首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A novel acyl-CoA dehydrogenase that initiates beta-oxidation of the side chains of phenylacyl-CoA compounds by Pseudomonas putida was induced by growth with phenylhexanoate as carbon source. It was identified as the product of gene PP_0368, which was cloned and overexpressed in Escherichia coli. This phenylacyl-CoA dehydrogenase was found to be dimeric with a subunit molecular mass of 66 kDa, to contain FAD and to be active with phenylacyl-CoA substrates having side chains from four to at least 11 carbon atoms. The same enzyme was induced by the aliphatic alkanoate octanoate. The optimal aliphatic substrates for the enzyme were palmitoyl-CoA and stearoyl-CoA, a property shared with mammalian very-long-chain acyl-CoA dehydrogenases. The FAD in the enzyme was reduced by aromatic and aliphatic substrates, with changes to the oxidation-reduction potential. Chemical reduction by dithionite ion and oxidation by ferricyanide ion showed that the enzyme can accept four electrons: two to reduce the flavin and two to slowly reduce an unknown acceptor, which in its reduced form interacts with the oxidized flavin in a charge-transfer complex. The experiments identify for the first time an acyl-CoA dehydrogenase that oxidizes the activated forms of aromatic acids similar to those used to first demonstrate the biological beta-oxidation of fatty acids.  相似文献   

4.
The stability of seven genomic islands of Pseudomonas putida KT2440 with predicted potential for mobilization was studied in bacterial populations associated with the rhizosphere of corn plants by multiplex PCR. DNA rearrangements were detected for only one of them (GI28), which was lost at high frequency. This genomic island of 39.4 kb, with 53 open reading frames, shows the characteristic organization of genes belonging to tailed phages. We present evidence indicating that it corresponds to the lysogenic state of a functional bacteriophage that we have designated Pspu28. Integrated and rarely excised forms of Pspu28 coexist in KT2440 populations. Pspu28 is self-transmissible, and an excisionase is essential for its removal from the bacterial chromosome. The excised Pspu28 forms a circular element that can integrate into the chromosome at a specific location, att sites containing a 17-bp direct repeat sequence. Excision/insertion of Pspu28 alters the promoter sequence and changes the expression level of PP_1531, which encodes a predicted arsenate reductase. Finally, we show that the presence of Pspu28 in the lysogenic state has a negative effect on bacterial fitness in the rhizosphere under conditions of intraspecific competition, thus explaining why clones having lost this mobile element are recovered from that environment.  相似文献   

5.
We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback‐resistant acetolactate synthase AlsS from Bacillus subtilis, ketoacid decarboxylase KivD from Lactococcus lactis, and aldehyde dehydrogenase YqhD from Escherichia coli. The resulting strain P. putida Iso2 produced isobutanol with a substrate specific product yield (YIso/S) of 22 ± 2 mg per gram of glucose under aerobic conditions. Furthermore, we identified the ketoacid decarboxylase from Carnobacterium maltaromaticum to be a suitable alternative for isobutanol production, since replacement of kivD from L. lactis in P. putida Iso2 by the variant from C. maltaromaticum yielded an identical YIso/S. Although P. putida is regarded as obligate aerobic, we show that under oxygen deprivation conditions this bacterium does not grow, remains metabolically active, and that engineered producer strains secreted isobutanol also under the non‐growing conditions.  相似文献   

6.
Global features of the Pseudomonas putida KT2440 genome sequence   总被引:3,自引:1,他引:2  
The compositional bias of the G+C, di- and tetranucleotide contents in the 6 181 862 bp Pseudomonas putida KT2440 genome was analysed in sliding windows of 4000 bp in steps of 1000 bp. The genome has a low GC skew (mean 0.066) between the leading and lagging strand. The values of GC contents (mean 61.6%) and of dinucleotide relative abundance exhibit skewed Gaussian distributions. The variance of tetranucleotide frequencies, which increases linearly with increasing GC content, shows two overlapping Gaussian distributions of genome sections with low (minor fraction) or high variance (major fraction). Eighty per cent of the chromosome shares similar GC contents and oligonucleotide bias, but 105 islands of 4000 bp or more show atypical GC contents and/or oligonucleotide signature. Almost all islands provide added value to the metabolic proficiency of P. putida as a saprophytic omnivore. Major features are the uptake and degradation of organic chemicals, ion transport and the synthesis and secretion of secondary metabolites. Other islands endow P. putida with determinants of resistance and defenceor with constituents and appendages of the cell wall. A total of 29 islands carry the signature of mobile elements such as phage, transposons, insertion sequence (IS) elements and group II introns, indicating recent acquisition by horizontal gene transfer. The largest gene carries the most unusual sequence that encodes a multirepeat threonine-rich surface adhesion protein. Among the housekeeping genes, only genes of the translational apparatus were located in segments with an atypical signature, suggesting that the synthesis of ribosomal proteins is uncoupled from the rapidly changing translational demands of the cell by the separate utilization of tRNA pools.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
A combined physical and genetic map of the Pseudomonas putida KT2440 genome was constructed from data obtained by pulsed-field gel electrophoresis techniques (PFGE) and Southern hybridization. Circular genome size was estimated at 6.0 Mb by adding the sizes of 19 SwaI, 9 PmeI, 6 PacI, and 6 I-CeuI fragments. A complete physical map was achieved by combining the results of (i) analysis of PFGE of the DNA fragments resulting from digestion of the whole genome with PmeI, SwaI, I-CeuI, and PacI as well as double digestion with combinations of these enzymes and (ii) Southern hybridization analysis of the whole wild-type genome digested with different enzymes and hybridized against a series of probes obtained as cloned genes from different pseudomonads of rRNA group I and Escherichia coli, as P. putida DNA obtained by PCR amplification based on sequences deposited at the GenBank database, and by labeling of macrorestriction fragments of the P. putida genome eluted from agarose gels. As an alternative, 10 random mini-Tn5-Km mutants of P. putida KT2440 were used as a source of DNA, and the band carrying the mini-Tn5 in each mutant was identified after PFGE of a series of complete chromosomal digestions and hybridization with the kanamycin resistance gene of the mini-Tn5 as a probe. We established a circular genome map with an average resolution of 160 kb. Among the 63 genes located on the genetic map were key markers such as oriC, 6 rrn loci (rnnA to -F), recA, ftsZ, rpoS, rpoD, rpoN, and gyrB; auxotrophic markers; and catabolic genes for the metabolism of aromatic compounds. The genetic map of P. putida KT2440 was compared to those of Pseudomonas aeruginosa PAO1 and Pseudomonas fluorescens SBW25. The chromosomal backbone revealed some similarity in gene clustering among the three pseudomonads but differences in physical organization, probably as a result of intraspecific rearrangements.  相似文献   

15.
Tetracycline-induced proteome of Pseudomonas putida KT2440 was analyzed by 2-D gel electrophoresis and matrix-assisted laser desorption ionization–time of flight/mass spectrum (NALDI-TOF/MS) in order to understand cellular response to tetracycline. Of the proteins upregulated in a culture medium containing subinhibitory concentration of tetracycline (50 μg/mL), we identified 38 proteins from cytosol and precipitated fractions by peptide mass fingerprinting and mass spectrum/mass spectrum analysis. Various amino acids ABC transporters, a ribose ABC transporter, and a sulfate ABC transporter were found to be upregulated. Protein synthesis-related proteins, stress proteins, energy metabolic enzymes, and unknown proteins were also strongly induced. Of the identified upregulated proteins, several proteins (isocitrate lyase, branched-chain amino acid ABC transporter, superoxide dismutase, etc.) were also upregulated under phenol-induced stress condition. These results demonstrate that tetracycline at a high concentration induced comprehensive stress in P. putida KT2440 and the global induction of proteins related to bacteria survival. Proteome analysis was found to be a useful tool for the elucidation of antibiotic-induced proteins in the present study.  相似文献   

16.
In Pseudomonas putida, as in many other eubacteria, cyclopropane fatty acids (CFAs) accumulate in the membrane during the stationary phase of growth. Here, we show that cfaB gene expression in P. putida KT2440 is dependent on the RpoS sigma factor that recognizes the sequence 5'-CTACTCT-3' between -8 and -14. We have carried out a mutational study of the cfa promoter and have determined that positions -9, -12, -13 and -14 are the most critical for maximal activity. In P. putida, the substrates of the CFA synthase, cis-unsaturated fatty acids (cis-UFAs), are also substrates for another stress-related enzyme, the cis-trans isomerase (CTI). Despite using the same substrates, we have found that the activity of the CTI is not limited by the CFA synthase activity and vice versa. For instance, in a cfaB knockout mutant, the amount of trans-UFAs synthesized after a specific stress was no higher than in the parental background despite the fact that there are more cis-UFAs available to be used by the CTI as substrates. In this regard, in a cti-deficient mutant background, the levels of CFAs were similar to those in the parental one under the same conditions.  相似文献   

17.
Pseudomonas putida can be used as a host for the autotransporter-mediated surface display of enzymes (autodisplay), resulting in whole-cell biocatalysts with recombinant functionalities on their cell envelope. The efficiency of autotransporter-mediated secretion depends on the N-terminal signal peptide as well as on the C-terminal translocator domain of autotransporter fusion proteins. We set out to optimize autodisplay for P. putida as the host bacterium by comparing different signal peptides and translocator domains for the surface display of an esterase. The translocator domain did not have a considerable effect on the activity of the whole-cell catalysts. In contrast, by using the signal peptide of the P. putida outer membrane protein OprF, the activity was more than 12-fold enhanced to 638 mU ml−1 OD−1 compared with the signal peptide of V. cholerae CtxB (52 mU ml−1 OD−1). This positive effect was confirmed with a β-glucosidase as a second example enzyme. Here, cells expressing the protein with N-terminal OprF signal peptide showed more than fourfold higher β-glucosidase activity (181 mU ml−1 OD−1) than with the CtxB signal peptide (42 mU ml−1 OD−1). SDS-PAGE and flow cytometry analyses indicated that the increased activities correlated with an increased amount of recombinant protein in the outer membrane and a higher number of enzymes detectable on the cell surface.  相似文献   

18.
19.
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.  相似文献   

20.
A dual luciferase reporter (DLR) system utilizing firefly and Renilla luciferases was developed and tested in a model rhizobacterium, Pseudomonas putida KT2440. The DLR was applied to simultaneously analyze expression of three putative bacterioferritin genes (bfrα, bfrβ, and bfr) and assess the cellular iron status of strain KT2440 by monitoring expression of the Fur-regulated fepA-fes promoter. The DLR proved to be reproducible and sensitive. Expression of bfrα (PP0482) and bfrβ (PP1082) was consistent with expectations for bacterioferritin and varied directly with the iron level. However, expression of bfr (PP4856) was inversely related to the iron concentration and it was thus more likely to encode a Dps-like protein rather than a bacterioferritin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号