首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Contact chemoreceptors on spines of Limulus prosomal appendages responded to stimulation by amino acid solutions with slowly adapting activity. 2. Mixtures of amino acids elicited stronger responses than equal concentrations of single amino acids. 3. Single unit responses consisted of irregularly timed, intermittent, bursts of action potentials recorded from the axons of the primary chemoreceptor neurons. 4. These axons send collateral branches to neural plexuses located at points peripheral to the recording sites. 5. Putative chemical synapses among the collaterals are seen and suggested as the site for implementing the second order nature of the responses.  相似文献   

2.
We have exploited the segregation of motor and sensory axons into peripheral nerve sub-compartments to examine spinal reflex interactions in anaesthetized stingrays. Single, supra-maximal electrical stimuli delivered to segmental sensory nerves elicited compound action potentials in the motor nerves of the stimulated segment and in rostral and caudal segmental motor nerves. Compound action potentials elicited in segmental motor nerves by single stimuli delivered to sensory nerves were increased severalfold by prior stimulation of adjacent sensory nerves. This facilitation of the segmental reflex produced by intense conditioning stimuli decreased as it was applied to more remote segments, to approximately the same degree in up to seven segments in the rostral and caudal direction. In contrast, an asymmetric response was revealed when test and conditioning stimuli were delivered to different nerves, neither of which was of the same segment as the recorded motor nerve: in this configuration, conditioning volleys generally inhibited the responses of motoneurons to stimuli delivered to more caudally located sensory nerves. This suggests that circuitry subserving trans-segmental interactions between spinal afferents is present in stingrays and that interneuronal connections attenuate the influence that subsequent activity in caudal primary afferents can have on the motor elements.  相似文献   

3.
1.Responses of oxygen-sensitive units in the prosomal haemal nerve of Limulus polyphemus were examined while varying the oxygen content of sea water bathing the intercoxal cuticle. 2. When exposed to high oxygen levels these units units maintained a continuous background discharge of spikes. Unit activity was inhibited when oxygen content decreased. Upon reintroduction of oxygen tonic spike discharge resumed. 3. Mechanosensitive units with receptive fields on the prosomal shield or intercoxal cuticle were also present in the haemal nerve. Neither the mechanosensitivity nor the background discharge of these units was affected by changes in oxygen content. 4. It is proposed that the oxygen-sensitive respiratory reflexes of Limulus are an adaption to existence in the tertidal zone. Published observations of the respiratory stress responses of many intertidal animals support this hypothesis.  相似文献   

4.
The homeobox gene Distal-less (Dll) is well known for its participation in the development of arthropod limbs and their derivatives. Dll activity has been described for all groups of arthropods, but also for molluscs, echinoderms and vertebrates. Generally, Dll participates in the establishment of the proximo-distal-axis and differentiation along this axis. During our investigation of the expression pattern in the silverfish Lepisma saccharina and the horseshoe crab Limulus polyphemus, we found several expressions in late stages which cannot be explained with the "normal" limb-specific function. The antenna, cerci and terminal filament of the silverfish show a striped expression; single cells on the labrum, mandibles, maxillary palps and anal valves are also strongly stained by the Dll antibody. In addition to cell groups in the developing ganglia of the CNS, in the coxal endites and several nerve cells in femur and the trochanter of the prosomal limbs, the whole prosomal shield of Limulus polyphemus is surrounded by Dll-positive cell clusters. Furthermore, the lateral processes of the opisthosoma and the edges of the opisthosomal appendages are Dll positive. To get an indication of the cell fate of these regions, we examined hatched larvae and juvenile stages of both species with the SEM. We found a striking correlation of these Dll-positive areas and different sense organs, especially mechanoreceptors. Since many sense organs in arthropods are situated on the limbs, interpretation of the Dll expression in limbs is problematical. This has critical implications for comparative analysis of Dll expression patterns between arthropods and for the claim of homology between limb-like structures. Furthermore, we discuss the possibility of convergent appendage evolution in various bilaterian groups based on the improvement of spatial sensory resolution.  相似文献   

5.
A proctolin-like peptide was isolated from the prosomal CNS of the chelicerate arthropod, Limulus, and purified using size exclusion, ion exchange and high performance liquid chromatography. Coincident bioassay (cockroach hindgut) and radioimmunoassay were employed to identify fractions which contained proctolin-like material. Proctolin-like activity coeluted with synthetic proctolin with all three chromatographic techniques employed. When applied to either the Limulus heart or hindgut preparations, purified Limulus proctolin produced excitatory responses which were indistinguishable from those produced by the synthetic peptide. Purified samples of the Limulus proctolin-like peptide were subjected to Edman degradation and tandem mass spectrometry and the amino acid sequence of the Limulus peptide was determined to be identical to that of cockroach proctolin (H-Arg-Tyr-Leu-Pro-Thr-OH). The presence of proctolin in the Limulus CNS and its biological action on the isolated heart and hindgut suggest a physiological role for this peptide in the regulation of cardiac output and hindgut motility.  相似文献   

6.
Peripheral neuronal somata are scattered throughout the enteric nervous system (ENS) in Aplysia. We found that somata on the outer surface of the digestive tract were more densely distributed on the stomatogastric ring and the posterior gizzard than on other regions. In preparations with or without the central nervous system, two types of synchronous bursting activity were recorded from the nerves of the ENS. Some of the synchronous bursts were recorded from nerves on the crop and stomatogastric ring, whereas others were recorded from nerves on the crop, stomatogastric ring, and gizzard. Experiments using preparations in which the different regions were separated suggested that the former bursts originated in neurons on the crop and the latter originated in neurons on the gizzard. Axonal projections of neurons on the different regions were examined by backfilling and analysis of the direction of impulse conduction. Blocking chemical synapses in separated gizzards depressed EPSP-like potentials and eliminated the bursting activities. When chemical synapses on the crop and stomatogastric ring but not on the gizzard were blocked in a whole digestive tract preparation, bursting activity recorded from nerves on all the regions was decreased, although the frequency of the bursting rhythm did not change. Stimulation of a neuron on the crop elicited bursts in nerves on the gizzard. These results suggest that chemical synaptic connections and a feedback loop along the digestive tract coordinate the synchrony of bursting activity originating in the gizzard.  相似文献   

7.
The motor outputs of the isolated opisthosomal ventral nerve cord in Limulus polyphemus are modulated by light. We have identified the photosensitive neurons and examined their physiological and morphological properties using intracellular recording and staining techniques. We found that photosensitive neurons are present in each ganglion of the opisthosomal ventral nerve cord. These neurons often discharged action potentials spontaneously in the dark, and they increased the frequency of this discharge in the light. The mean latency (+/-SD) of the light-induced action potential was 2.2 +/- 1.1 s. Cells responded in a graded fashion over a 2-log unit of light intensity. The peak spectral sensitivity was 425 nm or lower. The Lucifer-yellow-labeled photosensitive neurons had oval somata with mean (+/-SD) diameters of 102 +/- 3 microm (long axis) and 75 +/- 5 microm (short axis), and extended their axons to the contralateral region of the ventral nerve cord. The soma had no dendrites, and the axon had thin branches.  相似文献   

8.
Control of leech swimming activity by the cephalic ganglia   总被引:2,自引:0,他引:2  
We investigated the role played by the cephalic nervous system in the control of swimming activity in the leech, Hirudo medicinalis, by comparing swimming activity in isolated leech nerve cords that included the head ganglia (supra- and subesophageal ganglia) with swimming activity in nerve cords from which these ganglia were removed. We found that the presence of these cephalic ganglia had an inhibitory influence on the reliability with which stimulation of peripheral (DP) nerves and intracellular stimulation of swim-initiating neurons initiated and maintained swimming activity. In addition, swimming activity recorded from both oscillator and motor neurons in preparations that included head ganglia frequently exhibited irregular bursting patterns consisting of missed, weak, or sustained bursts. Removal of the two head ganglia as well as the first segmental ganglion eliminated this irregular activity pattern. We also identified a pair of rhythmically active interneurons, SRN1, in the subesophageal ganglion that, when depolarized, could reset the swimming rhythm. Thus the cephalic ganglia and first segmental ganglion of the leech nerve cord are capable of exerting a tonic inhibitory influence as well as a modulatory effect on swimming activity in the segmental nerve cord.  相似文献   

9.
A new specimen of the synziphosurine arthropodWeinbergina opitzi is described from the Lower Devonian (Lower Emsian) Hunsrück Slate of Germany (Rhenish Slate Mountains). It is the smallest and only the fifth specimen of this taxon to be described and is preserved in ventral aspect with exceptional preservation of prosomal and opisthosomal appendages. This specimen confirms the presence of a seventh appendage, similar in morphology to the preceding prosomal appendages, associated with opisthosomal segment one. In addition, at least three opisthosomal plates fringed with teeth are confirmed. Correlation of prosomal appendage podomeres betweenWeinbergina and selected chelicerate taxa shows that appendage structure is most similar to eurypterid appendages III–IV and Araneae appendages III–VI. This is in contrast to modern horseshoe crabs which have fewer podomeres in appendages II–V due to an undifferentiated tibiotarsus.   相似文献   

10.
1. Repeating bursts of motor neurone impulses have been recorded from the nerves of completely isolated nerve cords of the medicinal leech. The salient features of this burst rhythm are similar to those obtained in the semi-intact preparation during swimming. Hence the basic swimming rhythm is generated by a central oscillator. 2. Quantitative comparisons between the impulse patterns obtained from the isolated nerve cord and those obtained from a semi-intact preparation show that the variation in both dorsal to ventral motor neurone phasing and burst duration with swim cycle period differ in these two preparations. 3. The increase of intersegmental delay with period, which is a prominent feature of swimming behaviour of the intact animal, is not seen in either the semi-intact or isolated cord preparations. 4. In the semi-intact preparation, stretching the body wall or depolarizing an inhibitory motor neurone changes the burst duration of excitatory motor neurones in the same segment. In the isolated nerve cord, these manipulations also change the period of the swim cycle in the entire cord. 5. These comparisons suggest that sensory input stabilizes the centrally generated swimming rhythm, determines the phasing of the bursts of impulses from dorsal and ventral motor neurones, and matches the intersegmental delay to the cycle period so as to maintain a constant body shape at all rates of swimming.  相似文献   

11.
Synaptic processes in various functional groups of thoracic motoneurons (Th9-Th11) evoked by stimulation of segmental nerves were investigated in anesthetized and decerebrate cats. No reciprocal relations were found between these groups of motoneurons. Only excitatory mono- and polysynaptic responses were recorded in the motoneurons of the principal intercostal nerve following stimulation of the homonymous nerve. Activation of the afferents of the external intercostal muscle and dorsal branches does not cause noticeable synaptic processes in these motoneurons; much more rarely it is accompanied by the development of low-amplitude polysynaptic EPSP's. In motoneurons of the dorsal branches, stimulation of homonymous nerves leads to the appearance of simple, short-latent EPSP's. Late responses of the IPSP or EPSP - IPSP type with a predominance of the inhibitory component were observed in most motoneurons of this type following activation of the afferent fibers of the principal intercostal nerve. In other motoneurons of the dorsal muscles, stimulation of the main intercostal nerve (and nerve of the external intercostal muscle) did not evoke apparent synpatic processes. EPSP's (mono- and polysynaptic) appeared in the motoneurons of the external intercostal muscle following stimulation of the homonymous and main intercostal nerves. Activation of the afferents of the dorsal branches was ineffective. The character of the synaptic responses of the respiratory motoneurons to segmental afferent stimulation, investigated under conditions of spontaneous respiration, was different. The characteristics of synaptic activation of thoracic motoneurons by segmental afferents under conditions of hyperventilation apnea and during spontaneous breathing of the animals are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 279–288, May–June, 1970.  相似文献   

12.
Spontaneous respiratory bursts which begin in the pre-Bötzinger complex were recorded from the hypoglossal (XIIth) nerve rootlets of in vitro slices prepared from newborn mice. First, we examined the respiratory bursts before and after a midline or para-midline transection which spared the caudal raphe nuclei: the raphe obscurus and raphe pallidus. After a midline transection, the respiratory bursts in both half-slices were desynchronized and had slightly decreased amplitudes and frequencies. After a para-midline transection, the bursts continued with similar frequencies in the half slice containing the raphe obscurus and raphe pallidus. Second, to analyze the effects of modulation by the raphe obscurus and raphe pallidus, a dorsal or ventral midline lesion was used to damage either the raphe obscurus or raphe pallidus. After a dorsal lesion, the synchronized respiratory bursts persisted with slightly decreased frequencies. In contrast, after a ventral lesion, the bursts were almost completely abolished, but recovered significantly after the addition of 5-HT. The present results demonstrated that the pre-Bötzinger complex on each side of the medulla can independently generate rhythmic respiratory activity. It is suggested that the 5-HT released from the ventral part of the raphe nuclei (predominantly the raphe pallidus) plays a critical role in sustaining rhythmic respiratory bursts.  相似文献   

13.
The gills of Limulus are ventilated by a metachronal rhythm of movements of five pairs of gill plates. A gill plate is promoted and remoted by action of alternating nerve impulse bursts to antagonist promotor and remotor muscles. The motor output pattern is centrally generated, requiring no sensory feedback. Intracellularly recorded rhythmic activity of respiratory motoneurons consists of cyclic depolarization and spiking, and repolarization. The repolarizations have reversal potentials that indicate that motoneuron burst terminations result from synaptic inhibition. Intracellular and antidromic stimulation of motoneurons has little effect on other motoneurons. This apparent lack of interaction between motoneurons indicates that the central respiratory pattern is generated at interneuronal levels. Proprioceptive reflexes are present; they play little role in modulating the centrally generated motor pattern, but they are capable of partially entraining the rhythm when all gill plates are cycled at frequencies near the respiratory rate. Respiratory rate in intact animals is proportional to the ambient oxygen content, respiration ceasing in an anoxic environment. This oxygen dependence may result from sensory input from external oxygen receptors located in the cuticle between the coxae of the walking legs and within the lamellas of the book gills. The intercoxal units are inhibited by anoxia. Three classes of units are recorded from the gills: units excited by oxygen, units inhibited by oxygen, and units whose mechanosensitivity is oxygen dependent. These external oxygen receptors may modulate ventilation via command fibers present in the ventral nerve cord.  相似文献   

14.
G Bogusch 《Acta anatomica》1987,129(4):275-278
The dorsal rami of the cervical and thoracic spinal nerves were investigated using both the in situ cholinesterase staining technique and cholinesterase staining on serial sections of plastic-embedded embryos. In most cases only the dorsal rami of the 2nd to 5th cervical spinal nerve possess cutaneous branches. The area innervated by the cutaneous branch of the dorsal ramus of the 5th spinal nerve borders on an area innervated by the cutaneous branch of the dorsal ramus of the 1st thoracic spinal nerve. The dorsal rami of the cervical spinal nerves 6-8 show no cutaneous branches. Therefore the gap in the series of the dorsal cutaneous branches is due only to the middle part of the nerves of the brachial plexus, which range from the 5th cervical nerve to the 1st thoracic nerve.  相似文献   

15.
Nerves and nerve plexuses of the human vertebral column   总被引:10,自引:0,他引:10  
The origin, distribution, and termination pattern of nerves supplying the vertebral column and its associated structures have been studied in the human fetus by means of an acetylcholinesterase whole-mount method. The vertebral column is surrounded by ventral and dorsal nerve plexuses which are interconnected. The ventral nerve plexus consists of the nerve plexus associated with the anterior longitudinal ligament. This longitudinally oriented nerve plexus has a bilateral supply from many small branches of the sympathetic trunk, rami communicantes, and perivascular nerve plexuses of segmental arteries. In the thoracic region, the ventral nerve plexus also is connected to the nerve plexuses of costovertebral joints. The dorsal nerve plexus is made up of the nerve plexus associated with the posterior longitudinal ligament. This nerve plexus is more irregular and receives contributions only from the sinu-vertebral nerves. The sinu-vertebral nerves originate from the rami communicantes and, in the cervical region, also from the nerve plexus of the vertebral artery. Thick and thin sinu-vertebral nerves are found. Most frequently three types of thick sinu-vertebral nerves are observed, i.e., ascending, descending, or dichotomizing ones. Finally, the distribution of the branches of the ventral and dorsal nerve plexuses and of the sinu-vertebral nerves is described.  相似文献   

16.
Two types of potential fluctuations, large and small, recorded intracellularly from photoreceptors in the dark-adapted Limulus eye in situ underlie the dual properties of the impulse discharge of the optic nerve fibers. The small potential fluctuations (SPFs)--the well-known quantum bumps--were normally less than 20 mV in amplitude. The large potential fluctuations (LPFs) were up to 80 mV in amplitude. LPFs appear to be regenerative events triggered by SPFs that enable single photon absorptions in retinular cells to fire off nerve impulses in the eccentric cell. In the dark, SPFs and LPFs occur spontaneously. At low light intensities, LPFs are the major components of the receptor potential. At high intensities, LPFs are suppressed and SPFs become the major components. SPFs and LPFs together enable single photoreceptor cells to encode approximately a 9-log unit range of light intensity. Excising the eye from the animal or cutting off its blood supply generally abolishes LPFs and thereby reduces the range of light intensity coded in the optic nerve discharge.  相似文献   

17.
Autospectral and coherence analyses were used to determine the effect of paraventricular nucleus (PVN) GABA(A) receptor antagonism [microinfusion or microinjections of bicuculline methiodide (BMI) 100 pmoles] on sympathetic nerve discharge (SND) frequency components (bursting pattern and relationships between discharges in regionally selective nerves) in alpha-chloralose-anesthetized rats. SND was recorded from the renal, splenic, and lumbar nerves. The following observations were made. First, PVN BMI microinjections, but not PVN saline or cortical BMI microinjections, transformed the cardiac-related SND bursting pattern in baroreceptor-innervated rats to one characterized by the presence of low-frequency bursts not synchronized to the cardiac cycle or phrenic nerve discharge bursts. Second, SND pattern changes were similar in the renal, splenic, and lumbar nerves, and peak coherence values relating low-frequency bursts in sympathetic nerve pairs (renal-splenic, renal-lumbar, and splenic-lumbar) were significantly increased from preinjection control after PVN BMI microinjection. Third, PVN BMI microinjections significantly increased the coupling between low-frequency SND bursts in baroreceptor-denervated rats. Finally, PVN BMI-induced changes in the SND bursting pattern were not observed after PVN pretreatment with muscimol (GABA agonist, 1 nmole). We conclude that PVN GABA(A) receptor antagonism profoundly alters the frequency components in sympathetic nerves.  相似文献   

18.
The noncompetitive antagonists of the vertebrate N-methyl-D-aspartate (NMDA) receptor dizocilpine (MK 801) and phencyclidine (PCP), delivered in food, were found to induce a marked and reversible inhibition of locomotor activity in Drosophila melanogaster larvae. To determine the site of action of these antagonists, we used an in vitro preparation of the Drosophila third-instar larva, preserving the central nervous system and segmental nerves with their connections to muscle fibers of the body wall. Intracellular recordings were made from ventral muscle fibers 6 and 7 in the abdominal segments. In most larvae, long-lasting (>1 h) spontaneous rhythmic motor activities were recorded in the absence of pharmacological activation. After sectioning of the connections between the brain and abdominal ganglia, the rhythm disappeared, but it could be partially restored by perfusing the muscarinic agonist oxotremorine, indicating that the activity was generated in the ventral nerve cord. MK 801 and PCP rapidly and efficiently inhibited the locomotor rhythm in a dose-dependent manner, the rhythm being totally blocked in 2 min with doses over 0.1 mg/mL. In contrast, more hydrophilic competitive NMDA antagonists had no effect on the motor rhythm in this preparation. MK 801 did not affect neuromuscular glutamatergic transmission at similar doses, as demonstrated by monitoring the responses elicited by electrical stimulation of the motor nerve or pressure applied glutamate. The presence of oxotremorine did not prevent the blocking effect of MK 801. These results show that MK 801 and PCP specifically inhibit centrally generated rhythmic activity in Drosophila, and suggest a possible role for NMDA-like receptors in locomotor rhythm control in the insect CNS.  相似文献   

19.
To further elucidate the functional anatomy of canine cardiac innervation as well as to assess the feasibility of producing regional left ventricular sympathetic denervation, the chronotropic and (or) regional left ventricular inotropic responses produced by stellate or middle cervical ganglion stimulation were investigated in 22 dogs before and after sectioning of individual major cardiopulmonary or cardiac nerves. Sectioning the right or left subclavian ansae abolished all cardiac responses produced by ipsilateral stellate ganglion stimulation. Sectioning a major sympathetic cardiopulmonary nerve, other than the right interganglionic nerve, usually reduced, but seldom abolished, regional inotropic responses elicited by ipsilateral middle cervical ganglion stimulation. Sectioning the dorsal mediastinal cardiac nerves consistently abolished the left ventricular inotropic responses elicited by right middle cervical ganglion stimulation but minimally affected those elicited by left middle cervical ganglion stimulation. In contrast, cutting the left lateral cardiac nerve decreased the inotropic responses in lateral and posterior left ventricular segments elicited by left middle cervical ganglion stimulation but had little effect on the inotropic responses produced by right middle cervical ganglion stimulation. In addition, the ventral mediastinal cardiac nerve was found to be a significant sympathetic efferent pathway from the left-sided ganglia to the left ventricle. These results indicate that the stellate ganglia project axons to the heart via the subclavian ansae and thus effective sympathetic decentralization can be produced by cutting the subclavian ansae; the right-sided cardiac sympathetic efferent innervation of the left ventricle converges intrapericardially in the dorsal mediastinal cardiac nerves; and the left-sided cardiac sympathetic efferent innervation of the left ventricle diverges to innervate the left ventricle by a number of nerves including the dorsal mediastinal, ventral mediastinal, and left lateral cardiac nerves. Thus consistent denervation of a region of the left ventricle can not be accomplished by sectioning an individual cardiopulmonary or cardiac nerve because of the functional and anatomical variability of the neural components in each nerve, as well as the fact that overlapping regions of the left ventricle are innervated by these different nerves.  相似文献   

20.
Frequency-domain analyses were used to determine the effect of cold stress on the relationships between the discharge bursts of sympathetic nerve pairs, sympathetic and aortic depressor nerve pairs, and sympathetic and phrenic nerve pairs in chloralose-anesthetized, baroreceptor-innervated rats. Sympathetic nerve discharge (SND) was recorded from the renal, lumbar, splanchnic, and adrenal nerves during decreases in core body temperature from 38 to 30 degrees C. The following observations were made. 1) Hypothermia produced nonuniform changes in the level of activity in regionally selective sympathetic nerves. Specifically, cold stress increased lumbar and decreased renal SND but did not significantly change the level of activity in splanchnic and adrenal nerves. 2) The cardiac-related pattern of renal, lumbar, and splanchnic SND bursts was transformed to a low-frequency (0-2 Hz) pattern during cooling, despite the presence of pulse-synchronous activity in arterial baroreceptor afferents. 3) Peak coherence values relating the discharges between sympathetic nerve pairs decreased at the cardiac frequency but were unchanged at low frequencies (0-2 Hz), indicating that the sources of low-frequency SND bursts remain prominently coupled during progressive reductions in core body temperature. 4) Coherence of discharge bursts in phrenic and renal sympathetic nerve pairs in the 0- to 2-Hz frequency band increased during mild hypothermia (36 degrees C) but decreased during deep hypothermia (30 degrees C). We conclude that hypothermia profoundly alters the organization of neural circuits involved in regulation of sympathetic nerve outflow to selected regional circulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号