首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Plants influence soil carbon (C) formation through the quality and quantity of C released to soil. Soil type, in turn can modify a plant’s influence on soil through effects on plant production, tissue quality and regulation of soil C decomposition and stabilization. Wild-type aspen and three transgenic aspen lines expressing reduced stem lignin concentrations and/or increased syringyl (S) to guaiacyl (G) ratio lignin were grown in greenhouse mesocosms containing a sandy loam, a silt loam, or a clay loam soil for 6 months in order to examine the effects of altered lignin biosynthesis and soil type on biomass partitioning (above vs. belowground) and soil C processes. Results indicated that soil type significantly affected plant performance. Aspen grown in soils with high sand/low clay content accumulated the most total biomass, while aspen grown in soils with high clay content accumulated the least total biomass. These reductions in growth combined with specific soil characteristics led to differences among soil types in soil C formation. Transformed aspen expressing high syringyl/guaiacyl (S/G) lignin accumulated less total plant C and subsequently accumulated less aspen derived C in soil. Reduced lignin content alone in aspen did not affect plant growth or soil C formation. There were significant soil type × genetic line interactions indicating that growth and soil C formation for transgenic and wild type aspen lines varied among the different soil types. Given these interactions, future investigation needs to include long-term field studies across a range of soil types before transgenic aspen are widely planted.  相似文献   

2.
3.
The development and use of transgenic plants has steadily increased, but there are still little data about the responses of soil microorganisms to these genetic modifications. We utilized a greenhouse trial approach to evaluate the effects of altered stem lignin in trembling aspen (Populus tremuloides) on soil microbial communities in three soils which differed in their chemical and physical properties; they included a sandy loam (CO-Colorado), a silt loam (KS-Kansas), and a clay loam (TX-Texas). Three transgenic aspen lines were developed from a natural clone common to the Great Lakes region of North America. The concentrations of stem lignin concentrations were reduced by 35% (Line 23), 40% (Line 141) and 50% (Line 72). Line 72 and Line 141 also had a 40 and 20% increase in syringyl-type stem lignin, respectively. Indirectly, these modifications resulted in increased (5–13%) and decreased (−5 to −57%) levels of root production across the lines and soil types. Responses of the soil microbial communities were investigated using: phospholipid fatty acids (PLFA), neutral lipid fatty acids (NLFA), and 3) extracellular enzyme assays. PLFA analyses indicated that there were large differences in microbial community composition between the three soils. Similarly, there were large differences in total NLFA between soils, with the KS soils having the highest amount and CO the lowest. Enzyme activities did not differ between soils, except for cellubiohydrolase, which was highest in CO soil. Across all three soils, responses to the four genetic lines were not consistent. Interactions between soil type and genetic line make it difficult to assess the potential ecological impacts of transgenic aspen on soil microbial communities and their associated functions. Given these interactions, field trials with transgenic aspen should encompass the wide range of soils targeted for commercial planting in order to determine their effect(s) on the resident soil microbial community. Responsible Editor: Barbara Wick  相似文献   

4.
Ferulate 5-hydroxylase (F5H) is a cytochrome P450-dependent monooxygenase that catalyses the hydroxylation of ferulic acid, coniferaldehyde and coniferyl alcohol in the pathways leading to sinapic acid and syringyl lignin biosynthesis. Earlier studies in Arabidopsis have demonstrated that F5H over-expression increases lignin syringyl monomer content and abolishes the tissue-specificity of its deposition. To determine whether this enzyme has a similar regulatory role in plants that undergo secondary growth, we over-expressed the F5H gene in tobacco and poplar. In tobacco, over-expression of F5H under the control of the cauliflower mosaic virus 35S promoter increased lignin syringyl monomer content in petioles, but had no detectable effect on lignification in stems. By contrast, when the cinnamate 4-hydroxylase (C4H) promoter was used to drive F5H expression, there was a significant increase in stem lignin syringyl monomer content. Yields of thioglycolic acid and Klason lignin in C4H-F5H lines were lower than in the wild-type, suggesting that F5H over-expression leads to a reduced deposition or an altered extractability of lignin in the transgenic plants. Histochemical analysis suggested that the novel lignin in C4H-F5H transgenic lines was altered in its content of hydroxycinnamyl aldehydes. Transgenic poplar trees carrying the C4H-F5H transgene also displayed enhanced lignin syringyl monomer content. Taken together, these data show that hydroxylation of guaiacyl-substituted lignin precursors controls lignin monomer composition in woody plants, and that F5H over-expression is a viable metabolic engineering strategy for modifying lignin biosynthesis in forest species.  相似文献   

5.
6.
Sucrose synthase (SuSy) is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines grew taller than the wildtype plants. This systematic analysis demonstrated that PsnSuSy2 plays an important role in cleaving sucrose coupled with cellulose biosynthesis in wood tissue.  相似文献   

7.
A key regulator of cambial growth is the plant hormone indoleacetic acid (IAA). Here we report on altered wood characteristics and growth patterns in transgenic hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) expressing Agrobacterium tumefaciens T-DNA IAA-biosynthetic iaaM and iaaH genes. Eighteen lines simultaneously expressing both genes were regenerated. Of these, four lines, verified to be transgenic by northern blot analysis, were selected and raised under controlled growth conditions. All four lines were affected in their growth patterns, including alterations in height and stem diameter growth, internode elongation, leaf enlargement, and degree of apical dominance. Two transgenic lines, showing the most distinct phenotypic deviation from the wild type, were characterized in more detail for free and conjugated IAA levels and for wood characteristics. Both lines showed an altered IAA balance, particularly in mature leaves and roots where IAA levels were elevated. They also exhibited changes in wood anatomy, most notably a reduction in vessel size, an increase in vessel density, and changes in ray development. Thus, the recent development of techniques for gene transfer to forest trees enabled us to investigate the influence of an altered IAA balance on xylem development in an intact experimental system. In addition, the results demonstrate the possibility of manipulating wood properties in a forest tree through controlled changes of IAA concentration and distribution.  相似文献   

8.
9.
Transgenic poplars (Populus tremula x Populus alba) were obtained by introduction of a sense homologous transgene encoding caffeic acid O-methyltransferase (COMT) under the control either of the cauliflower mosaic virus double 35S promoter or of the eucalyptus cinnamyl alcohol dehydrogenase promoter. Although these constructs conferred a moderate overexpression of COMT in some lines, a transgenic line with the double 35S promoter was found where COMT activity in woody tissues was close to zero due to a gene-silencing phenomenon. For the first time in COMT down-regulated trees, this alteration substantially reduced lignin level in 6-month-old trees (17% decrease). Lignin structure was found to be strongly altered, with a two times higher content in condensed bonds, an almost complete lack of syringyl units, and the incorporation of 5-hydroxyguaiacyl units to the most remarkable extent reported so far. Consistent with the higher cellulose content and with the higher condensation degree of the lignin, the impact of the transformation on the kraft-pulping performances of the poplar trees positively affected the pulp yield (10% relative increase), but made lignins less amenable to industrial degradations.  相似文献   

10.
We analyzed lignin content and composition in transgenic tobacco (Nicotiana tabacum) lines altered in the expression of the early phenylpropanoid biosynthetic enzymes L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase (C4H). The reduction of C4H activity by antisense expression or sense suppression resulted in reduced levels of Klason lignin, accompanied by a decreased syringyl/guaiacyl monomer ratio as determined by pyrolysis gas chromatography/mass spectrometry Similar reduction of lignin levels by down -regulation of L-phenylalanine ammonia-lyase, the enzyme preceding C4H in the central phenylpropanoid pathway, did not result in a decreased syringyl/guaiacyl ratio. Rather, analysis of lignin methoxyl content and pyrolysis suggested an increased syringyl/guaiacyl ratio. One possible explanation of these results is that monolignol biosynthesis from L-phenylalanine might occur by more than one route, even at the early stages of the core phenylpropanoid pathway, prior to the formation of specific monolignol precursors.  相似文献   

11.
It is generally accepted that peroxidases catalyze the final step in the biosynthesis of lignin. In this study, to examine how expression of prxA3a, a gene for an anionic peroxidase, might be related to lignification in plant tissues, we produced transgenic tobacco plants that harbored a gene for β-glucuronidase (GUS) fused to the prxA3a promoter. Histochemical staining for GUS activity indicated that the prxA3a promoter was active mainly in the lignifying cells of stem tissues. Further, to examine the effects of suppressing the expression of prxA3a, we transferred an antisense prxA3a gene construct into the original host, hybrid aspen (Populus sieboldii ×P. gradidentata), under the control of the original promoter of the prxA3a gene. Eleven transformed aspens were obtained and characterized, and the stable integration of the antisense construct was confirmed by PCR and Southern blotting analysis in all these lines. Assays of enzymatic activity showed that both total peroxidase activity and acidic peroxidase activity were lower in most transgenic lines than in the control plants. In addition, the reduction of peroxidase activity was associated with lower lignin content and modified lignin composition. Transgenic lines with the highest reduction of peroxidase activity displayed a higher syringyl/vanillin (S/V) ratio and a lower S+V yield, mainly because of a decreased amount of V units. Thus, our results indicate that prxA3a is involved in the lignification of xylem tissue and that the down-regulation of anionic peroxidase alters both lignin content and composition in hybrid aspen.  相似文献   

12.
Because lignin limits the use of wood for fiber, chemical, and energy production, strategies for its downregulation are of considerable interest. We have produced transgenic aspen (Populus tremuloides Michx.) trees in which expression of a lignin biosynthetic pathway gene Pt4CL1 encoding 4-coumarate:coenzyme A ligase (4CL) has been downregulated by antisense inhibition. Trees with suppressed Pt4CL1 expression exhibited up to a 45% reduction of lignin, but this was compensated for by a 15% increase in cellulose. As a result, the total lignin-cellulose mass remained essentially unchanged. Leaf, root, and stem growth were substantially enhanced, and structural integrity was maintained both at the cellular and whole-plant levels in the transgenic lines. Our results indicate that lignin and cellulose deposition could be regulated in a compensatory fashion, which may contribute to metabolic flexibility and a growth advantage to sustain the long-term structural integrity of woody perennials.  相似文献   

13.
Rising atmospheric [CO2] has the potential to alter soil carbon (C) cycling by increasing the content of recalcitrant constituents in plant litter, thereby decreasing rates of decomposition. Because fine root turnover constitutes a large fraction of annual NPP, changes in fine root decomposition are especially important. These responses will likely be affected by soil resource availability and the life history characteristics of the dominant tree species. We evaluated the effects of elevated atmospheric [CO2] and soil resource availability on the production and chemistry, mycorrhizal colonization, and decomposition of fine roots in an early- and late-successional tree species that are economically and ecologically important in north temperate forests. Open-top chambers were used to expose young trembling aspen (Populus tremuloides) and sugar maple (Acer saccharum) trees to ambient (36 Pa) and elevated (56 Pa) atmospheric CO2. Soil resource availability was composed of two treatments that bracketed the range found in the Upper Lake States, USA. After 2.5 years of growth, sugar maple had greater fine root standing crop due to relatively greater allocation to fine roots (30% of total root biomass) relative to aspen (7% total root biomass). Relative to the low soil resources treatment, aspen fine root biomass increased 76% with increased soil resource availability, but only under elevated [CO2]. Sugar maple fine root biomass increased 26% with increased soil resource availability (relative to the low soil resources treatment), and showed little response to elevated [CO2]. Concentrations of N and soluble phenolics, and C/N ratio in roots were similar for the two species, but aspen had slightly higher lignin and lower condensed tannins contents compared to sugar maple. As predicted by source-sink models of carbon allocation, pooled constituents (C/N ratio, soluble phenolics) increased in response to increased relative carbon availability (elevated [CO2]/low soil resource availability), however, biosynthetically distinct compounds (lignin, starch, condensed tannins) did not always respond as predicted. We found that mycorrhizal colonization of fine roots was not strongly affected by atmospheric [CO2] or soil resource availability, as indicated by root ergosterol contents. Overall, absolute changes in root chemical composition in response to increases in C and soil resource availability were small and had no effect on soil fungal biomass or specific rates of fine root decomposition. We conclude that root contributions to soil carbon cycling will mainly be influenced by fine root production and turnover responses to rising atmospheric [CO2], rather than changes in substrate chemistry.  相似文献   

14.
Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry.  相似文献   

15.
S-Adenosyl-L-methionine-dependent caffeate O-methyltransferase (COMT, EC 2.1.1.6) has traditionally been thought to catalyze the methylation of caffeate and 5- hydroxyferulate for the biosynthesis of syringyl monolignol, a lignin constituent of angiosperm wood that enables efficient lignin degradation for cellulose production. However, recent recognition that coniferyl aldehyde prevents 5-hydroxyferulate biosynthesis in lignifying tissue, and that the hydroxylated form of coniferyl aldehyde, 5-hydroxyconiferyl aldehyde, is an alternative COMT substrate, demands a re-evaluation of the role of COMT during monolignol biosynthesis. Based on recombinant aspen (Populus tremuloides) COMT enzyme kinetics coupled with mass spectrometry analysis, this study establishes for the first time that COMT is in fact a 5-hydroxyconiferyl aldehyde O-methyltransferase (AldOMT), and that 5-hydroxyconiferyl aldehyde is both the preferred AldOMT substrate and an inhibitor of caffeate and 5-hydroxyferulate methylation, as measured by K(m) and K(i) values. 5-Hydroxyconiferyl aldehyde also inhibited the caffeate and 5-hydroxyferulate methylation activities of xylem proteins from various angiosperm tree species. The evidence that syringyl monolignol biosynthesis is independent of caffeate and 5-hydroxyferulate methylation supports our previous discovery that coniferyl aldehyde prevents ferulate 5-hydroxylation and at the same time ensures a coniferyl aldehyde 5-hydroxylase (CAld5H)-mediated biosynthesis of 5-hydroxyconiferyl aldehyde. Together, our results provide conclusive evidence for the presence of a CAld5H/AldOMT-catalyzed coniferyl aldehyde 5-hydroxylation/methylation pathway that directs syringyl monolignol biosynthesis in angiosperms.  相似文献   

16.
To improve the digestibility of the forage crop alfalfa (Medicago sativa L.), cinnamyl alcohol dehydrogenase (CAD), which catalyses the last step in the biosynthesis of the lignin monomers, was down-regulated by using an antisense approach. A subset of six transgenic lines with reduced CAD activity and control lines were analysed when grown in the greenhouse and in the field. The down-regulation of the CAD enzyme was associated with a red coloration of the stem. The lignin quantity remained unchanged, but the lignin composition, as determined by thioacidolysis, was altered. The highest reduction of CAD activity was associated with a lower syringyl/guaiacyl (S/G) ratio and a lower S+G yield, mainly because of a decreased amount of S units. An increase in in situ disappearance of dry matter and of cell wall residue was detected in one of the transgenic lines grown in the greenhouse, and for two of the lines grown in the field the rate of disappearance of dry matter slightly improved. Furthermore, these two lines had a higher solubility in alkali as shown by the lower yield of saponified residue. This study opens perspectives for improving forage crop digestibility by the modulation of enzymes involved in lignin biosynthesis.  相似文献   

17.
In many annual plant species, transgene inactivation occurs most often when multiple incomplete/complete copies of the transgene are present in a genome. The expression of single-copy transgene loci may also be negatively influenced by the flanking plant DNA and/or chromosomal location (position effect). To understand transgene silencing in a long-lived tree system, we analyzed several wild (Populus tremula L.) and hybrid (P. tremula L. x P. tremuloides Michx.) aspen lines transgenic to the rolC phenotypical marker system and grown under in vitro, greenhouse and field conditions. The morphological features of the 35S-rolC gene construct were used to screen lines with altered transgene expression, which was later confirmed by Northern experiments. Molecular analyses of hybrid aspen revealed that transgene inactivation was always a consequence of transgene repeats. In wild non-hybrid aspen, however, multiple-insertion-based altered or loss of rolC expression was observed only in three out of six lines showing transgene inactivation. Sequencing analysis revealed AT-rich patches at the transgene flanking genomic regions of some of the wild aspen transgenic lines. One wild aspen line showing variable rolC expression revealed characteristic integration of the transgene into genomic regions containing a high AT content (85% or more). In the remaining two wild aspen transgenic lines unstable for rolC expression, single-copy integration and non-AT-rich or repeat-free transgene flanking regions were found. A partial suppression of rolC was observed in some plants of one of the field-grown wild aspen transgenic lines. In the other wild aspen transgenic line an additional mutant phenotype along with transgene inactivation was found. This indicates that the host genome has some control over expression of a transgene, and the possible role of AT-rich regions in defense against foreign DNA.  相似文献   

18.
Transgenic silver birch (Betula pendula Roth) lines were produced in order to modify lignin biosynthesis. These lines carry COMT (caffeate/5-hydroxyferulate O-methyltransferase) gene from Populus tremuloides driven by constitutive promoter 35S CaMV (cauliflower mosaic virus) or UbB1 (ubiquitin promoter from sunflower). The decreased syringyl/guaiacyl (S/G) ratio was found in stem and leaf lignin of 35S CaMV-PtCOMT transgenic silver birch lines when compared to non-transformed control or UbB1–PtCOMT lines. In controlled feeding experiments the leaves of transgenic birch lines as well as controls were fed to insect herbivores common in boreal environment, i.e., larvae of Aethalura punctulata, Cleora cinctaria and Trichopteryx carpinata (Lepidoptera: Geometridae) as well as the adults of birch leaf-feeding beetles Agelastica alni (Coleoptera: Chrysomelidae) and Phyllobius spp. (Coleoptera: Curculionidae). The feeding preferences of these herbivores differed in some cases among the tested birch lines, but these differences could not be directly associated to lignin modification. They could as well be explained by other characteristics of leaves, either natural or caused by transgene site effects. Growth performance of lepidopteran larvae fed on transgenic or control leaves did not differ significantly.  相似文献   

19.
Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT) methylates, in vitro, caffeoyl-CoA and 5-hydroxyferuloyl-CoA, two possible precursors in monolignol biosynthesis in vivo. To clarify the in vivo role of CCoAOMT in lignin biosynthesis, transgenic poplars with 10% residual CCoAOMT protein levels in the stem xylem were generated. Upon analysis of the xylem, the affected transgenic lines had a 12% reduced Klason lignin content, an 11% increased syringyl/guaiacyl ratio in the noncondensed lignin fraction, and an increase in lignin-attached p-hydroxybenzoate but otherwise a lignin composition similar to that of wild type. Stem xylem of the CCoAOMT-down-regulated lines had a pink-red coloration, which coincided with an enhanced fluorescence of mature vessel cell walls. The reduced production of CCoAOMT caused an accumulation of O(3)-beta-d-glucopyranosyl-caffeic acid, O(4)-beta-d-glucopyranosyl-vanillic acid, and O(4)-beta-d-glucopyranosyl-sinapic acid (GSA), as authenticated by (1)H NMR. Feeding experiments showed that O(3)-beta-d-glucopyranosyl-caffeic acid and GSA are storage or detoxification products of caffeic and sinapic acid, respectively. The observation that down-regulation of CCoAOMT decreases lignin amount whereas GSA accumulates to 10% of soluble phenolics indicates that endogenously produced sinapic acid is not a major precursor in syringyl lignin biosynthesis. Our in vivo results support the recently obtained in vitro enzymatic data that suggest that the route from caffeic acid to sinapic acid is not used for lignin biosynthesis.  相似文献   

20.
Kaldorf M  Fladung M  Muhs HJ  Buscot F 《Planta》2002,214(4):653-660
Mycorrhizal colonization of genetically modified hybrid aspen (Populus tremula x P. tremuloides Michx.) was investigated over 15 months in a field experiment. The aspen carried the rolC gene from Agrobacterium rhizogenes under control of either the constitutive cauliflower mosaic virus 35S promoter or the light-inducible rbcS promoter. Arbuscular mycorrhizas (AMs) were rare in all root samples, while fully developed ectomycorrhizas (EMs) were found in all samples. No significant differences in the degree of mycorrhizal colonization between aspen lines were seen with either AMs or EMs. The EM community on the release area was dominated by four fungal species that formed more than 90% of all mycorrhizas, while eleven EM types were found occasionally. Mycorrhizal diversity did not differ between transgenic and non-transgenic trees. The structure of mycorrhizal communities was similar for most aspen lines. The sole significant difference was found in the abundance and development of one of the four common EM morphotypes, which was rare and poorly developed on roots from the transgenic aspen line Esch5:35S-rolC-#5 compared with non-transgenic controls. This effect is clone specific as the formation of this EM type was not affected by the transgene expression in the other transgenic line, Esch5:35S-rolC-#1. This is the first demonstration of a clonal effect influencing the ability of a transgenic plant to form a mycorrhizal symbiosis with a potential fungal partner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号