首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
AFLP genetic maps of Eucalyptus globulus and E. tereticornis   总被引:8,自引:0,他引:8  
 Amplified fragment length polymorphism (AFLP) analysis is a rapid and efficient technique for detecting large numbers of DNA markers in eucalypts. We have used AFLP markers in a two-way pseudo-testcross strategy to generate genetic maps of two clones of different Eucalyptus species (E. tereticornis and E. globulus). Of 606 polymorphic fragments scored, 487 segregated in a 1 : 1 ratio, corresponding to DNA polymorphisms heterozygous in one parent and null in the other. In the maternal E. tereticornis map, 268 markers were ordered in 14 linkage groups (919 cM); the paternal E. globulus map had 200 markers in 16 linkage groups (967 cM). Results from PGRI software were compared with MAPMAKER. The average density of markers was approximately 1 per 3.9 cM. Framework markers were ordered with an average confidence level of 90%, covering 80–100% of the estimated Eucalyptus genome size. In order to investigate the homologies between the E. tereticornis and the E. globulus genetic linkage maps, we included 19 markers segregating 3 : 1 in the analysis. Some homeologous linkage groups were recognized. The linkage data developed in these maps will be used to detect loci controlling commercially important traits. Received: 17 July 1997 / Accepted: 13 October 1997  相似文献   

2.
Fifty new microsatellite loci for the wheat genetic map   总被引:16,自引:0,他引:16  
 Hexaploid bread wheat (Triticum aestivum) has low levels of RFLP. Simple sequence repeats, however, show high levels of polymorphism and are therefore especially useful in intervarietal breeding applications. We present 53 newly mapped microsatellite loci for the wheat genetic map, 41 primary loci and 12 additional loci from these same primer pairs. Markers have been accredited with a quality score on a scale of 1–5 which describes the complexity of the amplification product profile from each primer pair. Received: 29 June 1997 / Accepted: 4 February 1998  相似文献   

3.
A genetic linkage map of durum wheat   总被引:14,自引:6,他引:14  
 A genetic linkage map of tetraploid wheat [Triticum turgidum (L.) Thell.] was constructed using segregation data from a population of 65 recombinant inbred lines (RILs) derived from a cross between the durum wheat cultivar Messapia and accession MG4343 of T. turgidum (L.) Thell. ssp dicoccoides (Korn.) Thell. A total of 259 loci were analysed, including 244 restriction fragment length polymorphisms (RFLPs), one PCR (polymerase chain reaction) marker (a sequence coding for a LMW (low-molecular-weight) glutenin subunit gene located at the Glu-B3 locus), seven biochemical (six seed-storage protein loci and one isozyme locus) and seven morphological markers. A total of 213 loci were mapped at a LOD≥3 on all 14 chromosomes of the A and B genomes. The total length of the map is 1352 cM and the average distance between adjacent markers is 6.3 cM. Forty six loci could not be mapped at a LOD≥3. A fraction (18.6%) of the markers deviated significantly from the expected Mendelian ratios; clusters of loci showing distorted segregation were found on chromosomes 1B, 3AL, 4AL, 6AL and 7AL. The durum wheat map was compared with the published maps of bread wheat using several common RFLP markers and general features are discussed. The markers detected the known structural rearrangements involving chromosomes 4A, 5A and 7B as well as the translocation between 2B-6B, but not the deletion on 2BS. This map provides a useful tool for analysing and breeding economically important quantitative traits and for marker-assisted selection, as well as for studies of genome organisation in small grain cereal species. Received: 5 January 1998 / Accepted: 31 March 1998  相似文献   

4.
 The potential of PCR-based markers for construction of a genetic linkage map in Einkorn wheat was investigated. From a comparison of polymorphisms between two Einkorn wheats, Triticum monococcum (Mn) and T. boeoticum (Bt), we obtained 49 polymorphic bands produced by 33 primers for inter-simple sequence repeat (ISSR) and 36 polymorphic bands shown by 25 combinations of random amplified polymorphic DNA (RAPD) primers for mapping in 66 individuals in the F2 population. Although 44 ISSR fragments and 29 RAPD fragments statistically showed a 3 : 1 segregation ratio in the F2 population, only 9 markers each of the ISSR and RAPD bands were able to be mapped on the RFLP linkage map of Einkorn wheat. ISSR markers were distributed throughout the chromosomes. The mapped positions of the ISSR markers seemed to be similar to those obtained by the RFLP markers. On the other hand, 4 of the 9 RAPD markers could map the RFLP marker-poor region on the short arm of 3Am, suggesting a potential to map novel regions containing repetitive sequences. Comparisons of the genetic linkage map of Einkorn wheat to the linkage map and cytological map of common wheat revealed that the marker orders between the two maps of Einkorn wheat and common wheat coincided except for 4A, which harbors chromosome rearrangements specific for polyploid wheats, indicating a conservatism between the two genomes. Recombinations in Einkorn wheat chromosomes took place more frequently around the centromere and less at the distal part of chromosomes in comparison to those in common wheat. Nevertheless, recombinations even in Einkorn wheat chromosomes were strongly suppressed around the centromere. In fact, the markers located within 1 cM of the centromere were located almost in the central part of the chromosome arm. Received: 7 June 1997 / Accepted: 17 June 1997  相似文献   

5.
An interspecific partial genetic linkage map of Coffea sp. based on 62 backcross hybrids is presented. F1 hybrids were generated by a cross between the wild C. pseudozanguebariae and the anciently cultivated C. liberica var. dewevrei (DEW); progeny were then derived from a backcross between F1 hybrid and DEW. The map construction consisted of a two-step strategy using 5.5 and 3.1 LOD scores revealed by simulation file. The map consisted of 181 loci: 167 amplified fragment length polymorphism (AFLP) and 13 random fragment length polymorphism (RFLP) loci. The markers were assembled into 14 linkage groups, each with 4–31 markers covering 1,144 cM. Segregation distortion was observed for 30% of all loci, in particular 3:1 and 1:3 ratios equally favouring each of the two parents. The existence of such ratios suggests genetic conversion events. This map also represents an initial step towards the detection of quantitative trait loci. Received: 4 Janaury 2000 / Accepted: 17 January 2000  相似文献   

6.
 We have constructed a genetic linkage map within the cultivated gene pool of cowpea (2n=2x=22) from an F8 recombinant inbred population (94 individuals) derived from a cross between the inbreds IT84S-2049 and 524B. These breeding lines, developed in Nigeria and California, show contrasting reactions against several pests and diseases and differ in several morphological traits. Parental lines were screened with 332 random RAPD decamers, 74 RFLP probes (bean, cowpea and mung bean genomic DNA clones), and 17 AFLP primer combinations. RAPD primers were twice as efficient as AFLP primers and RFLP probes in detecting polymorphisms in this cross. The map consists of 181 loci, comprising 133 RAPDs, 19 RFLPs, 25 AFLPs, three morphological/classical markers, and a biochemical marker (dehydrin). These markers identified 12 linkage groups spanning 972 cM with an average distance of 6.4 cM between markers. Linkage groups ranged from 3 to 257 cM in length and included from 2 to 41 markers, respectively. A gene for earliness was mapped on linkage group 2. Seed weight showed a significant association with a RAPD marker on linkage group 5. This map should facilitate the identification of markers that “tag” genes for pest and disease resistance and other traits in the cultivated gene pool of cowpea. Received: 16 September 1996 / Accepted: 25 April 1997  相似文献   

7.
Genetic linkage map in sour cherry using RFLP markers   总被引:6,自引:0,他引:6  
 Restriction fragment length polymorphism (RFLP) linkage maps of two tetraploid sour cherry (Prunus cerasus L., 2n=4x=32) cultivars, Rheinische Schattenmorelle (RS) and Erdi Botermo (EB), were constructed from 86 progeny from the cross RS×EB. The RS linkage map consists of 126 single-dose restriction fragment (SDRF, Wu et al. 1992) markers assigned to 19 linkage groups covering 461.6 cM. The EB linkage map has 95 SDRF markers assigned to 16 linkage groups covering 279.2 cM. Fifty three markers mapped in both parents were used as bridges between both maps and 13 sets of homologous linkage groups were identified. Homoeologous relationships among the sour cherry linkage groups could not be determined because only 15 probes identified duplicate loci. Fifty nine of the markers on the linkage maps were detected with probes used in other Prunus genetic linkage maps. Four of the sour cherry linkage groups may be homologous with four of the eight genetic linkage groups identified in peach and almond. Twenty one fragments expected to segregate in a 1 : 1 ratio segregated in a 2 : 1 ratio. Three of these fragments were used in the final map construction because they all mapped to the same linkage group. Six fragments exhibited segregation consistent with the expectations of intergenomic pairing and/or recombination. Received: 1 April 1998 / Accepted: 9 June 1998  相似文献   

8.
 A genetic map of Pedunculate oak (Quercus robur) was constructed based on one 5S rDNA, 271 RAPD, ten SCAR, 18 microsatellite, one minisatellite, and six isozyme markers. A total of 94 individuals from a full-sib family was genotyped. Two maps, including 307 markers, were constructed according to the “two-way pseudo-testcross” mapping strategy. Testcross markers segregating in the 1 : 1 ratio were first used to establish separate maternal (893.2 cM, 12 linkage groups) and paternal (921.7 cM, 12 linkage groups) maps. Both maps provided 85–90% genome coverage. Homologies between the male and female linkage groups were then identified based on 74 intercross markers segregating in the 3 : 1, 1 : 2 : 1 and 1 : 1 : 1 : 1 ratios (RAPDs, SCARs, SSRs, 5S rDNA and isozymes) in the hybrid progeny. In each map, approximately 18% of the studied markers showed segregation distortion. More than 60% of the skewed markers were due to an excess of heterozygote genotypes. This map will be used for: (1) studying the molecular organisation of genomic regions involved in inter- and intraspecific differentiation in oaks and (2) identification of QTLs for adaptive traits. Received: 30 January 1998 / Accepted: 12 May 1998  相似文献   

9.
 Amplified fragment length polymorphisms (AFLP) were used to rapidly generate a dense linkage map for pinyon pine (Pinus edulis). The map population consisted of 40 megagametophytes derived from one tree at Sunset Crater, Arizona. A total of 78 primer combinations, each with three to five selective nucleotides, amplified 542 polymorphic markers. Of these, 33 markers showed significant deviation from the expected Mendelian genotypic segregation ratio of 1 : 1, and 164 showed complete linkage with another marker. This resulted in 338 unique markers mapping to 25 linkage groups, each of which ranged from 2 to 22 markers, averaging 80 centiMorgans (cM) in size and covering 2,012 cM (2,200 cM with the inclusion of 25 cM for each of 7 unlinked markers). Pairwise linkage values gave a genome size estimate of 2,390 cM, suggesting comprehensive coverage of the genome. A search for subsets of primer combinations giving the best map coverage found 10 primer combinations which together marked 72% of the linkage map to within 10 cM; an additional 10 primer combinations increased this percentage to 85%. Our map represents an initial step towards the identification of quantitative trait loci associated with pest resistance and water stress in pinyons and will further allow us to examine introgression rates between P. edulis and P. californiarum. Received: 14 October 1997 / Accepted: 29 April 1998  相似文献   

10.
A framework consensus map for rapeseed (Brassica napus L.) was constructed from the integration of three DH mapping populations derived from crosses between or within spring- and winter-type parents. Several sources of genetic markers were used: isozymes, RFLPs, RAPDs, and AFLPs. A total of 992 different markers were mapped to at least one population, of which 540 were included in the consensus map and 253 were common to at least two populations. Markers were distributed over 19 linkage groups, thus reflecting the basic chromosome number of rapeseed and covered 2,429 cM, which was in the mean confidence-interval estimates of genome length (2,127–2,480) cM. Markers were evenly spaced on the entire genome even if, for several linkage groups, both RAPD and AFLP markers were not uniformly distributed. In the population resulting from a cross between two spring lines, a higher recombination rate was observed and a translocation was identified. The consensus approach allowed to map a larger number of markers, to obtain a near-complete coverage of the rapeseed genome, to fill the number of gaps, and to consolidate the linkage groups of the individual maps. Received: 19 July 2000 / Accepted: 31 October 2000  相似文献   

11.
A genetic map of kiwifruit (Actinidia spp.) was constructed using microsatellite and AFLP markers and the pseudo-testcross mapping strategy. (AC)n and (AG)n microsatellite repeats were first isolated from Actinidia chinensis (2n = 2x = 58) enriched genomic libraries and tested for segregation in the interspecific cross between the diploid distantly related species A. chinensis and A. callosa. Some 105 microsatellite loci of the 251 initially tested segregated in the progeny in a 1:1 ratio as in a classical backcross, or in a ratio which could mimic the backcross, and were mapped using 94 individuals. AFLP markers were then produced using MseI and EcoRI restriction enzymes and 15 primer combinations. Nearly 10% of loci showed a distorted segregation at α = 0.05, and only 4% at α = 0.01, irrespectively to the marker class. Two linkage maps were produced, one for each parent. The female map had 203 loci, of which 160 (71 SSR and 89 AFLP) constituted the framework map at a LOD score ≥ 2.0. The map was 1,758.5 cM(K) long, covering 46% of the estimated genome length. The male map had only 143 loci, of which 116 (28 SSR, 87 AFLP and the sex determinant) constituted the framework map. The map length was only 1,104.1 cM(K), covering 34% of the estimate genome length. Only 35 SSR loci were mapped in the male parent because 18% of SSR loci that were characterised did not amplify in A. callosa, and 48% were homozygous. The choice of parents in the pseudo-testcross is critically discussed. The sex determinant was mapped in A. callosa. Received: 27 July 2000 / Accepted: 31 October 2000  相似文献   

12.
An RFLP linkage map of Upland cotton, Gossypium hirsutum L.   总被引:15,自引:0,他引:15  
 Ninety-six F2.F3 bulked sampled plots of Upland cotton, Gossypium hirsutum L., from the cross of HS46×MARCABUCAG8US-1-88, were analyzed with 129 probe/enzyme combinations resulting in 138 RFLP loci. Of the 84 loci that segregated as co-dominant, 76 of these fit a normal 1 :  2 : 1 ratio (non-significant chi square at P=0.05). Of the 54 loci that segregated as dominant genotypes, 50 of these fit a normal 3: 1 ratio (non-significant chi square at P=0.05). These 138 loci were analyzed with the MAPMAKER∖ EXP program to determine linkage relationships among them. There were 120 loci arranged into 31 linkage groups. These covered 865 cM, or an estimated 18.6% of the cotton genome. The linkage groups ranged from two to ten loci each and ranged in size from 0.5 to 107 cM. Eighteen loci were not linked. Received: 31 March 1998 / Accepted: 29 April 1998  相似文献   

13.
An improved genetic map of diploid (2n=2x=16) alfalfa has been developed by analyzing the inheritance of more than 800 genetic markers on the F2 population of 137 plant individuals. The F2 segregating population derived from a self-pollinated F1 hybrid individual of the cross Medicago sativa ssp. quasifalcata ×Medicago sativa ssp. coerulea. This mapping population was the same one which had been used for the construction of our previous alfalfa genetic map. The genetic analyses were performed by using maximum-likelihood equations and related computer programs. The improved genetic map of alfalfa in its present form contains 868 markers (four morphological, 12 isozyme, 26 seed protein, 216 RFLP, 608 RAPD and two specific PCR markers) in eight linkage groups. Of the markers 80 are known genes, including 2 previously cytologically localized genes, the rDNA and the β-tubulin loci. The genetic map covers 754 centimorgans (cM) with an average marker density of 0.8/cM. The correlation between the physical and genetic distances is about 1000–1300 kilobase pairs per centiMorgan. In this map, the linkage relationships of some markers on linkage groups 6, 7, and 8 are different from the previously published one. The cause of this discrepancy was that the genetic linkage of markers displaying distorted segregation (characterized by an overwhelming number of heterozygous individuals) had artificially linked genetic regions that turned out to be unlinked. To overcome the disadvantageous influence of the excess number of heterozygous genotypes on the recombination fractions, we used recently described maximum-likelihood formulas and colormapping, which allowed us to exclude the misleading linkages and to estimate the genetic distances more precisely. Received: 19 October 1998 / Accepted: 15 April 1999  相似文献   

14.
 Seventy nine microsatellite markers from hexaploid bread wheat (T. aestivum L.) were integrated into a genetic linkage map of durum wheat (T. turgidum ssp. durum (Desf.) Huns.) created by RFLP segregation data from a population of 65 recombinant inbred lines. The results indicate a relatively even distribution of microsatellite loci and demonstrate that microsatellite markers from hexaploid wheat provide an excellent source of molecular markers for use in the genetics and breeding of durum wheat. Received: 16 July 1998 / Accepted: 13 October 1998  相似文献   

15.
A genetic map of Maritime pine based on AFLP, RAPD and protein markers   总被引:12,自引:0,他引:12  
TheAFLP (amplified fragment length polymorphism) technique was adapted to carry out genetic analysis in maritime pine, a species characterized by a large genome size (24 pg/C). A genetic linkage map was constructed for one F1 individual based on 239 AFLP and 127 RAPD (randomly amplified polymorphic DNA) markers. Markers were scored on megagametophytes (1n) from 200 germinated F2 seedlings. Polymorphism rate, labour time and cost of both AFLP and RAPD techniques were compared. The AFLP technique was found to be twice as fast and three-times less costly per marker than the RAPD technique. Thirteen linkage groups were identified with a LOD score ≥6 covering 1873 cM, which provided 93.4% of genome coverage. Proteins were extracted from needles (2n) of the F2 progeny and revealed by 2-DE (two-dimensional electrophoresis). Thirty one segregating proteins were mapped using a QTL detection strategy based on the quantification of protein accumulation. Two framework maps of the same F1 individual are now available. The first map (Plomion et al. 1996) uses RAPD markers and the second map, presented in this study, uses mostly AFLP markers. Although the total genetic length of both maps was almost identical, differences among homologous groups were observed. Received: 11 February 1999 / Accepted: 29 April 1999  相似文献   

16.
Construction of an RFLP linkage map for cultivated sunflower   总被引:5,自引:0,他引:5  
 An RFLP linkage map was constructed for cultivated sunflower Helianthus annuus L., based on 271 loci detected by 232 cDNA probes. Ninety-three F2 plants of a cross between inbred lines RHA 271 and HA 234 were used as the mapping population. These genetic markers plus a fertility restoration gene, Rf 1, defined 20 linkage groups, covering 1164 cM of the sunflower genome. Of the 71 loci 202 had codominant genotypic segregation, with the rest showing dominant segregation. Thirty-two of the 232 probes gave multiple locus segregation. There were 39 clusters of tightly linked markers with 0 cM distance among loci. This map has an average marker-to-marker distance of 4.6 cM, with 11 markerless regions exceeding 20 cM. Received: 17 June 1997 / Accepted: 19 June 1997  相似文献   

17.
Molecular linkage mapping in rye (Secale cereale L.)   总被引:3,自引:0,他引:3  
A rye linkage map containing clones from rye, wheat, barley, oat and rice genomic and cDNA libraries, known-function genes and microsatellite markers, was created using an F2 population consisting of 110 F2-derived F3 families. Both co-dominant and dominant markers were added to the map. Of all probes screened, 30.8% were polymorphic, and of those polymorphic 79.3% were mapped. The current map contains 184 markers present in all seven linkage groups covering only 727.3 cM. This places a marker about every 3.96 cM on average throughout the map; however, large gaps are still present. The map contains 60 markers that have been integrated from previous rye maps. Surprisingly, no markers were placed between the centromere and C1–1RS in the short arm of 1R. The short arm of chromosome 4 also lacked an adequate number of polymorphic markers. The population showed a remarkable degree of segregation distortion (72.8%). In addition, the genetic distance observed in rye was found to be very different among the maps created by different mapping populations. Received: 10 January 2000 / Accepted: 26 May 2000  相似文献   

18.
An integrated genetic linkage map of avocado   总被引:5,自引:0,他引:5  
 An avocado genomic library was screened with various microsatellite repeats. (A/T)n and (TC/AG)n sequences were found to be the most frequent repeats. One hundred and seventy-two positive clones were sequenced successfully of which 113 were found to contain simple sequence repeats (SSR). Polymerase chain reaction primers were designed to the regions flanking the SSR in 62 clones. A GenBank search of avocado DNA sequences revealed 1 sequence containing a (CT)10 repeat. A total of 92 avocado-specific SSR markers were screened for polymorphism using 50 offspring of a cross between the avocado cultivars ‘Pinkerton’ and ‘Ettinger’. Both are standard avocado cultivars which are normally outcrossed and highly heterozygous. Fifty polymorphic SSR loci, 17 random amplified polymorphic DNA (RAPD) and 23 minisatellite DNA Fingerprint (DFP) bands were used to construct the avocado genetic map. The resulting data were analyzed with various mapping programs in order to assess which program best accommodated data from progeny of heterozygous parents. The analyses resulted in 12 linkage groups with 34 markers (25 SSRs, 3 RAPDs and 6 DFP bands) covering 352.6 cM. This initial map can serve as a basis for developing a detailed genomic map and for detection of linkage between markers and quantitative trait loci. Received: 2 April 1996 / Accepted: 28 February 1997  相似文献   

19.
Inter-simple sequence repeat (ISSR) analysis was evaluated for its usefulness in generating markers to extend the genetic linkage map of Citrus using a backcross population previously mapped with restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD) and isozyme markers. ISSR markers were obtained through the simple technique of PCR followed by analysis on agarose gels, using simple sequence repeat (SSR) primers. Optimization of reaction conditions was achieved for 50% of the SSR primers screened, and the primers amplified reproducible polymorphic bands in the parents and progeny of the backcross population. Mendelian segregation of the polymorphic bands was demonstrated, with an insignificant number of skewed loci. Most of the SSR primers produced dominant loci; however co-dominance was observed with loci derived from three primers. A new genetic map was produced by combining the segregation data for the ISSR markers and data for the RFLP, RAPD and isozyme markers from the previous map and creating genetic linkages among all the markers using JoinMap 2.0 mapping software. The new map has an improved distribution of markers along the linkage groups with fewer gaps, and marker order showed partial or complete conservation in the linkage groups. The incorporation of ISSR markers into the genetic linkage map demonstrates that ISSR markers are suitable for genetic mapping in Citrus. Received: 3 February 2000 / Accepted: 12 May 2000  相似文献   

20.
 Quantitative traits, including juvenile growth, flower bearing and rooting ability, of a woody plant species, Cryptomeria japonica D. Don, were analyzed in a three-generation pedigree with 73 F2 progenies using a linkage map with 85 genetic markers (72 RFLP, 11 RAPD, one isozyme and one morphological loci). A cluster of quantitative trait loci (QTLs) related to juvenile growth and female flower bearing was detected on linkage group 2. Some of the influence of this cluster could be attributed to pleiotropic effects of a dwarf locus located in its vicinity. QTLs related to male and female flower bearing were detected at different locations and showed different effects from each other, suggesting that the genetic systems controlling male and female flowering are different. No large QTL affecting rooting ability was detected in the material analyzed in this study. Received: 15 December 1997 / Accepted: 4 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号