首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis, or genetically programmed cell death, is a crucial cellular process that maintains the balance between life and death in cells. The precise molecular mechanism of apoptosis signaling and the manner in which type 1 and type 2 pathways of the apoptosis signaling network are differentially activated under distinct apoptotic stimuli is poorly understood. Based on Monte Carlo stochastic simulations, we show that the type 1 pathway becomes activated under strong apoptotic stimuli, whereas the type 2 mitochondrial pathway dominates apoptotic signaling in response to a weak death signal. Our results also show signaling in the type 2 pathway is stochastic; the population average over many cells does not capture the cell-to-cell fluctuations in the time course (~1–10 h) of downstream caspase-3 activation. On the contrary, the probability distribution of caspase-3 activation for the mitochondrial pathway shows a distinct bimodal behavior that can be used to characterize the stochastic signaling in type 2 apoptosis and other similar complex signaling processes. Interestingly, such stochastic fluctuations in apoptosis signaling occur even in the presence of large numbers of signaling molecules.  相似文献   

2.
Two distinct biochemical signals are delivered by the CD95/Fas death receptor. The molecular basis for the differential mitochondrially independent (type I) and mitochondrially dependent (type II) Fas apoptosis pathways is unknown. By analyzing 24 Fas-sensitive tumor lines, we now demonstrate that expression/activity of the PTEN tumor suppressor strongly correlates with the distinct Fas signals. PTEN loss-of-function and gain-of-function studies demonstrate the ability to interconvert between type I and type II Fas pathways. Importantly, from analyses of Bcl-2 transgenic Pten+/− mice, Pten haploinsufficiency converts Fas-induced apoptosis from a Bcl-2-independent to a Bcl-2-sensitive response in primary thymocytes and activated T lymphocytes. We further show that PTEN influences Fas signaling, at least in part, by regulating PEA-15 phosphorylation and activity that, in turn, regulate the ability of Bcl-2 to suppress Fas-induced apoptosis. Thus, PTEN is a key molecular rheostat that determines whether a cell dies by a mitochondrially independent type I versus a mitochondrially dependent type II apoptotic pathway upon Fas stimulation.Two types of Fas apoptotic signaling pathways, designated the type I and type II pathways, occur in distinct classes of cells (2). Biochemically, type I and type II cells differ primarily in the amounts of FADD and caspase-8 recruited to the Fas receptor, in the kinetics of caspase cascade activation, and in their relative dependence on the mitochondrial intrinsic arm of the Fas apoptotic pathway in the execution of cell death (34). Fas receptor aggregation leads to the recruitment of the adaptor protein FADD and the initiator caspase-8 and -10, forming the death-inducing signaling complex (DISC) and resulting in autoproteolytic activation of these caspases. In type I cells, a sufficient amount of caspase-8 is processed to directly activate the effector caspase-3 and to execute apoptosis. While the intrinsic mitochondrial apoptotic pathway is also activated in type I cells, the relative contribution of this branch to apoptosis induction is diminished by the potent action of the direct pathway. In contrast to type I cells and despite similar expression of cell surface Fas, type II cells form a weak DISC and exhibit delayed kinetics of caspase-8 and -3 activation. Due to the paucity of FADD recruitment and caspase-8 processing at the DISC in type II cells, the direct activation of caspase-3 is attenuated, resulting in the increased dependence of type II cells on the mitochondrial amplification loop activated by the proapoptotic Bcl-2 member Bid in order to execute apoptosis. Hence, type I cells undergo Fas-mediated apoptosis in a mitochondrially independent manner, whereas type II cells have increased dependence on the intrinsic mitochondrial pathway to induce apoptosis.Despite an intensive search, the identity of the signaling protein(s) that determines whether a cell dies by type I versus type II Fas-induced apoptosis has remained elusive (28). By virtue of their ability to regulate Fas signaling in various tissue types, a plethora of signaling proteins, including death receptor signaling proteins such as DAXX, FAP-1, FAF1, FLASH, RIP, and FLIP, apoptosis regulatory proteins such as IAP family members, Bcl-2-related proteins, and signaling proteins such as PP2A, CaMKII, PEA-15, galectin-3, PTEN, PI3K, and PKB, among others, have been implicated as potential candidates (8-11, 13-16, 21, 28, 42, 46).In search of the signaling pathway(s) that is differentially activated in type I and type II cells, we performed a Kinetworks phosphosite screen (KPSS1.3), which simultaneously detects the presence and relative quantities of 34 critical protein phosphorylation sites, and found that the serine/threonine protein kinase B (PKB; also known as Akt) was highly phosphorylated in prototypic type II Jurkat but not type I H9 cells (Kinexus, Vancouver, BC) (data not shown). Furthermore, we noted that both of the prototypic type II cell lines, i.e., Jurkat and CEM, are known to be deficient in the PTEN tumor suppressor (33). Therefore, we hypothesized that PTEN may be an important regulator of the differential Fas signaling pathways in type I and type II cells.The PTEN tumor suppressor gene is among the most commonly mutated genes in a broad range of human malignancies. PTEN is an important negative regulator of cell growth and survival. Among other functions, PTEN is a phosphatidylinositol 3′-phosphatase that specifically downmodulates the levels of phosphoinositide second messengers such as phosphatidylinositol(3,4,5)-trisphosphate, thereby antagonizing the action of phosphatidylinositol 3-kinase (PI3K). Loss of PTEN function results in increased membrane phosphatidylinositol(3,4,5)-trisphosphate levels and constitutive activation of its downstream effectors, such as PKB, leading to enhanced cellular metabolism, growth, and survival (26).In this study, we investigated whether the PI3K/PTEN pathway may be important in regulating Fas-induced apoptosis in type I and type II cells. Indeed, we found a robust correlation between PTEN expression and type I/II Fas-induced apoptosis in a wide variety of cancers. Furthermore, through PTEN gain-of-function and loss-of-function approaches, we demonstrated the ability of the PI3K/PTEN pathway to promote interconversion between the mitochondrially independent type I and mitochondrially dependent type II Fas pathways. Significantly, we found that PTEN haploinsufficiency promotes Bcl-2 sensitivity of Fas-induced apoptosis of primary thymocytes and activation-induced cell death of T lymphocytes. Furthermore, Bcl-2 sensitivity of Fas-induced apoptosis was found to be regulated by PEA-15, in a phosphorylation-dependent manner, and PEA-15 phosphorylation is mediated by the PTEN/PI3K pathway. Thus, our data indicate that the PTEN/PI3K pathway modulates the dependency of cells on the mitochondrial amplification loop to mediate Fas-induced apoptosis and determines whether a cell dies by a type I or type II Fas pathway, in part through regulating PEA-15 activity.  相似文献   

3.
The TNF-R1 like receptor Fas is highly expressed on the plasma membrane of hepatocytes and plays an essential role in liver homeostasis. We recently showed that in collagen-cultured primary mouse hepatocytes, Fas stimulation triggers apoptosis via the so-called type I extrinsic signaling pathway. Central to this pathway is the direct caspase-8-mediated cleavage and activation of caspase-3 as compared to the type II pathway which first requires caspase-8-mediated Bid cleavage to trigger mitochondrial cytochrome c release for caspase-3 activation. Mathematical modeling can be used to understand complex signaling systems such as crosstalks and feedback or feedforward loops. A previously published model predicted a positive feedback loop between active caspases-3 and -8 in both type I and type II FasL signaling in lymphocytes and Hela cells, respectively. Here we experimentally tested this hypothesis in our hepatocytic type I Fas signaling pathway by using wild-type and XIAP-deficient primary hepatocytes and two recently characterized, selective caspase-3/-7 inhibitors (AB06 and AB13). Caspase-3/-7 activity assays and quantitative western blotting confirmed that fully processed, active p17 caspase-3 feeds back on caspase-8 by cleaving its partially processed p43 form into the fully processed p18 species. Our data do not discriminate if p18 positively or negatively influences FasL-induced apoptosis or is responsible for non-apoptotic aspects of FasL signaling. However, we found that caspase-3 also feeds back on Bid and degrades its own inhibitor XIAP, both events that may enhance caspase-3 activity and apoptosis. Thus, potent, selective caspase-3 inhibitors are useful tools to understand complex signaling circuitries in apoptosis.  相似文献   

4.
Two CD95 (APO-1/Fas) signaling pathways.   总被引:51,自引:1,他引:50       下载免费PDF全文
We have identified two cell types, each using almost exclusively one of two different CD95 (APO-1/Fas) signaling pathways. In type I cells, caspase-8 was activated within seconds and caspase-3 within 30 min of receptor engagement, whereas in type II cells cleavage of both caspases was delayed for approximately 60 min. However, both type I and type II cells showed similar kinetics of CD95-mediated apoptosis and loss of mitochondrial transmembrane potential (DeltaPsim). Upon CD95 triggering, all mitochondrial apoptogenic activities were blocked by Bcl-2 or Bcl-xL overexpression in both cell types. However, in type II but not type I cells, overexpression of Bcl-2 or Bcl-xL blocked caspase-8 and caspase-3 activation as well as apoptosis. In type I cells, induction of apoptosis was accompanied by activation of large amounts of caspase-8 by the death-inducing signaling complex (DISC), whereas in type II cells DISC formation was strongly reduced and activation of caspase-8 and caspase-3 occurred following the loss of DeltaPsim. Overexpression of caspase-3 in the caspase-3-negative cell line MCF7-Fas, normally resistant to CD95-mediated apoptosis by overexpression of Bcl-xL, converted these cells into true type I cells in which apoptosis was no longer inhibited by Bcl-xL. In summary, in the presence of caspase-3 the amount of active caspase-8 generated at the DISC determines whether a mitochondria-independent apoptosis pathway is used (type I cells) or not (type II cells).  相似文献   

5.
Drug-induced interphasic apoptosis in human leukemia cells is mediated through intracellular signaling pathways, of which the most proximal (initiating) event remains unclear. Indeed, both early ceramide generation and procaspase-8 cleavage have been individually identified as the initial apoptotic signaling events which precede the mitochondrial control of the apoptotic execution phase in Type II cells. In order to evaluate whether or not procaspase-8 cleavage is requisite for initial ceramide generation and rapid interphasic apoptosis, we investigated the chronological ordering of early ceramide generation and caspase-8 cleavage induced by daunorubicin (DNR) and 1-beta-D-arabinofuranosylcytosine (Ara-C) in U937 cells. We further evaluated the impact of these two drugs on initial ceramide generation and apoptosis in wild-type Jurkat cells and Jurkat clones mutated for caspase-8 and Fas-associated death domain. We show that while both DNR and Ara-C similarly induced early ceramide generation (within 5-20 min) and interphasic apoptosis in all cell models, caspase-8 cleavage was only observed farther downstream (4.5 h) and only in DNR-treated cells. Furthermore, neither DNR or Ara-C induced caspase-8 activation. These results demonstrate that caspase-8 cleavage is not requisite for the drug-induced activation of the ceramide-mediated interphasic apoptotic pathway in human Type II leukemic cells.  相似文献   

6.
We have recently identified two different pathways of CD95-mediated apoptosis (Scaffidi, C., Fulda, S., Srinivasan, A., Feng, L., Friesen, C., Tomaselli, K. J., Debatin, K.-M., Krammer, P. H., and Peter, M. E. (1998) EMBO J. 17, 1675-1687). CD95-mediated apoptosis in type I cells is initiated by large amounts of active caspase-8 formed at the death-inducing signaling complex (DISC) followed by direct cleavage of caspase-3. In contrast, in type II cells very little DISC and small amounts of active caspase-8 sufficient to induce the apoptogenic activity of mitochondria are formed causing a profound activation of both caspase-8 and caspase-3. Only in type II cells can apoptosis be blocked by overexpressed Bcl-2 or Bcl-x(L). We now show that a number of apoptosis-inhibiting or -inducing stimuli only affect apoptosis in type II cells, indicating that they act on the mitochondrial branch of the CD95 pathway. These stimuli include the activation of protein kinase C, which inhibits CD95-mediated apoptosis resulting in a delayed cleavage of BID, and the induction of apoptosis by the ceramide analog C(2)-ceramide. In addition, we have identified the CD95 high expressing cell line Boe(R) as a CD95 apoptosis-resistant type II cell that can be sensitized by treatment with cycloheximide without affecting formation of the DISC. This also places the effects of cycloheximide in the mitochondrial branch of the type II CD95 pathway. In contrast, c-FLIP was found to block CD95-mediated apoptosis in both type I and type II cells, because it acts directly at the DISC of both types of cells.  相似文献   

7.
In the intrinsic apoptosis pathway, mitochondrial disruption leads to the release of multiple apoptosis signaling molecules, triggering both caspase-dependent and -independent cell death. The release of cytochrome c induces the formation of the apoptosome, resulting in caspase-9 activation. Multiple caspases are activated downstream of caspase-9, however, the precise order of caspase activation downstream of caspase-9 in intact cells has not been completely resolved. To characterize the caspase-9 signaling cascade in intact cells, we employed chemically induced dimerization to activate caspase-9 specifically. Dimerization of caspase-9 led to rapid activation of effector caspases, including caspases-3, -6 and -7, as well as initiator caspases, including caspases-2, -8 and -10, in H9 and Jurkat cells. Knockdown of caspase-3 suppressed caspase-9-induced processing of the other caspases downstream of caspase-9. Silencing of caspase-6 partially inhibited caspase-9-mediated processing of caspases-2, -3 and -10, while silencing of caspase-7 partially inhibited caspase-9-induced processing of caspase-2, -3, -6 and -10. In contrast, deficiency in caspase-2, -8 or -10 did not significantly affect the caspase-9-induced caspase cascade. Our data provide novel insights into the ordering of a caspase signaling network downstream of caspase-9 in intact cells during apoptosis.  相似文献   

8.
Glycogen synthase kinase-3β (GSK-3β) regulates the sequential activation of caspase-2 and caspase-8 before mitochondrial apoptosis. Here, we report the regulation of Mcl-1 destabilization and cathepsin D-regulated caspase-8 activation by GSK-3β and caspase-2. Treatment with either the ceramide analogue C2-ceramide or the topoisomerase II inhibitor etoposide sequentially induced lysosomal membrane permeabilization (LMP), the reduction of mitochondrial transmembrane potential, and apoptosis. Following LMP, cathepsin D translocated from lysosomes to the cytoplasm, whereas inhibiting cathepsin D blocked mitochondrial apoptosis. Furthermore, cathepsin D caused the activation of caspase-8 but not caspase-2. Inhibiting GSK-3β and caspase-2 blocked Mcl-1 destabilization, LMP, cathepsin D re-localization, caspase-8 activation, and mitochondrial apoptosis. Expression of Mcl-1 was localized to the lysosomes, and forced expression of Mcl-1 prevented apoptotic signaling via the lysosomal-mitochondrial pathway. These results demonstrate the importance of GSK-3β and caspase-2 in ceramide- and etoposide-induced apoptosis through mechanisms involving Mcl-1 destabilization and the lysosomal-mitochondrial axis.  相似文献   

9.
Cells can respond differently to anti-CD95 antibody treatment. Type I cells show strong activation of caspase-8 and directly activate caspase-3. Type II cells weakly activate caspase-8 and must amplify their death signal through the mitochondria. These cells can be rescued by Bcl-x(L). Here we show that tumor necrosis factor-alpha induces both Type I and II pathways, which can be inhibited by benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-fmk) and Bcl-x(L) in a cooperative fashion. Death induced in the presence of Z-VAD-fmk was associated with a partial inhibition of caspase-8, whereas no effects on cytochrome c release, DEVDase activity, and intranucleosomal DNA cleavage were observed. Thus, Z-VAD-fmk is likely weakening the death-inducing signaling complex-mediated activation of caspase-8 and diverting cells to a Type II pathway. Bcl-x(L) cooperates with Z-VAD-fmk by blocking the Type II pathway at the level of cytochrome c release. Surprisingly, although Bcl-x(L) was able to block cytochrome c release, it was unable to block mitochondrial depolarization, suggesting that these are separate events. This suggests that mitochondria occupy two places in apoptotic signaling, as initiators of apoptosis through the release of cytochrome c as well as a target for effector caspases.  相似文献   

10.
Actinomycin D (act-D) anchors itself into DNA-base pairs by intercalation and thereby inhibits mRNA synthesis. It has been well established that act-D elicits apoptosis in various cell types involving endothelial cells. However, the regulatory mechanisms of actinomycin D-induced apoptotic cell death still remain unclear. Here, we investigated apoptotic cell death and its underlying regulatory mechanisms elicited by actinomycin D in ECV304. Act-D induced typical apoptotic features including chromatin condensation and translocation of phosphatidylserine. Since the phosphoinositide 3-OH kinase (PI3K)/protein kinase B (PKB) signaling pathway has been shown to prevent apoptosis in various cell types, it was of interest to determine if this pathway could protect against apoptosis induced by act-D. Inhibition of PI3K/PKB significantly increased act-D-induced apoptosis. Moreover, act-D-induced cell death was physiologically linked to PKB-mediated cell survival through caspase-8. These results suggest that cross-talk between the PKB and caspase-8 pathways may regulate the balance between cell survival and cell death in ECV304.  相似文献   

11.
Caspase-3 is known as the key executioner caspase, activated in both the intrinsic and extrinsic apoptotic pathway, and an effector far downstream in the apoptotic cascade. Procaspase-activating compound-1 (PAC-1) and 1541 were launched as direct activators of procaspase-3 to caspase-3, and anticipated to be promising therapeutic agents for the treatment of cancer. PAC-1 has recently been evaluated in a phase I preclinical trial. However, little is known about the effect of these substances in cells. Activation of caspase-3 in whole cells may be more complicated than thought, as it is likely that this key protease is tightly regulated both in development and apoptosis. In this study, we investigated the effect of epidermal growth factor (EGF) on PAC-1-induced caspase-3 activity and cell death. We show that EGF can block caspase-3 activity generated by PAC-1, and protect both PC12 cells and primary cerebellar granule neurons against PAC-1-induced death. Similar results were obtained with 1541. Both substances reduced cellular p-ERK levels. Crosstalk between caspase-3 and growth factor signaling pathways may present a challenge for the use of such caspase-3-activating substances in cancer therapy, since aberrant growth factor signaling is frequently seen in malignant cells. This study adds important knowledge about cellular effects of procaspase-3 activators like PAC-1 and 1541. Effects mediated by these substances may also contribute to the understanding of caspase signaling in cells.  相似文献   

12.
Fas-induced apoptosis is a critical process for normal immune system development and function. Although many molecular components in the Fas signaling pathway have been identified, a systematic understanding of how they work together to determine network dynamics and apoptosis itself has remained elusive. To address this, we generated a computational model for interpreting and predicting effects of pathway component properties. The model integrates current information concerning the signaling network downstream of Fas activation, through both type I and type II pathways, until activation of caspase-3. Unknown parameter values in the model were estimated using experimental data obtained from human Jurkat T cells. To elucidate critical signaling network properties, we examined the effects of altering the level of Bcl-2 on the kinetics of caspase-3 activation, using both overexpression and knockdown in the model and experimentally. Overexpression was used to distinguish among alternative hypotheses for inhibitory binding interactions of Bcl-2 with various components in the mitochondrial pathway. In comparing model simulations with experimental results, we find the best agreement when Bcl-2 blocks the release of cytochrome c by binding to both Bax and truncated Bid instead of Bax, truncated Bid, or Bid alone. Moreover, although Bcl-2 overexpression strongly reduces caspase-3 activation, Bcl-2 knockdown has a negligible effect, demonstrating a general model finding that varying the expression levels of signal molecules frequently has asymmetric effects on the outcome. Finally, we demonstrate that the relative dominance of type I vs type II pathways can be switched by varying particular signaling component levels without changing network structure.  相似文献   

13.
Mitochondria play a central role in maintaining cells alive, but are also important mediators of cell death. The main event in mitochondrial signalling and control of apoptosis is the permeabilisation of the outer mitochondrial membrane and the release of pro-apoptotic proteins into the cytosol from the mitochondrial intermembrane space. With respect to death receptor-mediated apoptosis, the activation of the mitochondrial pathway is required for apoptosis induction in cells which are described as “type II” cells whereas “type I” cells do not require it. In type I cells, activation of the extrinsic pathway is sufficient to induce apoptosis. This review deals with the events that enable cell death in type II cells, i.e., the signals that lead from death receptor stimulation to permeabilisation of the outer mitochondrial membrane. Caspase-8 and Bid are the known procurers of the death signal in this part of the apoptotic pathway. Currently many exciting new findings are emerging concerning the regulation of caspase-8 and Bid function and activation. We will take you on a journey through these new developments and point out what we consider the major unknowns in this field. We end our review on an up-to-date discussion of the determinants of the type I-type II cell distinction. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

14.
Vesicular stomatitis virus (VSV) is a potential oncolytic virus for treating glioblastoma multiforme (GBM), an aggressive brain tumor. Matrix (M) protein mutants of VSV have shown greater selectivity for killing GBM cells versus normal brain cells than VSV with wild-type M protein. The goal of this research was to determine the contribution of death receptor and mitochondrial pathways to apoptosis induced by an M protein mutant (M51R) VSV in U87 human GBM tumor cells. Compared to controls, U87 cells expressing a dominant negative form of Fas (dnFas) or overexpressing Bcl-X(L) had reduced caspase-3 activation following infection with M51R VSV, indicating that both the death receptor pathway and mitochondrial pathways are important for M51R VSV-induced apoptosis. Death receptor signaling has been classified as type I or type II, depending on whether signaling is independent (type I) or dependent on the mitochondrial pathway (type II). Bcl-X(L) overexpression inhibited caspase activation in response to a Fas-inducing antibody, similar to the inhibition in response to M51R VSV infection, indicating that U87 cells behave as type II cells. Inhibition of apoptosis in vitro delayed, but did not prevent, virus-induced cell death. Murine xenografts of U87 cells that overexpress Bcl-X(L) regressed with a time course similar to that of control cells following treatment with M51R VSV, and tumors were not detectable at 21 days postinoculation. Immunohistochemical analysis demonstrated similar levels of viral antigen expression but reduced activation of caspase-3 following virus treatment of Bcl-X(L)-overexpressing tumors compared to controls. Further, the pathological changes in tumors following treatment with virus were quite different in the presence versus the absence of Bcl-X(L) overexpression. These results demonstrate that M51R VSV efficiently induces oncolysis in GBM tumor cells despite deregulation of apoptotic pathways, underscoring its potential use as a treatment for GBM.  相似文献   

15.
Development of new therapies for glioblastoma requires animal models that mimic the biological characteristics of human brain tumors. On the other hand, potential antitumoral effects of a new therapeutic strategy are often established by evaluation of tumor cells apoptosis. Caspases are key mediators in the regulation and execution of apoptosis. Caspase-9 is activated during the intrinsic pathway downstream of mitochondria while caspase-3 is an effector caspase that initiates degradation of the cell in the final stages of apoptosis. Bax is a pro-apoptotic member of the Bcl-2 family that play key roles in the regulation of intrinsic apoptotic signaling. In the present study we investigated the immunohistochemical distribution of caspase 3, 9 and Bax in intracranial U87 glioblastoma xenograft. Immunohistochemistry showed that the glioblastoma xenografts contain cells positive for caspase-3, caspase-9, and Bax.  相似文献   

16.
Death receptor-associated pro-apoptotic signaling in aged skeletal muscle   总被引:3,自引:0,他引:3  
Tumor necrosis factor-alpha (TNF-α) is elevated in the serum as a result of aging and it promotes pro-apoptotic signaling upon binding to the type I TNF receptor. It is not known if activation of this apoptotic pathway contributes to the well-documented age-associated decline in muscle mass (i.e. sarcopenia). We tested the hypothesis that skeletal muscles from aged rodents would exhibit elevations in markers involved in the extrinsic apoptotic pathway when compared to muscles from young adult rodents, thereby contributing to an increased incidence of nuclear apoptosis in these muscles. The plantaris (fast) and soleus (slow) muscles were studied in young adult (5–7 mo, n=8) and aged (33 mo, n=8) Fischer344 × Brown Norway rats. Muscles from aged rats were significantly smaller while exhibiting a greater incidence of apoptosis. Furthermore, muscles from aged rats had higher type I TNF receptor and Fas associated death domain protein (FADD) mRNA, protein contents for FADD, BCL-2 Interacting Domain (Bid), FLICE-inhibitory protein (FLIP), and enzymatic activities of caspase-8 and caspase-3 than muscles from young adult rats. Significant correlations were observed in the plantaris muscle between caspase activity and muscle weight and the apoptotic index, while similar relationships were not found in the soleus. These data demonstrate that pro-apoptotic signaling downstream of the TNF receptor is active in aged muscles. Furthermore, our data extend the previous demonstration that type II fibers are preferentially affected by aging and support the hypothesis that type II fiber containing skeletal muscles may be more susceptible to muscle mass loses via the extrinsic apoptotic pathway.  相似文献   

17.
Activation of myosin II by myosin light chain kinase (MLCK) produces the force for many cellular processes including muscle contraction, mitosis, migration, and other cellular shape changes. The results of this study show that inhibition or potentiation of myosin II activation via over-expression of a dominant negative or wild type MLCK can delay or accelerate tumor necrosis factor-alpha (TNF)-induced apoptotic cell death in cells. Changes in the activation of caspase-8 that parallel changes in regulatory light chain phosphorylation levels reveal that myosin II motor activities regulate TNF receptor-1 (TNFR-1) signaling at an early step in the TNF death signaling pathway. Treatment of cells with either ionomycin or endotoxin (lipopolysaccharide) leads to activation of myosin II and increased translocation of TNFR-1 to the plasma membrane independent of TNF signaling. The results of these studies establish a new role for myosin II motor activity in regulating TNFR-1-mediated apoptosis through the translocation of TNFR-1 to or within the plasma membrane.  相似文献   

18.
Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression.  相似文献   

19.
We have previously shown that rat astrocytes undergo apoptosis upon inflammatory activation. Nitric oxide (NO) produced by activated astrocytes was the major cytotoxic mediator in this type of autoregulatory apoptosis. However, an inhibitor of nitric oxide synthase did not completely block the apoptosis of activated astrocytes, suggesting the presence of other apoptotic pathways. Here, we present evidence that caspase-11 is an essential molecule in NO-independent apoptotic pathway of activated astrocytes. Inflammatory activation (lipopolysaccharide, interferon-gamma, and tumor necrosis factor-alpha treatment) of rat astrocyte cultures and C6 glioma cells led to the induction of caspase-11 followed by activation of caspases-11, -1, and -3. In contrast, NO donors induced activation of caspase-3 only. Inactivation of caspase-11 by the transfection of dominant negative mutant or treatment with the caspase inhibitors rendered the astrocytes partially resistant to the apoptosis following inflammatory activation, but not NO donor exposure. These results indicate that inflammatory stimuli not only induce the production of cytotoxic NO, but also initiate NO-independent apoptotic pathway through the induction of caspase-11 expression.  相似文献   

20.
It is not well-known whether apoptosis signaling affects influenza virus infection and reproduction in human lung epithelial cells. Using A549 cell line, we studied the relationship of some apoptosis-associated molecules with novel pandemic influenza A (H1N1) virus, A/California/04/2009. Infected cells displayed upregulated Fas ligand, activated FADD and caspase-8, and downregulated FLIP in the extrinsic apoptotic pathway. p53 expression increased and Bcl-XL expression decreased in the intrinsic pathway. Expression of pre-apoptotic molecules (FasL, FADD, and p53) increased virus replication, while inhibition of activity of FADD, caspase-8 and caspase-3, and expression of anti-apoptotic proteins (FLIP and Bcl-XL) decreased virus replication. p38, ERK and JNK from MAPK pathways were activated in infected cells, and inhibition with their inhibitors diminished virus replication. In the p38 superfamily, p38α expression increased viral RNA production, while expression of p38β and p38γ decreased. These data indicated that influenza virus induces apoptotic signaling pathways, which benefit virus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号