首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports the presence of glycylprolyl dipeptidyl aminopeptidase in porcine pancreas, and its partial purification and some properties. Crude enzyme preparation was obtained by extraction from acetone-dried powder of the pancreas at pH 7.6. For solubilization of enzyme, freezing and thawing were carried out. Crude enzyme extract was fractionated with ammonium sulfate precipitation, gel filtration on Sephadex G-200 column and ion-exchange chromatography on DEAE-cellulose. Partially purified enzyme showed 2897-folds purification. The enzyme activity on polyacrylamide gel electrophoresis showed good agreement with a main protein band stained with Coomassie brilliant blue. Molecular weight of this enzyme from the pancreas was estimated to be 300 000 by gel filtration on Sephacryl S-300 column. Optimum pH was between 8.5 and 9.0, and Km value for glycylproline-p-nitroanilide tosilate was 0.33 mM. This enzyme from the pancreas was a serine enzyme and was relatively stable to heat at 60°C for 10 min.  相似文献   

2.
The partitioning behaviour of endo-polygalacturonase (endo-PG) and total protein from a clarified Kluyveromyces marxianus fermentation broth in polyethylene glycol (PEG)-ammonium sulfate and PEG-potassium phosphate (pH=7) aqueous two-phase systems was experimentally investigated. Both the enzyme and total protein partitioned in the bottom phase for these two kinds of systems. The enzyme partitioning coefficient can be lower than 0.01 in PEG8000-(NH4)2SO4 ATPS with a large phase volume ratio and a moderate tie-line length, which implies the possibility of concentration operation using aqueous two phase partitioning. An ion-exchange separation of high purification efficiency was applied to analyze the clarified and dialyzed fermentation broth. A total purification factor of only 2.3 was obtained, which indicated the high enzyme protein content in the total protein of the fermentation broth. Consequently, the main purpose for separating endo-PG is concentration rather than purification. A separation scheme using an aqueous two-phase extraction process with polymer recycling and a dialysis was proposed to recover endo-PG from the fermentation supernatant of K. marxianus for commercial purpose. A high enzyme recovery up to 95% and a concentration factor of 5 to 8 with a purification factor of about 1.25 were obtained using the single aqueous two-phase extraction process. More than 95% polymer recycled will not affect the enzyme recovery and purification factor. Dialysis was used mainly to remove salts in the bottom phase. The dialysis step has no enzyme loss and can further remove small bulk proteins. The total purification factor for the scheme is about 1.7.  相似文献   

3.
Summary Inorganic sulfate salts are used to form aqueous two-phase systems with polyethylene glycol (PEG) for enzyme purification. Two enzymes, L-aspartase and fumarase produced byEscherichia coli are efficiently separated into different phases in spite of the high degree of similarity in molecular weight and amino acid sequence between them. The ratio of L-aspartase to fumarase in the PEG-rich phase is more than sixty (60) times the ratio before extraction. A high degree of purification in a single extraction step can be achieved by careful selections of PEG molecular weight, pH, cation of the salts, and sodium chloride levels. Cations of sulfate-containing salts in the following order: NH 4 + >Na+>Mg2+ tend to increase the partition of L-aspartase in the PEG-rich phase. The maximal degree of enzyme purification is obtained by using PEG 4000 and ammonium sulfate as a phase system at a stable pH for both enzymes.  相似文献   

4.
The work presented in this paper describes the purification and properties of a β-galactosidase from the protozoan Tritrichomonas foetus. An inexpensive and straightforward method for extraction of the enzyme involving ammonium sulphate precipitation, ion exchange and affinity chromatography resulted in a high level of purification. After purification β-N-acetylglucosaminidase was the only enzyme present as a contaminant at a significant level. The β-galactosidase isolated had a pH optimum of 5.8. The Km determined at pH 5.8 was found to be 2.2 mM. Interesting results were obtained when studies were carried out to determine the effect of various metal ions on enzyme activity. Of the metal ions used in this study only manganese ions were found to activate the enzyme. This seems to be a characteristic of trichomonad enzymes, as N-acetyl-β-glucosaminidase, a-galactosidase and N-acetyl-a-galactosaminidase are also activated by manganese ions. The strongest inhibition was recorded with lead and to a lesser extent by zinc. The result with lead is not unexpected as the heavy metal is known to cause irreversible inhibition by binding to the amino-acid backbone of the enzyme. The result with zinc is interesting as high levels of zinc are present and trichomonads are known to be apathogenic in semen. The purified β-galactosidase was found to have the capacity to hydrolyse lactose (Gal β1-4 Glc), lacto-N-biose 1 (Gal β1-3 GlcNAc) and N-acetyllactosamine (Gal β1-4 GlcNAc). When the enzyme was applied to a non-denaturing polyacrylamide gel a single band was observed when stained with Coomassie brilliant blue. This band coincided with that obtained when the gel was stained with p-nitrophenyl β-galactopyranoside. When the same gel was incubated with p-nitrophenyl N-acetyl β-glucopyranoside a band was detected which did not coincide with that of β-galactosidase. Since the β-N-acetylglucosaminidase enzyme does not move to the same position on a non-denaturing gel as the β-galactosidase, we will use this technique to isolate the latter enzyme and determine the N-terminal sequence as a prelude to cloning and further study of the gene. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
l-Phenylalanine ammonia-lyase was crystallized for the first time from a cell-free extract of Rhodosporidium toruloides IFO 0559. Heat treatment at 50°C for 5 min was a smart step for enzyme purification. Column chromatographies with DEAE-cellulose and hydroxyapatite, and gel filtration on a Sephadex G-200 column were used in the subsequent purification. The enzyme was purified to a homogeneous state and crystallized as fine needles with ammonium sulfate. The crystalline enzyme was pure by both analytical ultracentrifugation and polyacrylamide gel electrophoresis. The enzyme had a 8.2 s sedimentation velocity. The molecular weight of the enzyme was 165,000 by the dual methods of sedimentation equilibrium and gel filtration. The enzyme was composed of two identical subunits with a molecular weight of 80,000.  相似文献   

6.
Extraction in a polyethylene glycol (PEG)–phosphate aqueous two-phase system was considered as a primary step in purification of the acetohydroxy acid synthase III large catalytic subunit from an E. coli extract. Extraction optimization was achieved by varying the system parameters. Two systems with the following weight compositions were chosen for purification: PEG-2000 (16%)–phosphate (6%) and PEG-4000 (14%)–phosphate (5.5%)–KCl (8%), both at pH 7.0 and 1 mg total protein per 1 g system. Significant purification was achieved by a single extraction step with 70% recovery of the enzyme. After an additional ion-exchange chromatography step, pure enzyme was obtained in a 50% overall yield.  相似文献   

7.
This paper reported a novel strain screen strategy for the production of C-7 xylosidase of taxane for the biotransformation of 7-xylosyl-10-deacetylpaclitaxel (7-XAP) to 10-deacetylpaclitaxel (10-DAP) using xylan as the sole carbon and energy source. The C-7 xylosidase produced by the four strains obtained was an extracellular inducible enzyme enabling the biotransformation to be carried out directly in microbial suspension cultures. The four strains were identified as Streptomyces matensi, Arthrobacter nicotianae, Achromobacter piechaudii, and Pseudomonas plecoglossicida by morphological, physiological, and genetical characteristics. Several chemicals were confirmed as activating the enzyme activity, in which magnesium acetate improved the maximal substrate concentration from 0.1 to 0.5 g l−1 at complete transformation in S. matensi suspension cultures. The non-mucous, extracellular activity and high substrate concentration characters of S. matensi facilitate both the upstream production of the enzyme, and downstream extraction and purification of the enzyme and the product.  相似文献   

8.
An α-glucosidase activity (EC 3.2.1.20) isolated from Sulfolobus solfataricus strain MT-4 was characterised and found of interest at industrial level in the saccharification step of hydrolysis process of starch. The gene encoding for the enzyme was expressed in Escherichia coli BL21 (DE3) with a yield of 87.5 U/g of wet biomass. The recombinant cytosolic enzyme was purified to homogeneity with a rapid purification procedure employing only steps of selective and progressive thermal precipitations with a final yield of 75.4% and a purification of 14.5-fold. The properties of this thermophilic α-glucosidase were compared with those of the α-glucosidase of a commercial preparation from Aspergillus niger used in the starch processing.  相似文献   

9.
Activity of ferredoxin-NADP+ reductase in leaf extracts of eastern hemlock [Tsuga canadensis (L.) Carr.] was relatively low, but could be markedly increased by use of protective agents. The best method employed polyvinylpolypyrrolidone (PVP) in the extraction medium plus removal of phenolic compounds by filtering the extracts through an insoluble PVP (Polyclar AT) column. Further purification of the enzyme was achieved by means of DEAE cellulose chromatography and DEAE Sephadex chromatography. A 94-fold purification of the enzyme with a total recovery of 43% was obtained. The eastern hemlock ferredoxin-NADP+ reductase was characterized by its diaphorase activity, i.e. the transfer of electrons from NADPH to an electron acceptor. 2,6-dichlorophenol indophenol. The pH optimum for the oxidation of NADPH is between 8.5 and 9.0. The enzyme is highly specific for its electron donor. NADPH, but shows low specificity for electron acceptors. The apparent Michaelis constant values of the enzyme for NADPH. NADH, and 2,6-dichlorophenol indophenol are 2.4 × 10?5, 5.4 × 10?3, and 4.7 × 10?5M respectively. The molecular weight of the enzyme, as estimated by gel filtration, is about 45,000. The enzyme is inhibited by both organic and inorganic mercurials and certain cations. Comparison of properties of eastern hemlock ferredoxin-NADP+ reductase and spinach ferredoxin-NADP+ reductase shows that both enzymes are similar.  相似文献   

10.
The first enzyme of the lysine-biosynthesis pathway, dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) has been purified and characterized inNicotiana sylvestris Speggazini et Comes. A purification scheme was developed for the native DHDPS that subsequently led to the purification to homogeneity of its subunits using two-dimensional gel electrophoresis. Subsequent elution of the purified polypeptide has opened the way for the production of rabbit polyclonal anti-DHDPS sera. The molecular weight of the enzyme was determined to be 164000 daltons (Da) by an electrophoretic method. By labeling with [14C]pyruvate, the enzyme was shown to be composed of four identical subunits of 38500 Da. Pyruvate acts as a stabilizing agent and contributes to the preservation of the tetrameric structure of the enzyme. The enzyme ofN. sylvestris is strongly inhibited by lysine with anI 0.5 of 15 μM; S-(2-aminoethyl)L-cysteine and γ-hydroxylysine, two lysine analogs, were found to be only weak inhibitors. An analog of pyruvate, 2-oxobutyrate, competitively inhibited the enzyme and was found to act at the level of the pyruvate-binding site. Dihydrodipicolinate synthase was localized in the chloroplast and identified as a soluble stromal enzyme by enzymatic and immunological methods. Its properties are compared with those known for other plant and bacterial DHDPS enzymes.  相似文献   

11.
[32P]-labeled ATPase was isolated in a highly purified state fromMicrococcus lysodeikticus strain PNB grown in medium supplemented with [32P]orthophosphate. Selective extraction procedures allowed us to determine that at least 25% of the firmly bound label belonged to adenine nucleotides, ATP and ADP being present in equimolar amounts. However, no32P label was found to be part of phospholipids. This was confirmed by purification of the ATPase from cells fed with [2—3H]glycerol. Using the luciferin-luciferase assay we estimated that ATPase freshly isolated by Sephadex chromatography (specific activity 10–14 µmole substrate transformed · min–1 · mg protein–1) contained 2 moles ATP/mole of enzyme. The ratio fell with the age of enzyme and its purification by gel electrophoresis and this was paralleled by a loss of ATPase activity. The endogenous nucleotides were readily exchanged by added ADP or ATP. This result suggests that the sites for tight binding of adenine nucleotides are equivalent, although ADP seems to have a higher affinity for them. The last properties represent a peculiar characteristic of this bacterial ATPase as compared with other bacterial and organelle energy-transducing proteins.  相似文献   

12.
ABSTRACT

A single phase extraction procedure employing 8% (v/v) n-butanol at room temperature extracted over 90% of alkaline phosphatase activity and over 60% of 5'-nucleotidase activity from bovine milk fat globule membranes (MFGM). For 5'-nucleotidase, higher n-butanol concentrations lead to loss of activity, while lower concentrations were ineffective in extracting the enzyme. When extractions were performed at 0°C, similar yields were obtained for alkaline phosphatase extraction with 8% (v/v) n-butanol, but 51- nucleotidase extraction required 10% (v/v) n-butanol for similar yields. However, 5'-nucleotidase was less susceptible to denaturation during extraction at 0°C. The Km values and substrate specificities for both alkaline phosphatase and 5'-nucleotidase were unchanged by extraction with 8% (v/v) n-butanol. The 8% (v/v) n-butanol extraction procedure provides a 3-fold purification step, and an enzyme preparation suitable for further purification.  相似文献   

13.
Ochratoxin A is a mycotoxin produced by several Aspergillus and some Penicillium species which may be present in food and feed products. It can be enzymatically hydrolyzed into ochratoxin α and l-β-phenylalanine, thereby decreasing its toxicity. The ochratoxin A degradation capacity of Aspergillus niger is well known and here we report the isolation and purification of a novel enzyme from A. niger that hydrolyzes this mycotoxin. A wheat germ medium supplemented with ochratoxin A was used to produce the enzyme, which was purified from culture filtrate by acetone precipitation and anion exchange chromatography. An overall purification of 2.5-fold with a recovery of 68% and a final specific activity of 36 U/mg was obtained. The enzyme is a metalloenzyme as it was inhibited at 10 mM EDTA, whereas PMSF had no effect. The ochratoxin A hydrolytic enzyme presented a V max of 0.44 μM/min and a K m of 0.5 mM when the reaction was carried out at pH 7.5 and 37°C.  相似文献   

14.
Summary The new enzyme d-2-hydroxyisocaproate dehydrogenase (NAD+-dependent) was detected in strains of the genus Lactobacillus and related genera. Straight and branched chain aliphatic as well as aromatic 2-ketocarboxylic acids are stereospecifically reduced to the corresponding d-2-hydroxycarboxylic acids according to the following equation:R-CO-COOH + NADH + H+ R-CHOH-COOH + NAD+ The enzyme is called d-hydroxyisocaproate dehydrogenase by us because 2-ketoisocaproate is the substrate with the lowest KM-value. NAD(H) as a cofactor cannot be replaced by NADP(H). Because of its broad substrate specificity we chose the strain Lactobacillus casei ssp. pseudoplantarum (DSM 20 008) for enzyme production and characterization. d-2-hydroxyisocaproate dehydrogenase could be purified 180-fold starting with 500 g of wet cells.The purification procedure involved liquid-liquid extraction with aqueous two-phase systems and ion-exchange chromatography. At this stage the enzyme has a specific activity of 25 U/mg and can be used for technical applications. Further purification up to a homogeneous protein with a specific activity of 110 U/mg can be achieved by chromatography on Amberlite CG 50 at pH 3.5. Properties important for technical application of the d-HicDH were investigated, especially the substrate specificity and the optimum pH- and temperature ranges for activity and stability of the catalist.  相似文献   

15.
Malate dehydrogenase (E.C. 1.1.1.37) from the bacterium Beggiatoa leptomitiformis was isolated and purified 123-fold using a five-step purification procedure including the enzyme extraction, ammonium sulfate protein fractionation, gel filtration, ion exchange chromatography, and gel chromatography. The enzyme was homogenous according to the electrophoresis data; its activity was 20.43 U/mg protein. This malate dehydrogenase is a homotetramer (Mr = 172 kDa). The catalytic and thermodynamic properties, as well as the analysis of the published data suggest that the tetrameric structure of the enzyme allows it to participate in constructive metabolism supplying the cell with organic acids as a source of carbon.  相似文献   

16.
Three-phase partitioning (TPP), a technique used in protein purification, was used to purify invertase from tomato (Lycopersicon esculentum). The method consists of simultaneous addition of ammonium sulfate and t-butanol to the crude enzyme extract in order to obtain the three phases. Different parameters (ammonium sulfate saturation, crude extract to t-butanol ratio and pH) essential for the extraction and purification of invertase were optimized to get highest purity fold and yield. It was seen that, 50% (w/v) ammonium sulfate saturation with 1:1 (v/v) ratio of crude extract to t-butanol at pH 4.5 gave 8.6-fold purification with 190% activity recovery of invertase in a single step. Finally, the purified enzyme was also characterized and the general biochemical properties were determined. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of enzyme showed considerable purification and its molecular weight was nearly found to be as 20 kDa. This work shows that, TPP is a simple, quick and economical technique for purification of invertases.  相似文献   

17.
The extractive purification of peroxidase from Armoracia rusticana roots and Glycine max seed coats in temperature-induced and affinity microsphere-containing aqueous two-phase systems was stuied. The extractive purification of peroxidase from Glycine max seed coats was carried out in a temperature-induced aqueous two-phase system formed by Triton X-45, Triton X-100 and sodium acetate at pH 5.5 A 99% yield with a 6-fold purification factor was obtained. When the clear top phase was subjected to concanavalin-A affinity chromatography, the purification factor rose to 41 and the yield dropped to 28%. A two-step purification process for peroxidase from Armoracia rusticana roots was developed by adding concanavalin-A affinity microspheres to a PEG/phosphate aqueous two-phase system. The method allows a 60% recovery of high purity peroxidase (1,860 guaiacol units per mg). A lower recovery rate and degree of purification of this enzyme was achieved after temperature-induced aqueous two-phase partition or acetone precipitation and concanavalin-A affinity column chromatography.  相似文献   

18.
Xylanase from Streptomyces xylophagus nov. sp. has been purified by ammonium sulfate fractionation and chromatography on DEAE-cellulose column. The purification of the enzyme was 276-fold with a yield of 18.6% on the basis of the activity per weight of total nitrogen. The purified enzyme was homogeneous on moving-boundary electrophoresis. Optimum pH and temperature for the enzyme activity were 6.2 and 55~60°C, respectively. The enzyme was stable up to 40°C and in the range of pH from 5.3 to 7.3, but inactivated at higher than 50°C and at extreme pH values of 2.4 and 9.4. Hydrolyzed products of xylan by the enzyme were xylose and xylobiose.  相似文献   

19.
Simple, attractive and versatile technique, three-phase partitioning (TPP) was used to purify α-galactosidase from fermented media of Aspergillus oryzae. The various conditions required for attaining efficient purification of the α-galactosidase fractions were optimized. The addition of n-butanol, t-butanol, and isopropanol in the presence of ammonium sulfate pushes the protein out of the solution to form an interfacial precipitate layer between the lower aqueous and upper organic layers. The single step of three-phase partitioning, by saturating final concentration of ammonium sulfate (60%) with 1:1 t-butanol, gave activity recovery of 92% with 12-fold purification at second phase of TPP. The final purified enzyme after TPP showed considerable purification on SDS-PAGE with a molecular weight of 64 kDa. The enzyme after TPP showed improved activity in organic solvents. Results are compared with conventional established processes for the purification of α-galactosidase produced by Aspergillus oryzae and overall the proposed TPP technique resulted in 70% reduction of purification cost compared to conventional chromatographic protocols.  相似文献   

20.
A rapid process for purification of an extracellular β-xylosidase with high purity was developed. The manipulation involved the precipitation of protein from culture medium and the extraction of enzyme from the resuspended crude protein solution by an aqueous-two phase separation. A linear random copolymer, PE62, with 20% ethylene oxide and 80% propylene oxide was employed in both stages of the purification. The enzyme was precipitated effectively by using 10% (w/v) PE62 and 5% (w/v) Na2HPO4. The aqueous two-phase extraction was performed with PE62 (10%)–NaH2PO4 (15%) as phase-forming reagent. SDS–PAGE analysis revealed that the purified enzyme is near homogeneity. The yield is about 100% with a purification factor of 8.8-fold. The whole process can be completed within an hour without any column chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号