首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We characterized the tyrosine phosphorylation sites of free pp60c-src and of pp60c-src associated with the polyomavirus middle tumor antigen (mT) in transformed avian and rodent cells. The sites of tyrosine phosphorylation in the two populations of pp60c-src were different, both in vitro and in vivo. Free pp60c-src was phosphorylated in vitro at a single site, tyrosine 416. pp60c-src associated with mT was phosphorylated in vitro on tyrosine 416 and on one or more additional tyrosine residues located in the amino-terminal region of the molecule. Free pp60c-src in polyomavirus mT-transformed cells was phosphorylated in vivo on tyrosine 527. In contrast, pp60c-src associated with mT was phosphorylated in vivo on tyrosine 416 and not detectably on tyrosine 527. Thus, the in vivo phosphorylation sites of pp60c-src associated with mT in transformed cells are identical to those of pp60v-src, the Rous sarcoma virus transforming protein. The results suggest that altered phosphorylation of pp60c-src associated with mT may play a role in the enhancement of the pp60c-src protein kinase activity and in cell transformation by polyomavirus.  相似文献   

2.
A protein tyrosine kinase involved in regulation of pp60c-src function   总被引:22,自引:0,他引:22  
We recently identified a novel protein tyrosine kinase that specifically phosphorylates truncated pp60c-src (Mr = 53,000) at a tyrosine residue(s) distinct from its autophosphorylation site. In this study, we examined whether this enzyme phosphorylates intact pp60c-src (Mr = 60,000) and determined its phosphorylation site. Non-neuronal and neuronal forms of intact pp60c-src were separately purified from the membrane fraction of neonatal rat brain by sequential column chromatographies. The novel kinase phosphorylated tyrosine residues of both forms of intact pp60c-src. The phosphorylation occurred in parallel with autophosphorylation of pp60c-src, and in both forms the final stoichiometry estimated was quite similar to that of autophosphorylation (about 5%). The enzyme also phosphorylated pp60c-src in which the kinase activity had been destroyed by an ATP analogue, p-fluorosulfonylbenzoyl 5'-adenosine. The phosphorylation site of the non-neuronal form was analyzed by sequential peptide mapping with tosylphenylalanyl chloromethyl ketone-treated trypsin and alpha-chymotrypsin. Tryptic digestion of the phosphorylated pp60c-src yielded a unique phosphopeptide that cross-reacted with an antibody specific for the carboxyl-terminal sequence of chicken pp60c-src. Digestion of the phosphopeptide with chymotrypsin yielded a product that comigrated with a synthetic phosphopeptide corresponding to the carboxyl-terminal 15 residues of chicken pp60c-src. These results clearly indicate that the carboxyl-terminal sequence of rat pp60c-src is identical to that of chicken pp60c-src, and a tyrosine residue corresponding to chicken Tyr527 is the phosphorylation site. This phosphorylation resulted in a decrease in the enolase phosphorylating activity of pp60c-src. Kinetic experiments indicated that this decrease in activity was due to a decrease in the Vmax value of pp60c-src. These findings support our previous proposal that the novel tyrosine kinase acts as a specific regulator of pp60c-src in cells.  相似文献   

3.
Intact human platelets, terminally differentiated cells with no growth potential, were found to possess unusually high levels of tyrosine-specific protein phosphorylation. The physiological platelet activator thrombin transiently elevated platelet phosphotyrosine content, apparently through stimulation of one or more tyrosine-specific protein kinases. Immunoblotting with antiphosphotyrosine antiserum showed that thrombin caused dramatic changes in the tyrosine phosphorylation of a number of individual protein bands and that these changes occurred in three distinct temporal waves. Most but not all of the protein bands phosphorylated at tyrosine in response to thrombin were also tyrosine phosphorylated in response to chilling or the combination of ionophore A23187 and tetradecanoylphorbol acetate. Thrombin stimulated the phosphorylation of the tyrosine kinase pp60c-src, primarily at Ser-12 and Tyr-527, although the effects of these phosphorylations on platelet pp60c-src function were not apparent. Together, these results suggest that tyrosine-specific protein kinases of uncertain identity are involved in signal transduction in platelets.  相似文献   

4.
Phosphorylation at tyrosine 527 of the proto-oncogene product, pp60c-src, has been proposed to decrease the tyrosine kinase activity of the enzyme. We have investigated potential factors that might influence phosphorylation at this site by making mutant variants of the pp60c-src protein. By effectively eliminating the site of N-terminal myristylation, we demonstrated that stable membrane association is not necessary for tyrosine 527 phosphorylation. Furthermore, mutational elimination of the enzymatic activity of this mutant pp60c-src protein did not alter the efficiency of phosphorylation at tyrosine 527. These data are consistent with the proposal that pp60c-src may be phosphorylated at tyrosine 527 by a cellular tyrosine kinase distinct from pp60c-src. In addition, using detergent-permeabilized cells, we established conditions that allow efficient phosphorylation of tyrosine 527 in vitro.  相似文献   

5.
High yields of soluble, biologically active pp60c-src and middle t antigen (MTAg) of polyomavirus were produced in insect cells, using a baculovirus expression system. In mammalian cells, pp60c-src undergoes a regulatory phosphorylation on Tyr-527 in vivo and is autophosphorylated on Tyr-416 in vitro. In insect cells, pp60c-src was phosphorylated primarily on Tyr-416, although Tyr-527 was detectable at a low level. A kinase-negative mutant of pp60c-src was not phosphorylated on either Tyr-527 or Tyr-416 in insect cells and thus is an excellent biochemical reagent to search for the regulatory kinase that usually phosphorylates Tyr-527 in mammalian cells. MTAg synthesized in insect cells was not phosphorylated on tyrosine residues in vivo or in vitro, suggesting that it did not associate with any endogenous tyrosine kinases. However, MTAg isolated from cells coinfected with viruses encoding both MTAg and pp60c-src was phosphorylated on tyrosine residues both in vivo and in vitro.  相似文献   

6.
T E Kmiecik  D Shalloway 《Cell》1987,49(1):65-73
pp60c-src is phosphorylated in vivo at tyrosine 527, a residue not present in pp60v-src (its transforming homolog), and not at tyrosine 416, its site of in vitro autophosphorylation. To test the hypothesis that tyrosine phosphorylation regulates pp60c-src biological activity, we constructed and studied pp60c-src mutants in which Tyr 527 and Tyr 416 were separately or coordinately altered to phenylalanine. Tyr----Phe 527 mutation strongly activated pp60c-src transforming and kinase activities, whereas the additional introduction of a Tyr----Phe 416 mutation suppressed these activities. Tyr----Phe 416 mutation of normal pp60c-src eliminated its partial transforming activity, which suggests that transient or otherwise restricted phosphorylation of Tyr 416 is important for pp60c-src function even though stable phosphorylation is not observed in vivo.  相似文献   

7.
The high amount of pp60c-src in platelets has led to speculation that this kinase is responsible for tyrosine-specific phosphorylation of cellular proteins during platelet activation by different agonists, and is, therefore, implicated in signal transduction of these cells. Unlike pp60v-src, the association of which with the cytoskeleton appears to be a prerequisite for transformation, pp60c-src is detergent-soluble in fibroblasts overexpressing the c-src gene, and its role in normal cellular function remains elusive. To gain a better understanding of the function of pp60c-src we have investigated the subcellular distribution of pp60c-src and its relationship to the cytoskeleton during platelet activation. Quantitative immunoblotting and immunoprecipitation have revealed that pp60c-src is detergent-soluble in resting platelets, while 40% of total platelet pp60c-src becomes associated with the cytoskeletal fraction upon platelet activation. We have also shown that a small pool of pp60c-src is associated with the membrane skeletal fraction which remains unchanged during the activation process. The interaction of pp60c-src with cytoskeletal proteins strongly correlates with aggregation and is mediated by GPIIb/IIIa receptor-fibrinogen binding. We suggest that the translocation of pp60c-src to the cytoskeleton and its association with cytoskeletal proteins may regulate tyrosine phosphorylation in platelets.  相似文献   

8.
We introduced two mutations into the carboxy-terminal regulatory region of chicken pp60c-src. One, F527, replaces tyrosine 527 with phenylalanine. The other, Am517, produces a truncated pp60c-src protein lacking the 17 carboxy-terminal amino acids. Both mutant proteins were phosphorylated at tyrosine 416 in vivo. The specific activity of the Am517 mutant protein kinase was similar to that of wild-type pp60c-src whereas that of the F527 mutant was 5- to 10-fold higher. Both mutant c-src genes induced focus formation on NIH 3T3 cells, but the foci appeared at lower frequency, and were smaller than foci induced by polyoma middle tumor antigen (mT). The wild-type or F527 pp60c-src formed a complex with mT, whereas the Am517 pp60c-src did not. The results suggest that one, inability to phosphorylate tyrosine 527 increases pp60c-src protein kinase activity and transforming ability; two, transformation by mT involves other events besides lack of phosphorylation at tyrosine 527 of pp60c-src; three, activation of the pp60c-src protein kinase may not be required for transformation by the Am517 mutant; and four, the carboxyl terminus of pp60c-src appears to be required for association with mT.  相似文献   

9.
The tyrosine protein kinase activities of pp60c-src and pp60v-src were compared. The activities were qualitatively similar in vitro when the src proteins were bound in an immune complex with monoclonal antibody; both proteins utilized either ATP or GTP as phosphate donors, preferred Mn2+ to Mg2+, and had similar exogenous substrate specificities. The specific activity of pp60c-src was about 10-fold lower than that of pp60v-src for exogenous substrate phosphorylation but was only 1.1- to 2-fold lower than that of pp60v-src for autophosphorylation. Six glycolytic enzymes, including three not previously identified as substrates for pp60src phosphorylation, were phosphorylated by both pp60c-src and pp60v-src. Levels of pp60c-src fourfold higher than the amount of pp60v-src in src-plasmid-transformed cells did not detectably alter the level of phosphotyrosine in cellular proteins, but increasing the expression of pp60c-src another twofold (which induces cells to form foci in monolayer culture (P.J. Johnson, P.M. Coussens, A.V. Danko, and D. Shalloway, Mol. Cell. Biol. 5:1073-1083, 1985) resulted in a threefold increase in the level of cellular protein phosphotyrosine. Immunoprecipitation and analysis of the alkali-stable phosphoproteins by two-dimensional electrophoresis showed that, in contrast to pp60v-src-transformed cells, pp36 and enolase are only weakly phosphorylated in these high-level pp60c-src overexpresser cells. Even allowing for the in vitro differences in specific activities of phosphorylation, these results suggest that the pp60c-src tyrosine protein phosphorylating activity may be restricted relative to that of pp60v-src by additional in vivo mechanisms.  相似文献   

10.
A tyrosine-specific protein kinase immunologically related to pp60c-src, the cellular homolog of the Rous sarcoma virus-transforming protein, was expressed at elevated levels in the electric organ of the electric eel Electrophorus electricus. The electric organ kinase phosphorylated antibodies reactive with pp60c-src at tyrosine residues in immune complex protein kinase assays and was associated with electric organ membranes enriched in acetylcholine receptors. The protein recognized by anti-pp60c-src antibodies was phosphorylated in endogenous membrane phosphorylation reactions and was shown to have a relative molecular mass of 57 kDa by two-dimensional gel electrophoresis. In immune complex protein kinase assays the 57-kDa protein was phosphorylated at threonine by a distinct threonine kinase from the electric organ. The tyrosine kinase was purified 844-fold from electric organ membranes by chromatography on omega-aminohexyl agarose, phosphocellulose, and casein-Sepharose. Threonine kinase activity in immunoprecipitates was not observed in the tyrosine kinase fractions after the first step. Incubation of the casein Sepharose fraction with [gamma-32P]ATP-Mn2+ in solution resulted in phosphorylation of only the 57-kDa protein. Phosphorylation occurred solely at tyrosine, suggesting that the kinase is capable of autophosphorylation. The structural and functional properties of the 57-kDa electric organ kinase indicate that the 57-kDa electric organ protein is a member of the src subfamily of tyrosine kinases and is closely related to pp60c-src.  相似文献   

11.
Stimulation of protein kinase C in polyoma virus-transformed cells increased the phosphorylation of tyrosine residues of the viral middle T (mT) antigen in mT:pp60c-src complexes precipitated by anti-mT antibodies. This increase might have been due to a stimulation of the complex's pp60c-src tyrosine kinase activity or to an increased ability of the mT protein to be phosphorylated by pp60c-src. These observations suggest that cellular protein kinase C might control the ability of polyoma virus to transform its host cell.  相似文献   

12.
Lipocortin I is a 39-kilodalton membrane-associated protein that in A431 cells is phosphorylated on tyrosine in response to epidermal growth factor (EGF). We have used recombinant human lipocortin I as a substrate for several protein kinases and identified phosphorylated residues by a combination of peptide mapping and sequence analysis. Lipocortin I was phosphorylated near the amino terminus at Tyr-21 by recombinant pp60c-src. The same tyrosine residue was phosphorylated by polyoma middle T/pp60c-src complex, by recombinant pp50v-abl, and with A431 cell membranes by the EGF receptor/kinase. The primary site of phosphorylation by protein kinase C was also near the amino terminus at Ser-27. The major site of phosphorylation by adenosine cyclic 3',5'-phosphate dependent protein kinase was on the carboxy-terminal half of the molecule at Thr-216. These sites are compared to the phosphorylation sites previously located in the structurally related protein lipocortin II.  相似文献   

13.
Collagen stimulation of platelets induced an increase in the specific activity of pp60c-src immunoprecipitated from the Triton-soluble fraction. The earliest time after collagen stimulation that an increase in pp60c-src activity was observed was 30 s. However, the maximum activity of pp60c-src in the Triton-soluble fraction was observed 60 s after collagen stimulation. At this time an approximately twofold increase of pp60c-src activity towards phosphorylation of KVEKIGEGTYGVVKK specific peptide and enolase and a 4.5-fold increase towards phosphorylation of pp60c-src itself was measured. Furthermore, the majority of pp60c-src as well as pp54/58lyn, pp60fyn, and pp72syk were found in the Triton-soluble fraction in resting platelets. Collagen induced, to different extents and velocities, translocation of all of these proteins from the Triton-soluble fraction to the Triton-insoluble, cytoskeleton-rich, platelets fraction. These results provide direct evidence that collagen stimulation of platelets increases the tyrosine kinase activity of pp60c-src and suggest that the platelet cytoskeleton plays an important role in collagen-induced signal transduction by localizing signaling molecules.  相似文献   

14.
Thrombin stimulation of platelets induces a transient increase in the specific activity of pp60c-src followed by a redistribution of pp60c-src to the Triton X-100-insoluble, cytoskeleton-rich fraction. Concomitant with the observed increase in pp60c-src activity was a rapid dephosphorylation of tyrosine 527 in 10 to 15% of pp60c-src molecules. In addition, we found that pp60c-src from the Triton-insoluble fraction was phosphorylated on tyrosine 416, the autophosphorylation site which is phosphorylated in activated oncogenic variants of pp60src. Furthermore, in platelets from patients with Glanzmann's thrombasthenia (which are deficient in the integrin receptor GPIIb-IIIa), pp60c-src was not translocated to the Triton-insoluble fraction, and there was a sustained increase in pp60c-src activity following thrombin treatment. These results suggest that pp60c-src is rapidly activated in thrombin-stimulated platelets, potentially by a protein tyrosine phosphatase, before it translocates to a cytoskeletal fraction, where many of its potential substrates are found. The evidence that the cytoskeletal association of pp60c-src is dependent upon engagement of the integrin receptor GPIIb-IIIa suggests that integrin-cytoskeletal complexes may serve to compartmentalize and anchor activated enzymes involved in signal transduction.  相似文献   

15.
The polyoma middle tumor antigen (MTAg) associates with the src proto-oncogene product pp60c-src in infected or transformed rodent cells. The tyrosine protein kinase activity of pp60c-src, as measured by in vitro phosphorylation of pp60c-src itself or the exogenous substrate enolase, was increased 10- to 20-fold in cells transformed or infected with transformation-competent polyoma virus compared with controls. pp60c-src associated with MTAg and precipitated with polyoma antitumor serum had a novel site(s) of in vitro tyrosine phosphorylation within its amino-terminal domain. These observations suggest that association of MTAg with pp60c-src alters the accessibility of pp60c-src tyrosine residues for phosphorylation in vitro and increases pp60c-src protein kinase activity. Several transformation-defective mutants of MTAg did not cause amino-terminal tyrosine phosphorylation of pp60c-src in vitro or enhance its protein kinase activity, suggesting that these properties correlate with the transforming ability of MTAg. However, one transformation-defective MTAg mutant, dl1015, did cause amino-terminal tyrosine phosphorylation of pp60c-src in vitro and did enhance its protein kinase activity. This suggests that properties of MTAg, in addition to modifying the structure and function of pp60c-src, may be important for transformation.  相似文献   

16.
R Jove  S Kornbluth  H Hanafusa 《Cell》1987,50(6):937-943
Cellular src protein, p60c-src, is phosphorylated on tyrosine 527 in chicken embryo fibroblasts, and this phosphorylation is implicated in suppressing the protein-tyrosine kinase activity and transforming potential of p60c-src. To determine whether tyrosine 527 phosphorylation is dependent on p60c-src kinase activity, the ATP-binding site of chicken p60c-src was destroyed by substitution of lysine 295 with methionine. The resultant protein, p60c-src(M295), expressed either in chicken cells or in yeast, lacked detectable kinase activity. Nevertheless, tyrosine and serine phosphorylation of p60c-src(M295) overproduced in chicken cells were indistinguishable from that of authentic p60c-src. By contrast, p60c-src(M295) was not phosphorylated on tyrosine in yeast. These results suggest that a protein kinase present in chicken cells but not in yeast phosphorylates tyrosine 527 in trans, and are consistent with the possibility that this kinase is distinct from p60c-src.  相似文献   

17.
We have examined the effects of Xenopus pp60c-src with constitutive kinase activity on the morphology and maturation of Xenopus laevis oocytes. When RNA encoding this deregulated variant was injected into stage VI oocytes, we observed a gross alteration in the cortex of the oocyte. This alteration involved aggregation of pigment and invagination of the cortex in a large area proximal to the site of injection. This phenomenon was not seen in oocytes injected with RNA encoding wild-type pp60c-src. We have correlated this phenomenon with the tyrosine phosphorylation of 84- and 100-kDa proteins. These phosphorylated proteins colocalized with the alteration in the oocyte cortex when assayed by both biochemical and immunocytochemical methods. Neither the pigment aggregation nor phosphorylation of the 84- and 100-kDa proteins was observed in oocytes expressing a nonmyristoylated version of the deregulated pp60c-src. Expression of deregulated Xenopus fyn, a src-family member, resulted in a phenotype similar to that seen with deregulated src. However, in the fyn-injected oocytes, many more proteins were phosphorylated on tyrosine than in the src-injected oocytes. Progesterone stimulation of oocytes expressing deregulated pp60c-src resulted in an increase in the number of tyrosine-phosphorylated proteins. This change may represent the response of pp60src to the resumption of the cell cycle in maturing oocytes. These data suggest that the oocyte may be a particularly useful system for investigating the role of pp60c-src in the regulation of cytoskeletal structure and in the regulation of events associated with the cell cycle.  相似文献   

18.
Regulation by the autophosphorylation site in overexpressed pp60c-src.   总被引:19,自引:11,他引:8       下载免费PDF全文
We show that overexpressed pp60c-src is phosphorylated at Tyr-416 and has increased specific kinase activity when isolated from cells incubated with vanadate, a tyrosine phosphatase inhibitor. This supports the hypothesis that transient Tyr-416 phosphorylation modulates the activity of overexpressed pp60c-src in vivo. Mutagenesis indicates that Tyr-416 modulates pp60v-src activity as well.  相似文献   

19.
Intact pp60c-src, the cellular homologue of the transforming protein of Rous sarcoma virus, was purified from human platelets. The purified fractions also contained small amounts of a 54-kDa proteolytic degradation product of pp60c-src. We investigated some of the biochemical and kinetic properties of pp60c-src protein tyrosine kinase. Maximum kinase activity occurred at pH 6.5 and required a mixture of 2 mM Mn2+/Mg2+ as divalent cations. The enzyme most strongly phosphorylated casein, followed by enolase and alcohol dehydrogenase. The Km value for ATP was 4 microM for substrate phosphorylation and for autophosphorylation. Using casein, we determined a Vmax for substrate phosphorylation by pp60c-src in the range of 1.9-3.4 nmol.min-1.mg-1. Since the Vmax value for the purified 54-kDa fragment of pp60c-src was also included in this value, we conclude that proteolytic degradation of a 6-kDa fragment from the N-terminus of pp60c-src did not affect its kinase activity. Tryptic phosphopeptide analysis identified Tyr-416 as the major autophosphorylation site. Preincubation of purified pp60c-src with ATP increased the amount of autophosphorylation accompanied by an increase in Vmax, whereas the Km values were not altered. Our data directly demonstrate that autophosphorylation at Tyr-416 exerts, in contrast to phosphorylation at Tyr-527, a positive regulatory effect on the pp60c-src kinase activity.  相似文献   

20.
The biological and biochemical properties of pp60c-src are regulated, in part, by phosphorylation at Tyr-416 and Tyr-527. The tyrosine kinase and transforming activities of pp60c-src are suppressed by phosphorylation at Tyr-527, whereas full activation of pp60c-src requires phosphorylation at Tyr-416. To test specifically the significance of the negatively charged phosphate moieties on these tyrosine residues, we have substituted the codons for both residues with codons for either Glu or Gln. A negatively charged Glu at position 527 was unable to mimic a phosphorylated Tyr at this position, and, in consequence, the mutated pp60c-src was activated and transforming. Similarly, substitution of Tyr-416 with Glu was unable to stimulate the activities of the enzyme. However, mutagenesis of Tyr-416 to Gln (to form the mutant 416Q) activated the kinase activity approximately twofold over that observed for wild-type pp60c-src. When introduced into the mutant 527F (containing Phe-527 instead of Tyr), the double mutant 416Q-527F exhibited weak transforming activity. This is in contrast to the other double mutants 416E-527F and 416F-527F, which were nontransforming. The biochemical basis by which 416Q activates pp60c-src is not understood but probably involves some local conformational perturbation. Deletion of residues 519 to 524 (RH5), a region previously shown to be necessary for association with middle-T antigen, led to loss of phosphorylation at Tyr-527 and activation of the enzymatic and focus-forming activities of pp60c-src. Hence, the sequences necessary for complex formation with middle-T antigen may also be required by the kinase(s) which phosphorylates Tyr-527 in vivo. This suggests that normal cells contain cellular proteins which are analogous to middle-T antigen and whose action regulates the activity of pp60c-src by controlling phosphorylation or dephosphorylation at residue 527.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号