首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the contribution of photoheterotrophic microbes--those capable of light-mediated assimilation of organic compounds--to bacterial production and amino acid assimilation along a transect from Florida to Iceland from 28 May to 9 July 2005. Bacterial production (leucine incorporation at a 20 nM final concentration) was on average 30% higher in light than in dark-incubated samples, but the effect varied greatly (3% to 60%). To further characterize this light effect, we examined the abundance of potential photoheterotrophs and measured their contribution to bacterial production and amino acid assimilation (0.5 nM addition) using flow cytometry. Prochlorococcus and Synechococcus were abundant in surface waters where light-dependent leucine incorporation was observed, whereas aerobic anoxygenic phototrophic bacteria were abundant but did not correlate with the light effect. The per-cell assimilation rates of Prochlorococcus and Synechococcus were comparable to or higher than those of other prokaryotes, especially in the light. Picoeukaryotes also took up leucine (20 nM) and other amino acids (0.5 nM), but rates normalized to biovolume were much lower than those of prokaryotes. Prochlorococcus was responsible for 80% of light-stimulated bacterial production and amino acid assimilation in surface waters south of the Azores, while Synechococcus accounted for on average 12% of total assimilation. However, nearly 40% of the light-stimulated leucine assimilation was not accounted for by these groups, suggesting that assimilation by other microbes is also affected by light. Our results clarify the contribution of cyanobacteria to photoheterotrophy and highlight the potential role of other photoheterotrophs in biomass production and dissolved-organic-matter assimilation.  相似文献   

2.
A marine, unicellular, nitrogen-fixing cyanobacterium was isolated from the blades of a brown alga, Sargassum fluitans. This unicellular cyanobacterium, identified as Synechococcus sp. strain SF1, is capable of photoautotrophic growth with bicarbonate as the sole carbon source and dinitrogen as the sole nitrogen source. Among the organic carbon compounds tested, glucose and sucrose supported growth. Of the nitrogen compounds tested, with bicarbonate serving as the carbon source, both ammonia and nitrate produced the highest growth rates. Most amino acids failed to support growth when present as sole sources of nitrogen. Nitrogenase activity in Synechococcus sp. strain SF1 was induced after depletion of ammonia from the medium. This activity required the photosynthetic utilization of bicarbonate, but pyruvate and hydrogen gas were also effective sources of reductant for nitrogenase activity. Glucose, fructose, and sucrose also supported nitrogenase activity but to a lesser extent. Optimum light intensity for nitrogenase activity was found to be 70 microE/m2 per s, while the optimum oxygen concentration in the gas phase for nitrogenase activity was about 1%. A hydrogenase activity was coinduced with nitrogenase activity. It is proposed that this light- and oxygen-insensitive hydrogenase functions in recycling the hydrogen produced by nitrogenase under microaerobic conditions.  相似文献   

3.
Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems.  相似文献   

4.
Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems.  相似文献   

5.
The aim of this study was to define a model for the coupling between extracellular enzyme activity and substrate uptake by bacterial populations in natural waters. The balance between uptake of leucine and extracellular hydrolytic production of leucine from a peptide model substrate was investigated in a combined fluorescence-radiotracer experiment with [H]leucine as a marker for the leucine pool and l-leucine-4 methyl-7-coumarinylamide (Leu-MCA) as a marker for the pool of dissolved peptide substrates. Results show that at low concentrations of the model substrate the input and uptake processes of leucine are nearly balanced, whereas at high concentrations of the model substrate much more leucine is liberated than taken up. In addition, samples from one polluted and one less polluted station in the Kiel Fjord were investigated for their extracellular enzymatic and uptake properties in an annual cycle. It was found that turnover rates of leucine (T(r), percent per hour) and hydrolysis rates of Leu-MCA (H(r), percent per hour), as well as the quotient T(r)/H(r), reflect the impact of environmental conditions on decomposition processes at both sampling sites. The quotient T(r)/H(r) is interpreted as an indirect measurement of the pool size ratio (polymers/monomers), which may serve as an index of hydrolysis-uptake coupling in bacterial utilization of dissolved protein. Calculated on an annual average basis, turnover rates are ca. nine times higher than hydrolysis rates at the polluted station and ca. five times higher at the less polluted station. From the described model, this would mean that the relative fraction of polymers within the total dissolved organic carbon pool (with regard to the substrate combination dissolved protein-leucine) is about twice that at the polluted than at the less polluted station.  相似文献   

6.
Exoenzymatic activities (aminopeptidase and b-glucosidase) and organic matter composition were investigated in June 1996 and February 1997 in the sediment of two areas of the Adriatic Sea differently influenced by the Po river. Protein, carbohydrate, and lipid concentrations were comparable to those reported in most productive systems. Sediment chlorophyll a and biopolymeric carbon concentrations in June were twice as high as in February, but highest exoenzymatic activities and organic matter turnover rates were observed in February (with aminopeptidase activities 10 times higher than in June). The accumulation of organic matter and lower protein and carbohydrate turnover rates observed in June were the result of a different biochemical composition of organic matter in the two sampling periods. In June, organic matter was characterized by a more refractory composition. The consequent reduction of available organic substrate was associated with a decrease in the exoenzymatic substrate affinity. Lower organic matter turnover rates were also observed in deeper sediment layers. In February, the freshwater plume was almost completely confined to the northern area, whereas in June it was extended to the southern area. The results suggest that river inputs influence the biochemical composition and distribution of the sediment organic matter and exoenzymatic activities in coastal marine sediments.  相似文献   

7.
We studied the effect of solar radiation on the incorporation of [(sup3)H]thymidine ([(sup3)H]TdR) and [(sup14)C]leucine ([(sup14)C]Leu) by bacterioplankton in a high mountain lake and the northern Adriatic Sea. After short-term exposure (3 to 4 h) of natural bacterial assemblages to sunlight just beneath the surface, the rates of incorporation of [(sup3)H]TdR and [(sup14)C]Leu were reduced at both sites by up to (symbl)70% compared to those for the dark control. Within the solar UV radiation (290 to 400 nm), the inhibition was caused exclusively by UV-A radiation (320 to 400 nm). However, photosynthetically active radiation (PAR) (400 to 700 nm) contributed almost equally to this effect. Experiments with samples from the high mountain lake showed that at a depth of 2.5 m, the inhibition was caused almost exclusively by UV-A radiation. At a depth of 8.5 m, where chlorophyll a concentrations were higher than those in the upper water column, the rates of incorporation of [(sup3)H]TdR were higher in those samples exposed to full sunlight or to UV-A plus PAR than in the dark control. In laboratory experiments with artificial UV light, the incorporation of [(sup3)H]TdR and [(sup14)C]Leu by mixed bacterial lake cultures was also inhibited mainly by UV-A. In contrast, in the presence of the green alga Chlamydomonas geitleri at a chlorophyll a concentration of 2.5 (mu)g liter(sup-1), inhibition by UV radiation was significantly reduced. These results suggest that there may be complex interactions among UV radiation, heterotrophic bacteria, and phytoplankton and their release of extracellular organic carbon. Our findings indicate that the wavelengths which caused the strongest inhibition of TdR and Leu incorporation by bacterioplankton in the water column were in the UV-A range. However, it may be premature to extrapolate this effect to estimates of bacterial production before more precise information on how solar radiation affects the transport of TdR and Leu into the cell is obtained.  相似文献   

8.
Carreira  Cátia  Talbot  Sam  Lønborg  Christian 《Biogeochemistry》2021,154(3):489-508

Heterotrophic bacteria typically take up directly dissolved organic matter due to the small molecular size, although both particulate and dissolved organic matter have labile (easily consumed) compounds. Tropical coastal waters are important ecosystems because of their high productivity. However, few studies have determined bacterial cycling (i.e. carbon uptake by bacteria and allocation for bacterial biomass and respiration) of dissolved organic carbon in coastal tropical waters, and none has determined bacterial cycling of total and dissolved organic carbon simultaneously. In this study we followed bacterial biomass and production, and organic carbon changes over short-term (12 days) dark incubations with (total organic carbon, TOC) and without particulate organic carbon additions (dissolved organic carbon, DOC). The study was performed at three sites along the middle stretch of the Great Barrier Reef (GBR) during the dry and wet seasons. Our results show that the bacterial growth efficiency is low (0.1–11.5%) compared to other coastal tropical systems, and there were no differences in the carbon cycling between organic matter sources, seasons or locations. Nonetheless, more carbon was consumed in the TOC compared to the DOC incubations, although the proportion allocated to biomass and respiration was similar. This suggests that having more bioavailable substrate in the particulate form did not benefit bacteria. Overall, our study indicates that when comparing the obtained respiration rates with previously measured primary production rates, the GBR is a heterotrophic system. More detailed studies are required to fully explore the mechanisms used by bacteria to cycle TOC and DOC in tropical coastal waters.

  相似文献   

9.
The aerobic decomposition of freshwater phytoplankton was monitored over a 10 day period to determine rates of production and microbial utilization of total dissolved organic carbon and dissolved carbohydrates. Following molecular weight fractionation of the total dissolved organic and carbohydrate carbon produced, it was found that each component contained a highly labile as well as a partially refractory fraction. Specific decomposition rate constants were determined for both fractions. Molecular weight retention characteristics of the ultrafilter used were also evaluated.  相似文献   

10.
Allophycocyanin was purified from the extremely thermophilic blue-green alga Synechococcus lividus. It was shown to be more stable to thermal or urea denaturation than allophycocyanin from a mesophilic organisms. Its amino acid composition and spectroscopic response to pH were investigated. An analysis was made of the relatively low fluorescence polarization of allophycocyanin compared to that of a comparable sized aggregate of the biliprotein, C-phycocyanin. A rather speculative conclusion was reached that suggests that the lower polarization of allophycocyanin may be caused by orientations or positioning of the chromophores that are more favorable for intra-protein energy transfer.  相似文献   

11.
In the open ocean, where turbidity is very low, UV radiation may be an important factor regulating interactions among planktonic microorganisms. The effect of exposure to UV radiation on grazing by a commonly isolated marine heterotrophic nanoflagellate, Paraphysomonas bandaiensis, on two strains of the cyanobacteria Synechococcus spp. was investigated. Laboratory cultures were exposed to a range of irradiances of artificially produced UV-B (290 to 319 nm) and UV-A (320 to 399 nm) for up to 10 h. At a UV-B irradiance of 0.19 W m, but not 0.12 W m, grazing mortality of Synechococcus spp. and nanoflagellate-specific grazing rates were reduced compared to mortality and grazing rates with UV-A treatment. Within 6 h of exposure, UV-A alone suppressed grazing mortality at irradiances as low as 3.02 W m. The extent to which grazing mortality and nanoflagellate-specific grazing rates were suppressed by UV-A increased with both irradiance and duration of exposure. Over a 6-h exposure period, differences in grazing mortality were largely attributable to differential survival of nanoflagellates. Over a longer period of exposure, there was impairment by UV-A alone of nanoflagellate-specific grazing rates. Rates of primary productivity of Synechococcus spp. were also reduced by UV-A. The extent to which Synechococcus productivity was reduced, compared to the reduction in Synechococcus grazing mortality, depended on the duration of UV-A exposure. These results support the hypothesis that UV-A alone influences the composition and biomass of marine microbial communities by affecting predator-prey interactions and primary production.  相似文献   

12.
Anaerobic thermophilic degradation of several amino acids was studied in batch cultures using an inoculum from a steady-state semicontinuous enrichment culture. Experiments were done in the presence and absence of methanogenesis and known electron acceptors in the Stickland reaction. Methanogenesis was found to be crucial for the degradation of amino acids known to be oxidatively deaminated (leucine, valine and alanine). Other amino acids (serine, threonine, cysteine and methionine) were degraded under both methanogenic and non-methanogenic conditions. Degradation rates for these four amino acids were 1.3 to 2.2 times higher in cases where methanogenesis was active. The degradation rates of serine, threonine, cysteine and methionine were about twice as high as the rates of leucine, valine and alanine under methanogenic conditions. Inclusion of different electron acceptors, known to work in the Stickland reaction, did not enhance the degradation rates of any amino acid used nor did they alter the degradation patterns. Glycine was oxidatively deaminated to acetate, carbon dioxide, hydrogen and ammonium.  相似文献   

13.
This study compared the effect of four pure carbon supplements on biological denitrification to a liquor derived as a by-product from the wet oxidation (WO) of waste activated sludge. Sequencing batch reactors were used to acclimate sludge biomass, which was used in batch assays. Acetate, WO liquor and ethanol-supplementation generated the fastest denitrification rates. Acetate and WO liquor were efficiently utilised by all acclimated biomass types, while poor rates were achieved with methanol and formate. When comparing an inoculum from an ethanol-supplemented and non-supplemented wastewater treatment plant (WWTP), the ethanol-acclimated sludge obtained superior denitrification rates when supplemented with ethanol. Similarly high nitrate removal rates were achieved with both sludge types with acetate and WO liquor supplementation, indicating that WO liquors could achieve excellent rates of nitrate removal. The performance of the WO liquor was attributed to the variety of organic carbon substrates (particularly acetic acid) present within the liquor.  相似文献   

14.
Mineralization and redistribution of carbon from14C-labelled oat shoots and [14C(U)] labelled glucose, leucine, acetate and phenylacetate were studied in light loamy sand and medium clay loam under different levels of mineral nutrition. Losses of mineralized14C as CO2 were greater in the sandy soil than in the clay soil. NPK and NPK+Ca fertilization increased the rates of decay of the introduced plant organic matter. Among the small molecular organic compounds glucose was degraded fastest and phenylacetate slowest. Incorporation of radioactive carbon into humus fractions varied and depended on the nature of the compound introduced and on the soil type. Carbon of glucose, phenylacetate and acetate was mainly incorporated into fulvic acids, whereas14C of leucine was almost evenly distributed between humic and fulvic acids and14C of oat residues in fulvic acids and humin fractions. There was significantly higher incorporation of14C into humic acids and lower incorporation into humins in the sandy soil compared to the clay soil. NPK+Ca decreased the conversion of14C from phenylacetate and acetate to bitumens and increased its content in humic acids, particularly in the clay soil. The incorporation of14C from phenylacetate to humins benefitted from mineral fertilization during the first 30 days of the experiment in both soils.  相似文献   

15.
The Western areas of the Adriatic Sea are subjected to inputs of inorganic nutrients and organic matter that can modify the trophic status of the waters and consequently, the microbiological processes involved in the carbon and phosphorus biogeochemical cycles, particularly in shallow coastal environments. To explore this topic, a survey was carried out during the spring of 2003 in a particular hydrodynamic area of the Gulf of Manfredonia, where the potential (P) and real (R) rates of four different microbial exoenzymatic activities (EEA) (α [αG] and ß glucosidases [ßG], leucine aminopeptidase [LAP], and alkaline phosphatase [AP]) as well as the P and R rates of prokaryotic heterotrophic production (PHP), AP as well as the P and R rates of PHP, primary production (PPnet), the prokaryotic and phototrophic stocks and basic hydrological parameters were examined. Three different water masses were found, with a thermohaline front (THF) being detected between the warmer and less saline coastal waters and colder and saltier offshore Adriatic waters. Under the general oligotrophic conditions of the entire Gulf, a decreasing gradient from the coastal toward the offshore areas was detected, with PHP, PPnet, stocks and EEA (αG, ßG, AP) being directly correlated with the temperature and inversely correlated with the salinity, whereas opposite relationships were observed for LAP activity. No enhancement of microbiological activities or stocks was observed at the THF. The use of P or R rates of microbiological activities, which decrease particularly for EEA, could result in discrepancies in interpreting the efficiency of several metabolic processes.  相似文献   

16.
The aim of this work was to purify and characterize the extra-cellular leucine amino peptidase (LAP) from Streptomyces gedanensis and also study its applications for protein hydrolysis. The enzyme was purified to homogeneity by ammonium sulfate fractionation and sequential chromatography steps. LAP appeared to be a monomeric enzyme with a molecular weight of ~75 kDa determined by sodium dodecyl sulfate poly acryl amide gel electrophoresis (SDS-PAGE). The enzyme preferentially hydrolyzed leucine p-nitroanilide followed by Met, Phe, Lys and Arg derivatives. Kinetic studies on the purified enzyme confirmed that it can hydrolyze peptide as well as ester substrates at comparable rates. This amino peptidase was highly resistant to different concentrations of various organic solvents. The characteristics of this amino peptidase, including thermo stability, organic solvent resistance, its activity against various substrates, and also it showed esterase and peptidase activity at comparable rates; identified this amino peptidase as a novel one. The specificity towards aromatic and hydrophobic amino acid residues, the solvent-resistance and thermo stability make this amino peptidase could offer interesting possibilities for various industrial applications including debittering of protein hydrolysates, peptide and ester synthesis.  相似文献   

17.
To understand the activity of marine viruses, experiments on viral production, viral decay and the percentage of lytic and lysogenic bacterial cells among the total number of bacterial cells were carried out seasonally at two stations in the Adriatic Sea with different trophic conditions. Additionally, we are providing an insight on the enrichment with dissolved and particulate organic matter by viral lysis in the studied area. Viral production was higher at the coastal station than at the open-sea station. Viral decay rates were also higher at the coastal sea station than at the open-sea station, and accounted for approximately 40% of viral production at both investigated stations. The percentage of lysogenic infection was lower than that of lytical infection, which indicates the prevalence of the lytic cycle at both stations. Viruses had a significant influence on bacterial mortality through high daily removal of the bacterial standing stock at the coastal and open-sea station. The viruses contributed to the restoration of dissolved organic carbon, nitrogen and phosphorus in the microbial loop by lysing the bacterial cells at the studied stations. All the above suggest that viruses are important in the microbial food web and an important factor in the control of bacterial populations within the study area.  相似文献   

18.
Geochemical and biological estimates of in situ microbial activities were compared from the aerobic and microaerophilic sediments of the Atlantic Coastal Plain. Radioisotope time-course experiments suggested oxidation rates greater than millimolar quantities per year for acetate and glucose. Geochemical analyses assessing oxygen consumption, soluble organic carbon utilization, sulfate reduction, and carbon dioxide production suggested organic oxidation rates of nano- to micromolar quantities per year. Radiotracer timecourse experiments appeared to overestimate rates of organic carbon oxidation, sulfate reduction, and biomass production by a factor of 103–106 greater than estimates calculated from groundwater analyses. Based on the geochemical evidence, in situ microbial metabolism was estimated to be in the nano- to micromolar range per year, and the average doubling time for the microbial community was estimated to be centuries.  相似文献   

19.
The 5′-end of the mitochondrial control region of three Pleuronectiformes from the Adriatic Sea, Platichthys flesus italicus (Adriatic flounder), Solea vulgaris (common sole), and Solea kleini (Klein's sole), was sequenced and compared with that of six other flatfish species from the families Pleuronectidae and Bothidae. The sequence structures of all flatfishes appear very similar and consist of alternate short segments with low, medium, and high rates of nucleotide substitution. Four conserved 19-bp repeats occur at the beginning of the European and Adriatic flounder sequences. The common occurrence of tandem arrays in fish control regions could be related to a stable secondary structure. Molecular phylogenetic relationships among Pleuronectiformes agree well with previous morphologic data at all taxonomic levels. Molecular analyses could therefore contribute to resolving phylogenetic and taxonomic debates within the Pleuronectiformes. Received December 1, 1997; accepted June 30, 1998.  相似文献   

20.
We investigated whether algal osmotrophy in naturally acidic Lake Caviahue is an important process for acquisition of organic carbon and organic nitrogen. To accomplish this, we quantified algal assimilation of organic compounds, measured the specific growth rate and biomass yield, and documented incorporation of organic compounds by phytoplankton in situ using microautoradiography. Substrate uptake quantification and microautoradiographic investigations were performed using 3H-leucine, 3H-glucose, 3H-thymidine, 14C-aspartic acid, 14C-acetic acid and 14C-bicarbonates. The results showed that the most important species of the phytoplankton community, Keratococcus rhaphidioides and Watanabea sp., took up various sources of organic carbon and nitrogen under both light and dark conditions. They were also able to assimilate leucine, thymidine, aspartic acid and acetate under high levels of inorganic nitrogen and phosphorus, while they could use leucine, arginine, glutamine and glucose under low levels of nitrogen and phosphorus. The assimilation rates were higher in light than in darkness, and the algal specific growth rates increased when organic sources were added. We proposed that osmotrophy complements the main photosynthetic process of the phytoplankton in Lake Caviahue, which helps to overcome the scarcity of light and inorganic nitrogen and carbon in the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号