and then slowly fell to about 1%, For the unstimulated control rat of comparable age, the labeling index was about 0.1%. At all ages the thyroid showed a rapid response to PTU. Examination of the time sequence of mitotic labeling showed that the DNA synthesis period was 7.5 hr for normal 2-week-old rats and for 10–12-week-old rats that had received PTU for 4 days. There was no second wave of labeled mitoses in either group during the 48-hr interval studied. From the curve of thyroid weight vs time on PTU and from the labeled mitoses curve, inferences regarding the minimum fraction of proliferating follicle cells in the stimulated ‘adult’rat thyroid were made.  相似文献   

17.
Vegetative plants of Xanthium strumarium (a short-day species) were induced to flower by exposure to a single 16-hr long night. By cutting off the induced leaf (half-expanded leaf) at various times, it was established that, by 8 hr after the end of the long night, a sufficient amount of floral stimulus had reached the meristem to induce a flowering response. The following sequence of events occurred in both the peripheral and central zones of the apical meristem of induced plants: 1) a rise in the mitotic index beginning at 28 hr after the end of the long night and culminating at 36 and 56 hr; 2) a stimulation of DNA synthesis starting at 32–36 hr and reaching a maximum at 60 hr; 3) an increase in nucleolus diameter starting at 32 hr. The cell population in the meristems of both vegetative and induced plants displayed a similar distribution, with about 80 % of the nuclei with the 2C amount of DNA. The comparison of the kinetic data concerning the mitotic index and DNA synthesis indicated that one of the early effects of the floral stimulus in the peripheral and central zones was the release in mitosis of cells whose nuclei were in the postsynthetic (G2) phase of the mitotic cycle. In the pith-rib meristem, the following events were recorded: 1) a stimulation of DNA synthesis starting at 20 hr; 2) a rise of the mitotic index beginning at 28 hr; 3) the vacuolation and elongation of cells starting at 48 hr. All these events occurred well before the initiation of bract and flower primordia, which began at 96 and 136 hr, respectively. Neither stimulation of mitotic activity nor flowering occurred in the meristems of plants subjected to a long night interrupted at its midpoint by a 5-min light break. The results are discussed in relation to the early events which are known to occur in the meristems of other photoperiodic species in transition to flowering.  相似文献   

18.
Leaf explants of Cocos nucifera L. (coconut palm) were studied in vitro in order to establish whether or not rapid cellular changes contribute to the well known recalcitrance of coconut cells in tissue culture. Segments from the base of immature leaves were cultured on modified Eeuwens' medium at 30°C in darkness. The mitotic index, nuclear DNA amounts, cell and nuclear size were measured both before and during culture (from 0 to 70 days). There was no basipetal gradient of cell division in immature coconut leaves; the mitotic index never exceeded 2% and showed neither a positional nor temporal relationship with leaf development. Moreover the vast majority of cells were in G1 of the cell cycle. This cell cycle pattern was maintained for most of the period in culture although at 70 days there was an increase in the proportion of cells in S- and G2-phases consistent with low rates of callus formation. The nuclear: cell size ratio was constant in cells within the immature leaf irrespective of developmental age. However upon transfer to culture media, cell size but not nuclear size increased. We suggest that this uncoupling of cell and nuclear size disrupts cell co-ordination and is a key contributor to recalcitrant cellular behaviour of this species in vitro.  相似文献   

19.
When deprived of exogenous nutrients some amoebas of Dictyostelium discoideum do continue to progress through the cell cycle. There are two distinct periods when mitotic cell division occurs. Labeling studies show that during the first period, which begins at the onset of development and ceases at the first visible signs of aggregation (rippling), only those cells which are beyond a certain point in G2 at the initiation of development divide. The second period of mitotic activity begins at tip formation, reaches maximum activity at the grex stage, and ceases during early culmination. Significantly, examination of the development of amoebas harvested when in the stationary phase of growth (and thus arrested in G2) shows that these cells still undergo mitotic cell division during the second period but do not show any such division during the preaggregation phase. The extent to which increases in cell number can be taken to be indicative of mitotic cell division varies from one culture to another due to the presence of variable numbers of multinucleate cells which become mononucleate during the first 10 hr of development. However, when due allowance has been made for the existence of these cells in axenically growing amoebal populations, our data show that by completion of fruiting body construction there has been a doubling in cell number as a direct result of mitotic cell division. Nuclear DNA synthesis also occurs at two distinct periods during development, these coinciding with the periods of mitotic activity. However, since no more than 35% of the cells have undergone nuclear DNA synthesis by the end of the developmental phase, our results are inconsistent with the conclusion that all cells accumulate at a position in G2 at the time of aggregation. Our results do suggest, however, that mitotic cell division of a fraction of the cells may be an integral part of the developmental phase.  相似文献   

20.
Proliferation of Schwann cells in neonatal mouse sciatic nerve was studied radioautographically in 1-µ glycol methacrylate sections. 28 mice were injected with thymidine-3H, 4 µc/g, 48 hr after birth, and were killed serially over the next 4 days. For the cell cycle following injection, the generation time was approximately 24 hr as determined by grain-count halving data; the duration of synthesis phase was 8 hr as determined from a curve constructed from the per cent of mitotic figures containing label; and the labeling index was 9% at 2 hr after injection. With these estimates, the per cent of Schwann cells proliferating was calculated to be 27%. In addition, roughly 25% of dividing cells appeared to cease division during the cell cycle under study. The relationship of these findings to other events during maturation of nerve is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号