首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our aim was to estimate the population of emperor penguins (Aptenodytes fosteri) using a single synoptic survey. We examined the whole continental coastline of Antarctica using a combination of medium resolution and Very High Resolution (VHR) satellite imagery to identify emperor penguin colony locations. Where colonies were identified, VHR imagery was obtained in the 2009 breeding season. The remotely-sensed images were then analysed using a supervised classification method to separate penguins from snow, shadow and guano. Actual counts of penguins from eleven ground truthing sites were used to convert these classified areas into numbers of penguins using a robust regression algorithm.We found four new colonies and confirmed the location of three previously suspected sites giving a total number of emperor penguin breeding colonies of 46. We estimated the breeding population of emperor penguins at each colony during 2009 and provide a population estimate of ~238,000 breeding pairs (compared with the last previously published count of 135,000-175,000 pairs). Based on published values of the relationship between breeders and non-breeders, this translates to a total population of ~595,000 adult birds.There is a growing consensus in the literature that global and regional emperor penguin populations will be affected by changing climate, a driver thought to be critical to their future survival. However, a complete understanding is severely limited by the lack of detailed knowledge about much of their ecology, and importantly a poor understanding of their total breeding population. To address the second of these issues, our work now provides a comprehensive estimate of the total breeding population that can be used in future population models and will provide a baseline for long-term research.  相似文献   

2.
Aim  To map and assess the breeding distribution of emperor penguins ( Aptenodytes forsteri ) using remote sensing.
Location  Pan-Antarctic.
Methods  Using Landsat ETM satellite images downloaded from the Landsat Image Mosaic of Antarctica (LIMA), we detect faecal staining of ice by emperor penguins associated with their colony locations. Emperor penguins breed on sea ice, and their colonies exist in situ between May and December each year. Faecal staining at these colony locations shows on Landsat imagery as brown patches, the only staining of this colour on sea ice. This staining can therefore be used as an analogue for colony locations. The whole continental coastline has been analysed, and each possible signal has been identified visually and checked by spectral analysis. In areas where LIMA data are unsuitable, freely available Landsat imagery has been supplemented.
Results  We have identified colony locations of emperor penguins at a total of 38 sites. Of these, 10 are new locations, and six previously known colony locations have been repositioned (by over 10 km) due to poor geographical information in old records. Six colony locations, all from old or unconfirmed records, were not found or have disappeared.
Main conclusions  We present a new pan-Antarctic species distribution of emperor penguins mapped from space. In one synoptic survey we locate extant emperor penguin colonies, a species previously poorly mapped due to its unique breeding habits, and provide a vital geographical resource for future studies of an iconic species believed to be vulnerable to future climate change.  相似文献   

3.
We describe a new breeding behaviour discovered in emperor penguins; utilizing satellite and aerial-survey observations four emperor penguin breeding colonies have been recorded as existing on ice-shelves. Emperors have previously been considered as a sea-ice obligate species, with 44 of the 46 colonies located on sea-ice (the other two small colonies are on land). Of the colonies found on ice-shelves, two are newly discovered, and these have been recorded on shelves every season that they have been observed, the other two have been recorded both on ice-shelves and sea-ice in different breeding seasons. We conduct two analyses; the first using synthetic aperture radar data to assess why the largest of the four colonies, for which we have most data, locates sometimes on the shelf and sometimes on the sea-ice, and find that in years where the sea-ice forms late, the colony relocates onto the ice-shelf. The second analysis uses a number of environmental variables to test the habitat marginality of all emperor penguin breeding sites. We find that three of the four colonies reported in this study are in the most northerly, warmest conditions where sea-ice is often sub-optimal. The emperor penguin’s reliance on sea-ice as a breeding platform coupled with recent concerns over changed sea-ice patterns consequent on regional warming, has led to their designation as “near threatened” in the IUCN red list. Current climate models predict that future loss of sea-ice around the Antarctic coastline will negatively impact emperor numbers; recent estimates suggest a halving of the population by 2052. The discovery of this new breeding behaviour at marginal sites could mitigate some of the consequences of sea-ice loss; potential benefits and whether these are permanent or temporary need to be considered and understood before further attempts are made to predict the population trajectory of this iconic species.  相似文献   

4.
The Paris Agreement is a multinational initiative to combat climate change by keeping a global temperature increase in this century to 2°C above preindustrial levels while pursuing efforts to limit the increase to 1.5°C. Until recently, ensembles of coupled climate simulations producing temporal dynamics of climate en route to stable global mean temperature at 1.5 and 2°C above preindustrial levels were not available. Hence, the few studies that have assessed the ecological impact of the Paris Agreement used ad‐hoc approaches. The development of new specific mitigation climate simulations now provides an unprecedented opportunity to inform ecological impact assessments. Here we project the dynamics of all known emperor penguin (Aptenodytes forsteri) colonies under new climate change scenarios meeting the Paris Agreement objectives using a climate‐dependent‐metapopulation model. Our model includes various dispersal behaviors so that penguins could modulate climate effects through movement and habitat selection. Under business‐as‐usual greenhouse gas emissions, we show that 80% of the colonies are projected to be quasiextinct by 2100, thus the total abundance of emperor penguins is projected to decline by at least 81% relative to its initial size, regardless of dispersal abilities. In contrast, if the Paris Agreement objectives are met, viable emperor penguin refuges will exist in Antarctica, and only 19% and 31% colonies are projected to be quasiextinct by 2100 under the Paris 1.5 and 2 climate scenarios respectively. As a result, the global population is projected to decline by at least by 31% under Paris 1.5 and 44% under Paris 2. However, population growth rates stabilize in 2060 such that the global population will be only declining at 0.07% under Paris 1.5 and 0.34% under Paris 2, thereby halting the global population decline. Hence, global climate policy has a larger capacity to safeguard the future of emperor penguins than their intrinsic dispersal abilities.  相似文献   

5.
Understanding the boundaries of breeding populations is of great importance for conservation efforts and estimates of extinction risk for threatened species. However, determining these boundaries can be difficult when population structure is subtle. Emperor penguins are highly reliant on sea ice, and some populations may be in jeopardy as climate change alters sea‐ice extent and quality. An understanding of emperor penguin population structure is therefore urgently needed. Two previous studies have differed in their conclusions, particularly whether the Ross Sea, a major stronghold for the species, is isolated or not. We assessed emperor penguin population structure using 4,596 genome‐wide single nucleotide polymorphisms (SNPs), characterized in 110 individuals (10–16 per colony) from eight colonies around Antarctica. In contrast to a previous conclusion that emperor penguins are panmictic around the entire continent, we find that emperor penguins comprise at least four metapopulations, and that the Ross Sea is clearly a distinct metapopulation. Using larger sample sizes and a thorough assessment of the limitations of different analytical methods, we have shown that population structure within emperor penguins does exist and argue that its recognition is vital for the effective conservation of the species. We discuss the many difficulties that molecular ecologists and managers face in the detection and interpretation of subtle population structure using large SNP data sets, and argue that subtle structure should be taken into account when determining management strategies for threatened species, until accurate estimates of demographic connectivity among populations can be made.  相似文献   

6.
Site fidelity is an important evolutionary trait to understand, as misinterpretation of philopatric behavior could lead to confusion over the key drivers of population dynamics and the environmental or anthropogenic factors influencing populations. Our objective was to explore the hypothesis that emperor penguins are strictly philopatric using satellite imagery, counts from aerial photography, and literature reports on emperor penguin distributions. We found six instances over three years in which emperor penguins did not return to the same location to breed. We also report on one newly‐discovered colony on the Antarctic Peninsula that may represent the relocation of penguins from the Dion Islands, recently confirmed as having been abandoned. Using evidence from aerial surveys and the historical literature, we suggest that emigration may have been partly responsible for the population decline at Pointe Géologie during the 1970s. Our study is the first to use remote sensing imagery to suggest that emperor penguins can and do move between, and establish new, colonies. Metapopulation dynamics of emperor penguins have not been previously considered and represent an exciting, and important, avenue for future research. Life history plasticity is increasingly being recognized as an important aspect of climate change adaptation, and in this regard our study offers new insight for the long‐term future of emperor penguins.  相似文献   

7.
8.
Emperor penguin (Aptenodytes forsteri) populations are useful environmental indicators due to the bird’s extreme reliance on sea ice. We used remote sensing technology to estimate relative adult bird abundance at two inaccessible emperor penguin colonies in the Ross Sea, Antarctica. We performed supervised classification of 12 panchromatic satellite images of the seven known Ross Sea colonies. We used regression to predict adult bird counts at the inaccessible colonies by relating the number of pixels classified as “penguin” in the satellite images of the accessible colonies to corresponding known adult bird counts from aerial photographs or ground counts. While our analysis was hampered by excessive guano and shadows, we used satellite imagery to differentiate between relatively small (<3,000 adult birds) and larger colonies (>5,000 adult birds). Remote sensing technology is logistically less intense and less costly than aerial or ground censuses when the objective is to document penguin presence and/or large emperor penguin population changes (e.g., catastrophic changes). Improvements expected soon in the resolution of the satellite images should allow for more accurate abundance estimates.  相似文献   

9.
Petermann Island (65°10′S, 64°10′W), one of the Antarctic Peninsula’s most frequently visited locations, is at the epicenter of a rapid shift in which an Adélie penguin dominated fauna is becoming gentoo penguin dominated. Over the course of five seasons, the breeding productivity of Adélie and gentoo penguins breeding at Petermann Island were monitored to identify drivers of this rapid community change. The impact of tourist visitation on breeding success was also investigated. Consistent with larger trends in this region, the Adélie penguin population decreased by 29% and the gentoo penguin population increased by 27% between the 2003/2004 and 2007/2008 seasons. Reproductive success among Adélie penguins ranged from 1.09 to 1.32 crèched chicks/nest, which was higher than or comparable to other sites and is an unlikely explanation for the precipitous decline of Adélie penguins at Petermann Island. Whereas gentoo penguin reproductive success was lowest in colonies frequently visited by tourists, Adélie penguin colonies frequently visited by tourists had higher reproductive success than those visited only occasionally. These results are placed in the context of other studies on reproductive success and the impact of tourist visitation on breeding colonies of Adélie and gentoo penguins.  相似文献   

10.
张剑  董路  张雁云 《生物多样性》2019,27(12):1291-1664
我国提议在南极恩克斯堡岛新站址北侧3 km的阿德利企鹅(Pygoscelis adeliae)聚集繁殖地建立南极特别保护区, 对保护区边界的划分, 各国尚存争议, 尤其是对南湾(South Bay)的繁殖小种群是否具有遗传独特性, 是否应将其纳入保护区是重点关注的问题。本研究采集了恩克斯堡岛海景湾(Seaview Bay)和南湾的阿德利企鹅样品, 通过全基因组重测序和种群基因组学方法, 分析了恩克斯堡岛不同区域的种群遗传结构。发现恩克斯堡岛海景湾与南湾阿德利企鹅没有显著的遗传分化, 南湾阿德利企鹅不是独特的小种群; 海景湾高海拔区域个体与低海拔区域个体之间也没有显著的遗传差异, 推测该区域阿德利企鹅繁殖群体的分布格局与冰川堆积形成的阶地不具有显著相关性。本工作为恩克斯堡岛保护区和罗斯海新站建设提供了重要科技支撑。  相似文献   

11.
In 1948, a small colony of emperor penguins Aptenodytes forsteri was discovered breeding on Emperor Island (67° 51' 52″ S, 68° 42' 20″ W), in the Dion Islands, close to the West Antarctic Peninsula (Stonehouse 1952). When discovered, the colony comprised approximately 150 breeding pairs; these numbers were maintained until 1970, after which time the colony showed a continuous decline. By 1999 there were fewer than 20 pairs, and in 2009 high-resolution aerial photography revealed no remaining trace of the colony. Here we relate the decline and loss of the Emperor Island colony to a well-documented rise in local mean annual air temperature and coincident decline in seasonal sea ice duration. The loss of this colony provides empirical support for recent studies (Barbraud & Weimerskirch 2001; Jenouvrier et al 2005, 2009; Ainley et al 2010; Barber-Meyer et al 2005) that have highlighted the vulnerability of emperor penguins to changes in sea ice duration and distribution. These studies suggest that continued climate change is likely to impact upon future breeding success and colony viability for this species. Furthermore, a recent circumpolar study by Fretwell & Trathan (2009) highlighted those Antarctic coastal regions where colonies appear most vulnerable to such changes. Here we examine which other colonies might be at risk, discussing various ecological factors, some previously unexplored, that may also contribute to future declines. The implications of this are important for future modelling work and for understanding which colonies actually are most vulnerable.  相似文献   

12.
Early‐life demographic traits are poorly known, impeding our understanding of population processes and sensitivity to climate change. Survival of immature individuals is a critical component of population dynamics and recruitment in particular. However, obtaining reliable estimates of juvenile survival (i.e., from independence to first year) remains challenging, as immatures are often difficult to observe and to monitor individually in the field. This is particularly acute for seabirds, in which juveniles stay at sea and remain undetectable for several years. In this work, we developed a Bayesian integrated population model to estimate the juvenile survival of emperor penguins (Aptenodytes forsteri), and other demographic parameters including adult survival and fecundity of the species. Using this statistical method, we simultaneously analyzed capture–recapture data of adults, the annual number of breeding females, and the number of fledglings of emperor penguins collected at Dumont d'Urville, Antarctica, for the period 1971–1998. We also assessed how climate covariates known to affect the species foraging habitats and prey [southern annular mode (SAM), sea ice concentration (SIC)] affect juvenile survival. Our analyses revealed that there was a strong evidence for the positive effect of SAM during the rearing period (SAMR) on juvenile survival. Our findings suggest that this large‐scale climate index affects juvenile emperor penguins body condition and survival through its influence on wind patterns, fast ice extent, and distance to open water. Estimating the influence of environmental covariates on juvenile survival is of major importance to understand the impacts of climate variability and change on the population dynamics of emperor penguins and seabirds in general and to make robust predictions on the impact of climate change on marine predators.  相似文献   

13.
The population size of emperor penguins at the land-based Taylor Glacier colony was monitored over 54 years from 1957 to 2010 by intermittent ground counts from 1957 to 1975 and annual photographic counts from 1988 to 2010 of males attending the colony in winter and chicks in early summer. The breeding population in the early years averaged 3,684 ± 492 pairs compared with 2,927 ± 320 pairs from 1988–2010, a reduction of 20.5 %. The exact timing and magnitude of the change is unknown because there was a 13-year gap between the end of the historical counts and start of the contemporary counts. From 1954 to 2010 no real or inferred warming event that may have been linked to the decrease was evident at Australia’s Mawson station, 95 km from Taylor Glacier colony. From 1988 to 2010, variation in breeding population size and breeding success were not related to variation in the distance between the colony and open water. In this period, the number of pairs breeding fluctuated annually and overall showed signs of a gradual decrease. The Taylor Glacier colony is one of only three emperor penguin colonies where populations have been monitored in winter over the long term. Given the threat of climate warming to the future of this ice-dependent species it is imperative that the annual monitoring programme at Taylor Glacier continues well into the future.  相似文献   

14.
The relationship between population structure and demographic history is critical to understanding microevolution and for predicting the resilience of species to environmental change. Using mitochondrial DNA from extant colonies and radiocarbon‐dated subfossils, we present the first microevolutionary analysis of emperor penguins (Aptenodytes forsteri) and show their population trends throughout the last glacial maximum (LGM, 19.5–16 kya) and during the subsequent period of warming and sea ice retreat. We found evidence for three mitochondrial clades within emperor penguins, suggesting that they were isolated within three glacial refugia during the LGM. One of these clades has remained largely isolated within the Ross Sea, while the two other clades have intermixed around the coast of Antarctica from Adélie Land to the Weddell Sea. The differentiation of the Ross Sea population has been preserved despite rapid population growth and opportunities for migration. Low effective population sizes during the LGM, followed by a rapid expansion around the beginning of the Holocene, suggest that an optimum set of sea ice conditions exist for emperor penguins, corresponding to available foraging area.  相似文献   

15.
The foraging distributions of 20 breeding emperor penguins were investigated at Pointe Géologie, Terre Adélie, Antarctica by using satellite telemetry in 2005 and 2006 during early and late winter, as well as during late spring and summer, corresponding to incubation, early chick-brooding, late chick-rearing and the adult pre-moult period, respectively. Dive depth records of three post-egg-laying females, two post-incubating males and four late chick-rearing adults were examined, as well as the horizontal space use by these birds. Foraging ranges of chick-provisioning penguins extended over the Antarctic shelf and were constricted by winter pack-ice. During spring ice break-up, the foraging ranges rarely exceeded the shelf slope, although seawater access was apparently almost unlimited. Winter females appeared constrained in their access to open water but used fissures in the sea ice and expanded their prey search effort by expanding the horizontal search component underwater. Birds in spring however, showed higher area-restricted-search than did birds in winter. Despite different seasonal foraging strategies, chick-rearing penguins exploited similar areas as indicated by both a high ‘Area-Restricted-Search Index’ and high ‘Catch Per Unit Effort’. During pre-moult trips, emperor penguins ranged much farther offshore than breeding birds, which argues for particularly profitable oceanic feeding areas which can be exploited when the time constraints imposed by having to return to a central place to provision the chick no longer apply.  相似文献   

16.
The ivory gull, a rare high-Arctic species whose main habitat throughout the year is sea ice, is currently listed in Greenland as ‘Vulnerable’, and as ‘Endangered’ in Canada, where the population declined by 80% in 20 years. Despite this great concern, the status of the species in Greenland has been largely unknown as it breeds in remote areas and in colonies for which population data has rarely, if at all, been collected. Combining bibliographical research, land surveys, aerial surveys and satellite tracking, we were able to identify 35 breeding sites, including 20 new ones, in North and East Greenland. Most colonies are found in North Greenland and the largest are located on islands and lowlands. The current best estimate for the size of the Greenland population is approx. 1,800 breeding birds, but the real figure is probably >4,000 adult birds (i.e. >2,000 pairs) since all colonies have not yet been discovered and since only 50% or less of the breeding birds are usually present in the colonies at the time the censuses take place. Although this estimate is four to eight times higher than that previously arrived at, the species seems to be declining in the south of its Greenland breeding range, while in North Greenland the trends are unclear and unpredictable, calling for increased monitoring efforts.  相似文献   

17.
Understanding the scales at which environmental variability affects populations is critical for projecting population dynamics and species distributions in rapidly changing environments. Here we used a multilevel Bayesian analysis of range‐wide survey data for Adélie penguins to characterize multidecadal and annual effects of sea ice on population growth. We found that mean sea ice concentration at breeding colonies (i.e., “prevailing” environmental conditions) had robust nonlinear effects on multidecadal population trends and explained over 85% of the variance in mean population growth rates among sites. In contrast, despite considerable year‐to‐year fluctuations in abundance at most breeding colonies, annual sea ice fluctuations often explained less than 10% of the temporal variance in population growth rates. Our study provides an understanding of the spatially and temporally dynamic environmental factors that define the range limits of Adélie penguins, further establishing this iconic marine predator as a true sea ice obligate and providing a firm basis for projection under scenarios of future climate change. Yet, given the weak effects of annual sea ice relative to the large unexplained variance in year‐to‐year growth rates, the ability to generate useful short‐term forecasts of Adélie penguin breeding abundance will be extremely limited. Our approach provides a powerful framework for linking short‐ and longer term population processes to environmental conditions that can be applied to any species, facilitating a richer understanding of ecological predictability and sensitivity to global change.  相似文献   

18.
Due to its high spatial resolution, broad spatial coverage, and cost-effectiveness, commercial satellite imagery is rapidly becoming a key component of biological monitoring in the Antarctic. While considerable success in surveying emperor penguins (Aptenodytes forsteri) has been facilitated by their large size and the visual simplicity of their habitat, there has been considerably less progress in mapping colonies on the Antarctic Peninsula and associated sub-Antarctic islands where smaller penguin species breed on topographically complex terrain composed of mixed substrates. Here, we demonstrate that Adélie penguin (Pygoscelis adeliae), chinstrap penguin (P. antarcticus), gentoo penguin (P. papua), and macaroni penguin (Eudyptes chrysolophus) colonies can be detected by high-resolution (2-m multispectral, 40–50-cm panchromatic) satellite imagery and that under ideal conditions, such imagery is capable of distinguishing among groups of species where they breed contiguously. To demonstrate the potential for satellite imagery to estimate penguin population abundance, we use satellite imagery of Paulet Island (63°35′S, 55°47′W) to estimate a site-wide population of 115,673 (99,222–127,203) breeding pairs of Adélie penguins.  相似文献   

19.
We investigated alloparental interactions and conditions which could facilitate or prevent the expression of alloparental behaviours in Adélie penguins (Pygoscelis adeliae), a long-lived seabird which nests in high-density colonies around Antarctica. Observation sessions were carried out during the crèche stage on 48 identified pairs and 50 identified chicks in a 217-nest subcolony. As the season progressed, young were fed less often by their own parents because these were increasingly absent from the breeding site and less responsive to their offspring’s solicitations. As a consequence, young and particularly those with a low body mass, coming from a two-chick brood, opted for gradually soliciting more from other adults to obtain food, preferentially those nesting in their direct vicinity. Unsuccessful breeders represented a low and constant part of the adult population and were not specifically solicited by unrelated young. Despite the increasing chick demand, only 4.1% (3 out of 73) of alloparental solicitations resulted in feeding, which is negligible compared to parental feeding. To investigate factors that could trigger the appearance of alloparental care, we carried out comparisons with king (Aptenodytes patagonicus) and emperor penguins (Aptenodytes forsteri) which represent the closest species for which data on alloparental behaviour were available. Our results show different trends to those observed in these species and three factors may explain the low occurrence of alloparental behaviour in Adélie penguins: (1) the low and constant proportion of unsuccessful breeders, (2) the absence of chick selectivity towards unsuccessful breeders, and (3) the late period of chick accessibility for potential alloparents.  相似文献   

20.
The taxonomy of rockhopper penguins, Eudyptes chrysocome (Forster 1781), is contentious. Some authorities recognise three subspecies based on morphological differences and geographical separation of breeding populations while others suggest that morphological differences support classifying rockhopper penguins as two distinct species. The taxonomy of rockhopper penguins is of more than academic interest as breeding colonies worldwide have declined markedly in size since the 1930s and rockhopper penguins are currently listed as vulnerable by the IUCN. We compared the genetic distances between three mitochondrial gene regions from the three putative rockhopper penguin subspecies with the distances between various penguin sister species to clarify the taxonomy and systematics of rockhopper penguins. Genetic distances between the rockhopper penguin taxa, relative to other closely related penguin species, support reclassifying the three rockhopper penguin subspecies as species. Reclassification of rockhopper penguins as three species could result in their conservation status being upgraded from vulnerable to endangered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号