首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determining how thermal variability will affect the structure, stability, and function of ecological communities is becoming increasingly important as global warming is predicted to affect not only average temperatures but also increase the frequency of long runs of high temperatures. Latitudinal differences in the responses of ecological communities to changes in their thermal regimes have also been predicted based on adaptations over evolutionary time to different thermal environments. We conducted an experiment to determine whether variability in temperature leads to consistent changes in community structure, temporal dynamics, and ecosystem functioning in laboratory analogues of natural freshwater supralittoral rock pool communities inhabited by meiofauna and zooplankton collected from sub‐Arctic, temperate, and tropical regions. Thermal variability of +4 °C around mean temperature led to increased extinction frequency, decreases in consumer abundance, increases in temporal variability of consumer abundance, and shifts from predominately negative interactions observed under constant temperature to positive interactions in the temperate and tropical communities but not in the sub‐Arctic communities. That sub‐Arctic zooplankton communities may be more robust to thermal variability than temperate or tropical communities’ supports recent studies on macrophysiological adaptations of species along latitudinal gradients and suggests that increasing thermal variability may have the greatest effects on community structure and function in tropical and temperate regions.  相似文献   

2.
Zhang Y  Payne JL 《PloS one》2012,7(6):e38603
Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (~275-260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to declining seawater temperatures. Consequently, our findings highlight the fact that spatial gradients in organism size are not always controlled by the same factors that govern temporal trends within the same clade.  相似文献   

3.
In order to evaluate latitudinal differences in the relationship of phytoplankton biomass and diversity with environmental conditions in shallow lakes, we sampled 98 shallow lakes from three European regions: Denmark (DK), Belgium/The Netherlands (BNL) and southern Spain (SP). Phytoplankton biomass increased with total phosphorus (TP) concentrations and decreased with submerged macrophyte cover across the three regions. Generic richness was significantly negatively related to submerged macrophyte cover and related environmental variables. Zooplankton:phytoplankton biomass ratios were positively related to submerged macrophyte cover and negatively to phytoplankton generic richness in DK and BNL, suggesting that the low generic richness in lakes with submerged macrophytes was due to a higher zooplankton grazing pressure in these regions. In SP, phytoplankton generic richness was not influenced by zooplankton grazing pressure but related to conductivity. We observed no relationship between phytoplankton generic richness and TP concentration in any of the three regions. The three regions differed significantly with respect to mean local and regional generic richness, with BNL being more diverse than the other two regions. Our observations suggest that phytoplankton diversity in European shallow lakes is influenced by submerged macrophyte cover indirectly by modulating zooplankton grazing. This influence of submerged macrophytes and zooplankton grazing on phytoplankton diversity decreases from north to south.  相似文献   

4.
Most studies of hibernation physiology sample individuals from populations within a single geographic area, yet some species have large ranges meaning populations likely experience area-specific levels of energetic challenges. As well, few studies have assessed within-season variation. Since physiological adjustments often are influenced by environmental factors, and the types of environments vary with geography, we expected variance in hibernation patterns among geographically separated populations. Our specific goal was to measure intraspecific variation in torpid metabolic rate (TMR) and body temperature (T b) as a function of ambient temperature (T a) for a non-migratory and migratory species to determine whether there is a continuum in physiological responses based on latitude. We chose big brown (Eptesicus fuscus) and eastern red bats (Lasiurus borealis) as model species and sampled individuals from populations throughout each species’ winter range. In both species, individuals from southern populations maintained higher TMR at cooler T as and lower TMR at warmer T as than those from northern populations. Big brown bats from southern populations regulated T b during torpor at higher levels and there was no significant difference in T b between populations of eastern red bats. Although metabolic responses were similar across the gradient between species, the effect was more dramatic in big brown bats. Our data demonstrate a continuum in thermoregulatory response, ranging from classic hibernation in northern populations to a pattern more akin to daily torpor in southern populations. Our research highlights the potential usefulness of bats as model organisms to address questions about within-species physiological variation in wild populations.  相似文献   

5.
Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north–south transplant experiment in northern Europe, covering a latitudinal N deposition gradient ranging from 0.28 g N m−2 year−1 in the north, to 1.49 g N m−2 year−1 in the south. The maximum photosynthetic rate (NPmax) increased southwards, and was mainly explained by tissue N concentration, secondly by allocation of N to the photosynthesis, and to a lesser degree by modified photosystem II activity (variable fluorescence/maximum fluorescence yield). Although climatic factors may have contributed, these results were most likely attributable to an increase in N deposition southwards. For S. fuscum, photosynthetic rate continued to increase up to a deposition level of 1.49 g N m−2 year−1, but for S. balticum it seemed to level out at 1.14 g N m−2 year−1. The results for S. balticum suggested that transplants from different origin (with low or intermediate N deposition) respond differently to high N deposition. This indicates that Sphagnum species may be able to adapt or physiologically adjust to high N deposition. Our results also suggest that S. balticum might be more sensitive to N deposition than S. fuscum. Surprisingly, NPmax was not (S. balticum), or only weakly (S. fuscum) correlated with biomass production, indicating that production is to a great extent is governed by factors other than the photosynthetic capacity.  相似文献   

6.
Sex‐dependent gene expression is likely an important genomic mechanism that allows sex‐specific adaptation to environmental changes. Among Drosophila species, sex‐biased genes display remarkably consistent evolutionary patterns; male‐biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex‐biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex‐specific selection and the evolution of sex‐biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11 631 genes across eight populations revealed strong sex differences in the frequency, mode and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male‐biased genes, there was no overrepresentation of X‐linked genes in males. By contrast, X‐linked divergence was elevated in females, especially for female‐biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in Drosophila simulans and Drosophila melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro‐ and micro‐ecological spatial scales.  相似文献   

7.
Despite being one of the most intensely studied habitat types worldwide, the intertidal region around Antarctica has received little more than superficial study. Despite this, the first detailed study of a single locality on the Antarctic Peninsula reported previously unanticipated levels of species richness, biomass and diversity in cryptic intertidal habitats. The current study extends the coverage achieved from this single locality. The intertidal zone at sites in the Scotia Arc, the Falkland Islands and the Antarctic Peninsula was investigated. At all the study sites selected, a wide range of macrofauna was found inhabiting the littoral fringe. These communities, although generally cryptic and occupying predominantly the undersides of boulders and protected interstices, at some locations and sites were rich at multiple taxonomic levels. Across the study locations species richness in the intertidal zone ranged from 7 to 30 species. The highest species richness and diversity were found at high latitude localities, which experienced the highest physical disturbance due to ice scour, and appeared superficially to be denuded of life. Species assemblages varied with latitude with Adelaide Island having a high proportion of bryozoans relative to all other localities.  相似文献   

8.
9.
The expression of phenotypic plasticity may differ among life stages of the same organism. Age-dependent plasticity can be important for adaptation to heterogeneous environments, but this has only recently been recognized. Whether age-dependent plasticity is a common outcome of local adaptation and whether populations harbor genetic variation in this respect remains largely unknown. To answer these questions, we estimated levels of additive genetic variation in age-dependent plasticity in six species of damselflies sampled from 18 populations along a latitudinal gradient spanning 3600 km. We reared full sib larvae at three temperatures and estimated genetic variances in the height and slope of thermal reaction norms of body size at three points in time during ontogeny using random regression. Our data show that most populations harbor genetic variation in growth rate (reaction norm height) in all ontogenetic stages, but only some populations and ontogenetic stages were found to harbor genetic variation in thermal plasticity (reaction norm slope). Genetic variances in reaction norm height differed among species, while genetic variances in reaction norm slope differed among populations. The slope of the ontogenetic trend in genetic variances of both reaction norm height and slope increased with latitude. We propose that differences in genetic variances reflect temporal and spatial variation in the strength and direction of natural selection on growth trajectories and age-dependent plasticity. Selection on age-dependent plasticity may depend on the interaction between temperature seasonality and time constraints associated with variation in life history traits such as generation length.  相似文献   

10.
Successional processes in forest gaps created by tree falls are often considered a principal mechanism maintaining species diversity within forests. Although insects are important as mediators of forest recovery processes, there have been few observations of how they differ between forest gaps and non-gaps across latitudes. Here we tested the impacts of gap habitat on beetle assemblage composition at three locations spanning sub-tropical and tropical biomes (28°S, 16°S, 5°N: Lamington and Daintree in Australia, and Danum in Borneo). Beetles were collected by flight interception traps and sorted to family and feeding guilds. Despite clear differences in environmental conditions between gaps and non-gaps at all three location, we found weak and inconsistent differences in beetle family and feeding guild composition across a latitudinal gradient. PERMANOVA results showed no significant differences in beetle family and feeding guild composition between gaps and non-gaps. For beetle families, however, the interaction effect (between gap vs. non-gap treatment and location) was significant. Post-hoc analysis and NMDS ordinations showed significant and clear separation of family assemblages between gaps and non-gaps within the Danum samples but not within samples from either the Lamington or Daintree sites. Using IndVal, when all three locations were combined, Chrysomelidae and Tenebrionidae were found to be indicators for gaps and Scarabaeinae and Leiodidae for non-gaps. Analysed separately, gap indicators were only Chrysomelidae at Daintree, whereas non-gap indicators were Scarabaeinae at Lamington, Scarabaeinae, all other Scarabaeidae, Anthicidae, Scydmaeninae, and Hybosoridae at Danum. We suggest the scale of changes in insect composition and richness with the creation of a natural light gap in forests contrast with those resulting from anthropogenic disturbance such as logging and clearing of forests and the greater adaptability of forests to small-scale changes rather than large-scale changes.  相似文献   

11.
A geographically extended model of the dynamics of tree size structure of forests is proposed to simulate the change of forest zonation along latitude in response to global environmental change. To predict the response of forests to global change, it is necessary to construct functional models of forest tree populations. The size-structure-based model requires far less memory and steps of calculation compared with individual-based models, and it is easy to incorporate the dimension of geographic locations into the model to describe large-scale dynamics of forest-type distributions. The effect of increasing size growth rate, expected from increasing atmospheric carbon dioxide, was diminished at the stand-level basal area density, because of regulation by one-sided competition. Model simulations of a century-long global warming at around 3 °C predicted that (1) biomass changed in resident forests rather simultaneously in response to warming, and that (2) there was a considerable time lag in movement at the boundaries of different forest types, particularly under the existence of resident forest types that would be finally replaced. It required several thousand years after a century-long warming spell for forest types to attain new steady-state distributions after shifting. As a consequence, global warming created a zigzag pattern of biomass distribution along a latitudinal gradient, i.e., an increase in the cooler-side boundary of forest types and a decrease in the warmer-side boundary.  相似文献   

12.
The European gypsy moth (Lymantria dispar L.) was first introduced to Massachusetts in 1869 and within 150 years has spread throughout eastern North America. This large‐scale invasion across a heterogeneous landscape allows examination of the genetic signatures of adaptation potentially associated with rapid geographical spread. We tested the hypothesis that spatially divergent natural selection has driven observed changes in three developmental traits that were measured in a common garden for 165 adult moths sampled from six populations across a latitudinal gradient covering the entirety of the range. We generated genotype data for 91,468 single nucleotide polymorphisms based on double digest restriction‐site associated DNA sequencing and used these data to discover genome‐wide associations for each trait, as well as to test for signatures of selection on the discovered architectures. Genetic structure across the introduced range of gypsy moth was low in magnitude (FST = 0.069), with signatures of bottlenecks and spatial expansion apparent in the rare portion of the allele frequency spectrum. Results from applications of Bayesian sparse linear mixed models were consistent with the presumed polygenic architectures of each trait. Further analyses indicated spatially divergent natural selection acting on larval development time and pupal mass, with the linkage disequilibrium component of this test acting as the main driver of observed patterns. The populations most important for these signals were two range‐edge populations established less than 30 generations ago. We discuss the importance of rapid polygenic adaptation to the ability of non‐native species to invade novel environments.  相似文献   

13.
14.
15.
Information about the global distribution of aquatic hyphomycetes is scarce, despite the primary importance of these fungi in stream ecosystem functioning. In particular, the relationship between their diversity and latitude remains unclear, due to a lack of coordinated surveys across broad latitudinal ranges. This study is a first report on latitudinal patterns of aquatic hyphomycete diversity associated with native leaf-litter species in five streams located along a gradient extending from the subarctic to the tropics. Exposure of leaf litter in mesh bags of three different mesh sizes facilitated assessing the effects of including or excluding different size-classes of litter-consuming invertebrates. Aquatic hyphomycete evenness was notably constant across all sites, whereas species richness and diversity, expressed as the Hill number, reached a maximum at mid-latitudes (Mediterranean and temperate streams). These latitudinal patterns were consistent across litter species, despite a notable influence of litter identity on fungal communities at the local scale. As a result, the bell-shaped distribution of species richness and Hill diversity deviated markedly from the latitudinal patterns of most other groups of organisms. Differences in the body-size distribution of invertebrate communities colonizing the leaves had no effect on aquatic hyphomycete species richness, Hill diversity or evenness, but invertebrates could still influence fungal communities by depleting litter, an effect that was not captured by the design of our experiment.  相似文献   

16.
Tripp  Nicole K.  Kabalan  Bana A.  Stoeckel  James  Reisinger  Lindsey S. 《Hydrobiologia》2022,849(16):3565-3579
Hydrobiologia - Species are often exposed to novel thermal regimes as a result of anthropogenic activities. Understanding the extent to which populations are locally adapted to the thermal regime...  相似文献   

17.
This study reports epidermal UV-transmittance in field-grown leaves of ecotypes of six species at three sites along a latitudinal UV-B gradient from Arctic Svalbard, via southern Norway to the French Alps for the years 1999–2001. Unexpectedly, Arctic populations had just as high epidermal UV-screening as alpine populations from lower latitudes. Dryas octopetala was the only species that significantly increased epidermal screening with increasing natural UV-B. Most species, however, showed clear differences in transmittance between years.Under controlled conditions in a growthroom, no ecotypic differences with respect to epidermal UV-B screening were found in Arctic and alpine ecotypes of Oxyria digyna, either in the absence or presence of UV-B radiation. Furthermore, UV-B transmittance in the absence of UV-B radiation in the growthroom was as low (5–6%) as in field-grown plants, indicating a high constitutive screening. Analysis of UV-B-absorbing phenolic compounds in O. digyna displayed no difference between the French Alps and Svalbard ecotypes, while the S. Norway ecotype contained significantly higher amounts of screening compounds. The qualitative analysis showed that the French Alps ecotype had a different composition of flavonoids compared with the two others, and that the ratio between di- and monohydroxylated flavonoids increased from south to north.  相似文献   

18.
Plant Ecology - The decrease in liana diversity with increasing latitude has been indicated as the major physiognomic difference between tropical and temperate forests’ ecosystem. Despite the...  相似文献   

19.
Abstract We investigated the relationship between abundance and body size (body mass) of 162 insect herbivore species on the host plant Acacia falcata along its entire coastal latitudinal distribution (eastern Australia), spanning a gradient in mean annual temperature of 4.3°C. We extend previous research by assessing these relationships at different spatial scales (latitudes pooled, among latitudes and within latitudes) and at different taxonomic levels (insect phytophages pooled, phytophagous Coleoptera and Hemiptera, and five component suborders/superfamilies). Insect species were collected from two orders (Hemiptera and Coleoptera) and five component suborders/superfamilies. There were no consistent trends in the relationships (linear or polygonal/hump‐shaped) between abundance and body mass when latitudes were pooled, among latitudes, or when phytophagous insect species were separated into their component suborder/superfamily groups. The reason for the lack of consistent trends might be due to the insect herbivores not fully exploiting their host plant and the relative absence of competition among herbivore species for food resources. This is further assessed in relation to the lack of a consistent pattern in species richness of Coleoptera and Hemiptera herbivores from the same dataset and rates of chewing and sap‐sucking herbivory along the same latitudinal gradient. Future studies of abundance–body size relationships are discussed in relation to sampling across environmental gradients and accounting for the influence of host plant identity and insect phylogeny.  相似文献   

20.
Ninety-nine length–weight relationships (LWR) were estimated for 70 bentho-demersal fish species captured in four Brazilian estuaries between latitudes 0°S and 25°S. LWR are published for the first time for 13 species. The allometry coefficient ( b ) of the LWR ( W = aTL b ) showed a median of 3.147. Positive allometry was dominant (64 of the 99 species x estuary cases), followed by isometry (28) and negative allometry (7). Twenty-two species were caught in two or more estuaries. In most cases (29 of 33 comparisons), the values of both regression parameters differed significantly among estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号