首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Open-water, marginal-ice and in-ice zones were sampled in the Weddell Sea during November and December, 1993 in an effort to examine the influence of the early spring bloom on the diet and population structure of the three biomass dominant copepods: Metridia gerlachei, Calanus propinquus, and Calanoides acutus. The abundance of all three species in the upper 200 m was highest at stations in the open water, but individually, each species displayed a unique trend. M. gerlachei, which showed the least variability, was significantly more abundant in open water than in the marginal-ice zone. The abundance of Calanus propinquus was higher in open water than in the marginal-ice zone or in the ice. Calanoides acutus displayed the highest variability, with significant differences between all three ice-cover zones. Diet analysis revealed no significant differences in the number of food items within each ice-cover zone and diatoms were the most numerous item identified in the guts of all three species. However, M. gerlachei and Calanus propinquus also contained metazoan material, while Calanoides acutus did not. There were dramatic differences in the age composition of the species between the zones. Early copepodite stages of all three species predominated at the ice edge and in open water. Numbers of M. gerlachei adult females were roughly equivalent in all three zones while Calanoides acutus and Calanus propinquus adult females composed a higher fraction of the total population within the ice. These results compare well with life-history data compiled by other authors and reinforce the importance of the ice edge to bloom-dependent Antarctic zooplankton. Accepted: 5 April 1999  相似文献   

2.
Information on the food and predation of zooplankton species is essential for an improved understanding of zooplankton community dynamics of the Southern Ocean. Feeding of dominant zooplankton species at locations across the neritic, slope and oceanic regions of Prydz Bay, Antarctica, was investigated with incubation experiments during austral spring/summer of 2009/2010 to identify the response of dominant copepods and krill to different feeding environments. Results showed distinct spatial and temporal variations in ingestion and filtration of predominant copepods and krill. In late spring, Calanoides acutus was inactive and the ingestion rate was only 1.30 μgC/ind/day. During early summer, a diatom bloom was in progress at station IS21, showing a peak biomass of Thalassiosira spp. and Fragilaria spp. Daily ingestion rates of Euphausia crystallorophias, C. acutus, Metridia gerlachei and Ctenocalanus citer were relatively high. By contrast, copepod ate predominantly ciliates in slope and oceanic regions where microplankton biomass were lower (<20 μgC/L). During late summer, microplankton of neritic regions, mainly composed of nano-sized Pseudo-nitzschia spp. and ciliates, was less than 10 μgC/L. C. acutus incubated in neritic regions mainly ate ciliates. The total microplankton biomass was lower (<5 μgC/L) and predominated by Pseudo-nitzschia spp. in slope regions north of Fram Bank, and daily ingestion rates of incubated copepods were less than 2.5 μgC/ind. Our results clearly demonstrated that copepods and krill had flexible feeding strategies to cope with temporally and spatially changing food availability in Prydz Bay. Meanwhile, ciliates appeared to represent an important carbon source for zooplankton, especially in regions with lower food concentrations.  相似文献   

3.
The rapid melting of glaciers as well as the loss of sea ice in the Amundsen Sea makes it an ideal environmental setting for the investigation of the impacts of climate change in the Antarctic on the distribution and production of mesozooplankton. We examined the latitudinal distribution of mesozooplankton and their grazing impacts on phytoplankton in the Amundsen Sea during the early austral summer from December 27, 2010 to January 13, 2011. Mesozooplankton followed a latitudinal distribution in relation to hydrographic and environmental features, with copepods dominating in the oceanic area and euphausiids dominating in the polynya. Greater Euphausia crystallorophias biomass in the polynya was associated with lower salinity and higher food concentration (chlorophyll a, choanoflagellates, and heterotrophic dinoflagellates). The grazing impact of three copepods (Rhincalanus gigas, Calanoides acutus, and Metridia gerlachei) on phytoplankton was low, with the consumption of 3 % of phytoplankton standing stock and about 4 % of daily primary production. Estimated daily carbon rations for each of the three copepods were also relatively low (<10 %), barely enough to cover metabolic demands. This suggests that copepods may rely on food other than phytoplankton and that much of the primary production is channeled through microzooplankton. Daily carbon rations for E. crystallorophias were high (up to 49 %) with the grazing impact accounting for 17 % of the phytoplankton biomass and 84 % of primary production. The presence of E. crystallorophias appears to be a critical factor regulating phytoplankton blooms and determining the fate of fixed carbon in the coastal polynyas of the Amundsen Sea.  相似文献   

4.
Summary The zooplankton community in the vicinity of the ice edge in the west central Weddell Sea was investigated in the late austral summer (March 1986). Sampling was done with two ships operating concurrently, one in the pack ice and the other in the adjcent open sea. Metazoan microzooplankton (<1 mm) was most abundant in the epipelagic zone. It consisted mostly of copepod nauplii and copepods of the genera Oithona, Oncaea, Ctenocalanus and Microcalanus. While species composition was similar in both areas, vertical patterns differed in that the microzooplankton had sparse populations in the upper 50 m under the ice. This may have been related to water temperature which in the upper 50 m under the ice was more than 1°C cooler than in the open sea. Zooplankton in the 1–20 mm size range was dominated by the calanoid copepods Metridia gerlachei, Calanus propinquus and Calanoides acutus which constituted half the biomass in the upper 1000 m. Their populations had highest densities in the upper 150 m, though much of the C. acutus population resided below 300 m. Metridia gerlachei and C. propinquus underwent diel vertical migrations in both areas whereas C. acutus did not migrate. Species diversity in the epipelagic zone was moderate and the fauna was characterized by species typical of the oceanic east wind drift. Diversity increased with depth and was due primarily to the appearance of circumpolar mesopelagic copepods in Weddell Warm Deep Water. Biomass of 1–20 mm zooplankton in the 0–1000 m zone was low (1.1–1.3 gDWm-2) compared to other Southern Ocean areas investigated with comparable methods. It is suggested that this is related to Weddell circulation patterns and the resulting low annual primary production in the central Weddell Sea.  相似文献   

5.
The individual respiration rates of five biomass-dominant copepods (Calanoides acutus, Rhincalanus gigas, Metridia gerlachei, Calanus propinquus and Paraeuchaeta antarctica), and Euphausia crystallorophias furcilia, from the Amundsen Sea, West Antarctica, were determined using a Clark-type oxygen microsensor affording high temporal resolution. Measurements were conducted on specimens collected from waters exhibiting a very narrow temperature range (?1.68 to ?1.32 °C), at sites located between 71 and 75°S, during the summer (31 January–20 March 2012). A short incubation time (3 h) was sufficient to reveal significant declines in dissolved oxygen concentrations by 12–45%. The respiration rates of the copepods and E. crystallorophias furcilia were within the ranges of previously reported values. The respiration rates of relatively large-bodied species were rather low, whereas the smaller species generally exhibited higher respiration rates. The data show that this simple microsensor technique is a useful high-resolution non-invasive means of investigating the metabolism of zooplankton in the Southern Ocean. The method could be used in other situations when such information is required.  相似文献   

6.
Summary The present paper describes composition and abundance of meso- and macrozooplankton in the epipelagic zone of the Weddell Sea and gives a systematic review of encountered species regarding results of earlier expeditions. Material was sampled from 6 February to 10 March 1983 from RV Polarstern with a RMT 1+8 m (320 and 4500 m mesh size). In agreement with topography and water mass distribution three distinct communities were defined, clearly separated by cluster analysis: The Southern Shelf Community has lowest abundances (approx. 9000 ind./1000 m3). Euphausia crystallorophias and Metridia gerlachei are predominating. Compared with the low overall abundance the number of regularly occurring species is high (55) due to many neritic forms. Herbivores and omnivores are dominating (58% and 35%). The North-eastern Shelf Community has highest abundances (about 31 000 ind./1000 m3). It is predominated by copepodites I–III of Calanus propinquus and Calanoides acutus (61%). The faunal composition is characterized by both oceanic and neritic species (64). Fine-filter feeders are prevailing (65%). The Oceanic Community has a mean abundance of approximately 23 000 ind./1000 m3, consisting of 61 species. Dominances are not as pronounced as in the shelf communities. Apart from abundant species like Calanus propinquus, Calanoides acutus, Metridia gerlachei, Oithona spp. and Oncaea spp. many typical inhabitants of the Eastwind Drift are encountered. All feeding types have about the same importance in the Oceanic Community.  相似文献   

7.
Gut contents and feeding activity of five dominant Antarctic copepods (Calanus propinquus, Calanoides acutus, Rhincalanus gigas, Metridia gerlachei and Microcalanus pygmaeus) were studied from samples collected during several cruises of the RV Polarstern to the eastern Weddell Sea. In summer, feeding activity, estimated as percentage of copepods with food in the guts, was high in all the species, and diatoms dominated all gut contents. In winter, C. acutus was trophically inactive, and C. propinquus and R. gigas considerably decreased their feeding activity, while a decrease in feeding of M. gerlachei and M. pygmaeus was less pronounced. Unidentified mass dominated gut contents in winter, supplemented by phytoplankton and protozoans. Prior to the spring bloom, feeding activity of C. acutus was low, with unidentified food predominating, while carnivory was important in actively feeding C. propinquus. Rhincalanus gigas tended to be more carnivorous than C. acutus, however with less feeding activity than C. propinquus. Seasonal changes in feeding patterns are discussed.  相似文献   

8.
The metabolic responses of several species of Antarctic copepods to primary productivity and changes between seasons were investigated. To examine the influence of the spring ice-edge bloom on the metabolism of copepods, oxygen consumption rates were determined on specimens from three zones of widely different ice coverage and chlorophyll biomass: pack ice (pre-bloom), ice edge (bloom) and open water (post-bloom). Summer metabolic rates were compared with published winter rates. Field work was done in the Weddell Sea in the region of 60 °S, 36°W in late November and December 1993. Oxygen consumption rates were determined by placing individuals in syringe respirometers and monitoring the oxygen partial pressure for 10–20 hours. Higher metabolic rates were observed in the primarily herbivorous copepods, Calanoides acutus, Rhincalanus gigas and Calanus propinquus in regions of higher primary production: ice edge and open water. The carnivorous Paraeuchaeta antarctica showed a similar pattern. The omnivorous copepods Metridia gerlachei and Gaetanus tenuispinus showed no changes in metabolism between zones. Data on routine rates of copepods from the winter were available for C. propinquus and P. antarctica. In P. antarctica, rates were higher in the summer. Calanus propinquus showed a higher metabolic rate in the summer than in the winter, but the difference was not significant at the 0.05 level. It was concluded that copepods near the ice zone in the ice zone in the Antarctic rely on the spring ice-edge bloom for growth and completion of their life cycle.  相似文献   

9.
We compared six biochemical measures of nutritional condition: citrate synthase activity (CS), malate and lactate dehydrogenase activity (MDH and LDH), RNA:DNA ratio, and percent body protein and lipid. Adult females of five species of calanoid copepod (Calanoides acutus, Calanus propinquus, Metridia gerlachei, Rhincalanus gigas and Paraeuchaeta antarctica) were collected in the marginal ice zone of the northwestern Weddell Sea at the time of the annual phytoplankton bloom that occurs in association with the receding ice edge during austral spring. Three zones within the marginal ice zone were sampled: heavy-ice-cover pre-bloom, ice-edge bloom and low-ice-cover post-bloom. Lipid generally increased greatly from ice-covered to open water zones, and its importance in the life of polar copepods cannot be overstated. Increases in protein from ice-covered to open water were also observed, but were of less significance. Each species exhibited significant changes in at least one enzyme activity level. Citrate synthase activity in C. acutus, C. propinquus and R. gigas, all herbivores, increased between pre- and post-bloom stations. C. propinquus and M. gerlachei, which feed during winter, had large increases in LDH activity between pre- and post-bloom stations. Rhincalanus gigas and P. antarctica, the two largest species studied, showed variations in MDH activity, with peak enzyme activity occurring in post-bloom stations. RNA:DNA ratio did not change in any species. The effects of size, shipboard handling and freezer storage were easily corrected statistically, and did not alter any conclusions. The patterns observed in copepod nutrition at the Antarctic ice edge were consistent with existing models of life history for each species. The observations reported here, in conjunction with previously reported data, suggested that measurement of metabolic enzyme activity, especially in concert with lipid, enables estimation of nutritional condition in adult copepods. Additional studies comparing metabolic activity and ecology of common species should yield more information on the ecology of rarer species.  相似文献   

10.
Lipid content, fatty acid composition, and feeding activity of the dominant Antarctic copepods, Calanoides acutus, Calanus propinquus, and Metridia gerlachei, were studied at a quasi-permanent station in the eastern Weddell Sea in December 2003. During 3 weeks of the spring phytoplankton development, total lipid levels of females and copepodite stages V (CVs) of C. acutus were almost doubled. Meanwhile, only a slight increase in total lipid content occurred in M. gerlachei, and no clear trend was observed in lipids of C. propinquus females. The pronounced increase of lipids in C. acutus was due to an accumulation of wax esters. The proportion of wax esters in the lipids of M. gerlachei was clearly lower, while triacylglycerols played a more important role. In C. propinquus, triacylglycerols were the only neutral lipid class. There were no pronounced changes in the feeding activity of M. gerlachei, whereas the feeding activity of C. acutus had rapidly increased with the development of the phytoplankton bloom in December, which explains its rapid lipid accumulation. The combination of gut content and fatty acid trophic marker analyses showed that C. acutus was feeding predominantly on diatoms. The typical diatom fatty acid marker, 16:1(n-7), slightly decreased and the tracer for flagellates, 18:4(n-3), increased in females and CVs of C. acutus. This shift indicates the time, when the significance of flagellates started to increase. The three copepod species exhibited different patterns of lipid accumulation in relation to their trophic niches and different duration of their active phases. The investigations filled a crucial data gap in the seasonal lipid dynamics of dominant calanoid copepods in the Weddell Sea in December and support earlier hypotheses on their energetic adaptations and life cycle strategies.  相似文献   

11.
Different approaches to the study of life cycle strategies of Antarctic copepods are described in an attempt to shed new light on our present knowledge. To date, most studies were carried out on abundance, horizontal and vertical distribution and stage composition during different seasons and in various regions. Hence, the seasonal pictures had to be compiled from different years and sampling regions. The physiological method includes measurements on e.g. egg production, feeding, respiration and excretion rates, C:N and O:N ratios, lipid and protein contents. However, both physiological and biochemical data are still rare. Results of field observations are given in this paper for investigations conducted within the last 15 years in the eastern Weddell Sea, while data of physiological parameters are based on a broader geographical region. In the eastern Weddell Sea, eight copepod species account for about 95% of copepod abundance and for more than 80% of copepod biomass. Within the calanoids, the small species Microcalanus pygmaeus dominates by numbers with 66%, while the large species Calanoides acutus and Calanus propinquus comprise together 52% of the biomass. Species abundance is lowest in winter and highest in summer/autumn, however, seasonal changes in the abundance of M. pygmaeus are small and this species occurs in similar quantities throughout the year. All copepod species show a distinct seasonal vertical distribution pattern and they occur in upper water layers in summer, in contrast to the other seasons. However, the depth layers of maximum concentration differ between species. The ontogenetic vertical migration is most pronounced in C. acutus and relatively weak in C. propinquus. The age structure also shows seasonal differences with the youngest population observed in summer for C. acutus, C. propinquus, Ctenocalanus citer or autumn for Metridia gerlachei, whereas the M. pygmaeus population is oldest during summer. The youngest copepodite stage and the males are not always present in C. acutus and C. propinquus. In contrast, all developmental stages and both sexes occur throughout the year in M. gerlachei, M. pygmaeus and C. citer. Gonad maturation in the dominant calanoid species proceeds well before the onset of phytoplankton production in the eastern Weddell Sea. However, the highest portion of females with ripe gonads and hence highest egg production rates coincide with the productive period in spring and summer. In autumn, ovaries of the three larger species C. acutus, C. propinquus and M. gerlacheiare all spent. In contrast, the percentage of ripe females of the two smaller species, C. citer and M. pygmaeus, stays high in autumn. Egg production rates are highly variable within one region and species. Many copepods accumulate large depots of lipid, mainly wax esters. In contrast, five species (C. propinquus, C. simillimus, Euchirella rostromagna, Stephos longipes and Paralabidocera antarctica) almost exclusively synthesise triacylglycerols and not wax esters. The lipid content exhibits distinct seasonal patterns, and is highest in autumn. A seasonal difference is also obvious in metabolic activities with lowest rates during the dark season. The adaptation to the pronounced seasonality in the Southern Ocean differs greatly between copepod species, and most Antarctic copepods stay active during the dark season. Calanoides acutus seems to be the only true diapause species. Calculations of summer developmental rates and winter mortality rates of the large species C. acutus and C. propinquus suggest that both species have a 1-year life cycle with few females overwintering and probably spawning a second time. In contrast, a 2-year life cycle is more likely in R. gigas. However, life cycle durations of all species studied are still uncertain and regional differences are very probable.  相似文献   

12.
The salinity tolerance of two dominant Antarctic planktic copepods (Calanus propinquus and Metridia gerlachei) was tested over a range from 34 to 85 PSU and compared with that of sympagic turbellarians. The copepods survived only at a salinity of 34, higher salinities causing death within days. The turbellarians survived at salinities up to 75. The data imply that C. propinquus and M. gerlachei will not survive incorporation into newly forming sea ice because of the increasing brine salinity in new ice. Received: 27 January 1998 / Accepted: 11 April 1998  相似文献   

13.
Summary The food of 163 juvenile specimens of 13 species of notothenioid fishes collected in the southern Weddell Sea (Antarctica) was analyzed. Investigated fish size range was 3–13 cm SL. Principal food items were calanoid copepods Metridia gerlachei, Calanoides acutus, and Calanus propinquus; all developmental stages of Euphausia crystallorophias, and post-larval nototheniid fish Pleuragramma antarcticum. Diet of juvenile channichthyids is limited to few species of euphausiids and fish in the size > 10 mm, but does not include significant numbers of copepods. Pelagic stages of nototheniids feed on copepods and/or larval euphausiids smaller than 10 mm. At similar size, nototheniids and bathydraconids take smaller prey items than channichthyids.  相似文献   

14.
The main emphasis of this study was to analyse the short-term development of abundance, population structure and vertical distribution of the dominant calanoid copepods during a phytoplankton bloom in the coastal area of the eastern Weddell Sea in December 2003. Microcalanus pygmaeus was by far the most abundant calanoid species. Metridia gerlachei, Ctenocalanus citer, Calanoides acutus, Calanus propinquus and the ice-associated Stephos longipes were also present in considerable proportions. The observed changes in the population characteristics and parameters of these species are described in detail and discussed in the context of the spring phytoplankton bloom. A conspicuous event occurring during the final stage of the study was the development of a strong storm. While the results suggest that this storm did not have any considerable influence on the populations of all other investigated copepod species, it very likely caused pronounced changes in the S. longipes population present in the water column. Before the storm, S. longipes was found primarily in the upper 100 m of the water column, and its population was dominated by adults (mean proportion = 41%) and the copepodite stage I (mean proportion = 30%). After the storm, the abundance increased considerably, and the copepodite stage I contributed by far the largest proportion (53%) of the total population indicating that the early copepodite stages probably had been released from the sea ice into the under ice water layer due to ice break-up and ice melt processes caused by the storm.  相似文献   

15.
Gaard  E 《Journal of plankton research》1999,21(6):1133-1152
The Faroe shelf water is separated from the offshore water by a persistent tidal front, which surrounds the islands. This shelf water contains a neritic zooplankton community, which, regarding species composition, production, seasonal development and environmental conditions, is quite different from that in the surrounding ocean. While during spring and summer the zooplankton in the oceanic environment are dominated by the copepod Calanus finmarchicus, the zooplankton in the shelf water are largely dominated by neritic copepods, mainly Acartia longiremis and Temora longicornis. Calanus finmarchicus occurs in interannually highly variable abundance in the Faroe shelf ecosystem. Meroplanktonic larvae, mainly Balanus spp, and decapod larvae, are also common in the shelf water during spring and summer. During the period presented (1989-1997), the Faroe shelf ecosystem has undergone very large changes in abundance of different zooplankton species. The midsummer abundance of C.finmarchicus, which originally is advected into the shelf from the open ocean, fluctuated from 400 copepods m-3 in 1989 to 25 copepods m-3 in 1994, and at the same time the neritic zooplankton increased from 120 m-3 in 1989 to 450 m-3 in 1994. Consequently, the midsummer biomass in the shelf fluctuated by a factor of 10 during the same period. It is presumed that this variability between oceanic- and neritic-dominated zooplankton, their sizes and their biomass has greatly affected the entire pelagic ecosystem.   相似文献   

16.
Summary An intensive net sampling survey was conducted around the island of South Georgia during November/December 1981. The distribution and copepodite stage structure of the dominant copepods Calanoides acutus, Calanus simillimus, C. propinquus, Rhincalanus gigas, Metridia lucens and Metridia gerlachei were compared. The herbivorous species had completed their spring vertical migration and their summer generations were developing during the survey. At every station, Calanoides acutus was noticeably more advanced than Rhincalanus gigas in its reproductive cycle. The species were also more advanced in their development in the SE oceanic part of the survey area than in the NW. However, copepod development rates are rapid at this time of year, and this apparent regional difference may be due mainly to temporal variation during the four weeks of the survey. A truly regional variation in timing of reproduction was found when development was compared between shelf and oceanic waters. Spawning of Rhincalanus gigas and particularly of Calanoides acutus was later over the shelf. The age structure of the epi-mesopelagic metridinids also differed between shelf and oceanic waters, but no age differences were found for either Calanus simillimus or C. propinquus, both of which live and spawn higher in the water column than the other species. The presence of the South Georgia shelf also limited the overall abundance of the two deeper living metridinids. However, the length of time between spawning (and production of large numbers of early copepodids) and sampling had the largest influence on observed species abundance within the survey area.  相似文献   

17.
Summary A net sampling survey was conducted around the island of South Georgia during July/August 1983. This study compares the age structure and vertical and horizontal distributions of the dominant copepods Calanoides acutus, Calanus simillimus, C. propinquus, Rhincalanus gigas, Metridia lucens and M. gerlachei. The chief physical and biological factors affecting the distributions of these species are assessed and the results are compared with those from a similar survey around the island carried out in early summer (1981/1982). The survey grid lay within the Polar Front during the winter survey, and horizontal changes in copepod abundance corresponded well to the temperature gradient across the front. This pattern was interrupted by the South Georgia shelf where the seasonal migrants (Calanoides acutus, Rhincalanus gigas and Calanus simillimus) occurred in high abundance. The concentration of these migrants over the shelf relative to the oceanic surface layer was attributed to the shelf having prevented their seasonal migration. Within the oceanic area the copepods occupied differing depths, with Calanoides acutus and Metridia gerlachei living deeper than Calanus simillimus, C. propinquus and M. lucens. The populations also tended to live deeper in the warmer (NW) portion of the oceanic survey area. In contrast to the summer survey the age structure of each species showed little variation throughout the survey area. This was attributed mainly to the decreased rates of copepod growth and metabolism in winter.  相似文献   

18.
Grazing of dominant zooplankton copepods (Calanoides acutus, and Metridia gerlachei), salps (Salpa thompsoni) and microzooplankton was determined during the austral summer of 1998/1999 at the seasonal ice zone of the Prydz Bay region. The objective was to measure the ingestion rates of zooplankton at the seasonal ice zone, so as to evaluate the importance of different groups of zooplankton in their grazing impact on phytoplankton standing stock and primary production. Grazing by copepods was low, and accounted for <1% of phytoplankton standing stocks and 3.8-12.5% of primary production for both species during this study; even the ingestion rates of individuals were at a high level compared with previous reports. S. thompsoni exhibited a relatively high grazing impact on primary production (72%) in the north of our investigation area. The highest grazing impact on phytoplankton was exerted by microzooplankton during this investigation, and accounted for 10-65% of the standing stock of phytoplankton and 34-100% of potential daily primary production. We concluded that microzooplankton was the dominant phytoplankton consumer in this study area. Salps also played an important role in control of phytoplankton where swarming occurred. The grazing of copepods had a relatively small effect on phytoplankton biomass development.  相似文献   

19.
The abundances of four dominant Antarctic copepod species, Metridia gerlachei, Rhincalanus gigas, Calanoides acutus and Calanus propinquus, were examined in the Southern Ocean in a combination of a literature review, analysis of museum samples and field sampling. The data were analysed for spatial and temporal variations. The data included in the analysis were from the Weddell Sea area in the summertime at periods 1929–1939 and 1989–1993. The results are discussed in the light of environmental changes and their hypothesised and observed consequences in the Southern Ocean: global temperature change, ozone deficiency and cascading trophic interactions. Combining all these hypothetical effects our null hypothesis was that there were no consistent long-term changes in the abundance of dominant pelagic Copepoda. The null hypothesis was rejected, since several taxons did show statistically significant long-term changes in abundance. The changes were not uniform however. The numbers of adults and juveniles of Calanus propinquus increased significantly between the periods studied. Adult stages of Calanoides acutus were the only taxon decreasing in abundance, in concert with the cascading trophic interactions theory. Latitudinally, only Metridia gerlachei showed a significant increase from north to south. Longitudinally, the abundances of Calanus propinquus juveniles and both adults and juveniles of Rhincalanus gigas increased from west to east. There were no significant variations between day and night samples. Interannual changes were statistically significant in juvenile stages of all the species and in adults of Calanus propinquus. We conclude that no uniform and consistent abundance changes could be observed in the pelagic Copepoda of the Weddell Sea that could be connected to major environmental changes, expected to affect the whole planktonic ecosystem of the Southern Ocean. Significant changes in some of the species studied show that the pelagic ecosystem is not in a steady state, but in addition to interannual changes, there are also major fluctuations extending over decades. Received: 5 December 1996 / Accepted: 24 March 1997  相似文献   

20.
Euphausia crystallorophias is the dominant zooplankton species in the neritic seas of Antarctica, where it occurs in similar abundances to those of Euphausia superba in more offshore areas. Despite its great abundance and probable ecological significance, few details are known of this species’ development, life history and ecology. This study found that E. crystallorophias spawned in Ellis Fjord from late November to early December and completed its larval development under the sea ice during the Antarctic winter. The mean time for E. crystallorophias eggs to develop to furcilia stage VI was 235.5 days, which is virtually identical to the developmental time already reported in the laboratory, but almost twice that of E. superba. This slow development rate is likely to be due either to the low water temperatures (<0°C) in which E. crystallorophias lives, or to low levels of food being available over winter. Received: 30 August 1995/Accepted: 11 December 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号