首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plants are often grouped as canopy species or understorey species because it is thought that that these sets of taxa interact in predictable ways. Mensurative experiments in southern Australia demonstrated that the percentage cover of encrusting coralline algae was greater, and articulated (branching) coralline algae less, on boulders under a canopy of dense kelp (>7 plants per m2), Ecklonia radiata, than on boulders without kelp. Experimental clearances of kelp and reciprocal transplants of boulders between patches of E. radiata and patches without kelp showed that canopies maintained and facilitated the growth of encrusting coralline algae and reduced the cover of articulated coralline algae. Potential artefacts associated with clearing kelp and transplanting boulders were not detected when tested with a series of translocation controls. These results reject the model that the co‐occurrence of E. radiata and encrusting corallines is just an assemblage of plants caused by spatial and temporal coincidence. Instead, they support the model that kelp facilitates the growth and survival of understorey algae.  相似文献   

2.
Studies of east Antarctic marine assemblages on hard substrata are rare. In relation to sea-ice breakout, we assessed benthic patterns of habitat and inhabitants between islands and bays at each of two depths (6 and 12 m) across the Windmill Islands coast. Island sites experience sea-ice breakout in the austral spring, while bay sites typically retain sea-ice cover into the summer and in some places the cover is virtually permanent. Composition of assemblages differed between sheltered bays and exposed islands. Islands were dominated by macroalgae, which also varied with depth. Immediately below the ice–foot zone at 6 m, substratum space were monopolised by foliose red (Palmaria decipiens) and foliose brown (Desmarestia sp.) algae, whereas at 12 m large canopies of Himantothallus grandifolius was abundant. The understorey consisted of a mixture of turfs and encrusting red algae at 6 m, and coralline algae at 12 m. Sheltered bays had large areas of sediment/algal complex and no canopy-forming macroalgae. We found more sponges and hydroids in bays, and more brittle stars around islands. Experiments testing factors that covary with exposure and depth in Antarctica, such as light, sedimentation and ice scour are necessary to determine processes that maintain these striking patterns.  相似文献   

3.
Abstract. The influence of canopy trees and shrubs on under‐storey plants is complex and context‐dependent. Canopy plants can exert positive, negative or neutral effects on production, composition and diversity of understorey plant communities, depending on local environmental conditions and position in the landscape. We studied the influence of Prosopis velutina (mesquite) on soil moisture and nitrogen availability, and understorey vegetation along a topographic gradient in the Sonoran Desert. We found significant increases in both soil moisture and N along the gradient from desert to riparian zone. In addition, P. velutina canopies had positive effects, relative to open areas, on soil moisture in the desert, and soil N in both desert and intermediate terrace. Biomass of understorey vegetation was highest and species richness was lowest in the riparian zone. Canopies had a positive effect on biomass in both desert and terrace, and a negative effect on species richness in the terrace. The effect of the canopy depended on landscape position, with desert canopies more strongly influencing soil moisture and biomass and terrace canopies more strongly influencing soil N and species richness. Individual species distributions suggested interspecific variation in response to water‐ vs. N‐availability; they strongly influence species composition at both patch and landscape position levels.  相似文献   

4.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

5.
Irving AD  Connell SD 《Oecologia》2006,148(3):491-502
Assembly rules provide a useful framework for predicting patterns of community assembly under defined environmental conditions. Habitat created by canopy-forming algae (such as kelps) provides a promising system for identifying assembly rules because canopies typically have a large and predictable influence on understorey communities. Across >1,000 km of subtidal South Australian coastline, we identified natural associations between assemblages of understorey algae and (1) monospecific canopies of Ecklonia radiata, (2) canopies comprised of E. radiata mixed with Fucales (Cystophora spp. and Sargassum spp.), and (3) gaps among canopies of algae. We were able to recreate these associations with experimental tests that quantified the assembly of understorey algae among these three habitat types. We propose the assembly rule that understorey communities on subtidal rocky coast in South Australia will be (1) monopolised by encrusting coralline algae beneath monospecific canopies of E. radiata, (2) comprised of encrusting corallines, encrusting non-corallines, and sparse covers of articulated corallines, beneath mixed E. radiata-Fucales canopies, and (3) comprised of extensive covers of articulated corallines and filamentous turfs, as well as sparse covers of foliose algae and juvenile canopy-formers, within gaps. Consistencies between natural patterns and experimental effects demonstrate how algal canopies can act as a filter to limit the subsets of species from the locally available pool that are able to assemble beneath them. Moreover, the subsets of species that assemble to subtidal rocky substrata in South Australia appear to be predictable, given knowledge of the presence and composition of canopies incorporating E. radiata.  相似文献   

6.
Question: The effect of overstorey composition on above‐ground dynamics of understorey vegetation is poorly understood. This study examines the understorey biomass, production and turnover rates of vascular and non‐vascular plants along a conifer–broadleaf gradient of resource availability and heterogeneity. Location: Canadian boreal forests of northwest Quebec and Ontario. Methods: We sampled mature stands containing various proportions of black spruce (Picea mariana (Mill.) BSP), trembling aspen (Populus tremuloides Michx.) and jack pine (Pinus banksiana Lamb.). Above‐ground biomass of the understorey vegetation was assessed through harvesting; annual growth rates were calculated as the differences between biomass in 2007 and 2008, as estimated by allometric relationships, and turnover rates were estimated as net primary production divided by the biomass in 2007. Results: Higher aspen presence, linked to greater nutrient availability in the forest floor, was generally associated with higher vascular biomass and production in the understorey. This effect was less pronounced in sites of high intrinsic fertility. In contrast, bryophyte biomass was positively associated with conifer abundance, particularly in wet sites of the Quebec study area. Non‐linear responses resulted in total understorey biomass being lower under mixed canopies than under pure aspen or pure conifer canopies. Turnover rates did not differ with overstorey composition. Conclusions: While resource availability is a main driver of understorey productivity, resources as drivers appear to differ with differences in understorey strata components, i.e. vascular versus non‐vascular plants. Resource heterogeneity induced by a mixed canopy had overall negative effects on understorey above‐ground productivity, as this productivity seemed to rely on species adapted to the specific conditions induced by a pure canopy.  相似文献   

7.
Natural disturbances, especially fire and treefalls, influence tree canopy composition in the Pseudotsuga menziesii forests of the western Cascade Range, Oregon. The composition of tree, shrub, and herb assemblages in the understorey of stands with different canopy types, such as maturing Pseudotsuga, Tsuga heterophylla, or mixed species stands, also differs.Differences in both canopy type and the prevalence of canopy openings correlated with different degrees of understorey development in stands of similar ages. This suggests that understorey assemblages also reflect disturbance history. Before understorey assemblages can be used to relate community samples to community or habitat types, the extent to which their composition reflects long term influences of stand history vs. differences in site potential must be determined.  相似文献   

8.
The vegetation of a small fjord and its adjacent open shore was documented by subaquatic video. The distribution of individual species of macroalgae and the composition of assemblages were compared with gradients of light availability, hydrography, slope inclination, substratum, and exposition to turbulence and ice. The sublittoral fringe is usually abraded by winterly ice floes and devoid of large, perennial algae. Below this zone, the upper sublittoral is dominated by Desmarestia menziesii on steep rock faces, where water movements become irregular, or by Ascoseira mirabilis and Palmaria decipiens on weakly inclined slopes with steady rolling water movements. In the central sublittoral above 15 m, where turbulence is still active, Desmarestia anceps is outcompeting all other species on solid substratum, However, the species is not able to persist on loose material under these conditions. Instead, Himantothallus grandifolius may occur. Deeper, where turbulence usually is negligible, Desmarestia anceps also covers loose material. The change of dominance to Himantothallus grandifolius in the deep sublittoral cannot completely be explained at present. Himantothallus grandifolius also prevails in a mixed assemblage under the influence of grounding icebergs. Most of the smaller algae are opportunists with different degrees of tolerance for turbulence, but some apparently need more stable microhabitats and thus are dependent from continuing suppression of competitive large phaeophytes.The present work is part of the Argentinian-German cooperation program RASCALS (Research on Antarctic shallow coastal and littoral systems).  相似文献   

9.
Ice scour disturbance has a significant effect on the physical and biological characteristics of polar benthos. A series of grids, each consisting of 25 markers, were deployed along depth transects and replicated at two contrasting study sites at Adelaide Island, West Antarctic Peninsula. Markers were surveyed and replaced every 3 months for 2 years in order to assess the frequency and intensity of iceberg impacts. Depth, site, season and year were all highly significant factors influencing ice scouring frequency. We observed a high variation in the duration of winter fast ice between sites and years, which had a marked effect on ice scouring frequency. The ecological effects of the disturbance regime are likely to include depth zonation of benthic assemblages, patchiness of communities at varying stages of recovery and the near denudation of sessile fauna in the shallow subtidal.
Dan A. SmaleEmail:
  相似文献   

10.
Dan A. Smale 《Polar Biology》2008,31(10):1225-1231
Benthic communities in nearshore habitats around Antarctica are strongly influenced by ice disturbance. It has been suggested that where ice scour disturbance is severe, the relative importance of certain ecological groups is elevated. I examined the relative contributions of mobility, size, feeding strategy and development mode groups to total faunal abundance and species richness in relation to ice disturbance at Adelaide Island, West Antarctic Peninsula. The contributions of ecological groups were assessed along a depth/disturbance gradient from 5 to 25 m depth at two sites. At one site, the relative abundance of the low mobility group was significantly greater at low disturbance levels, whilst the relative abundance of the high dispersal group (taxa with pelagic larvae) was elevated at high disturbance levels. At the other site, the relative abundance of secondary consumers was greater at high disturbance levels. Even over small spatial scales, certain ecological traits seem advantageous to a fauna shaped by intense, catastrophic ice scour.  相似文献   

11.
The sublittoral zonation of macroalgae and abundant animals in Potter Cove, King George Island, is described in relation to substrate, exposure to turbulence and impact of grounding icebergs. Implications on the ecological niches of the most prominent phaeophytes are discussed. It is concluded that Desmarestia anceps and D. menziesii exclude Himantothallus grandifolius under favourable conditions. However, Himantothallus, by its potential to inhabit unstable substrates, may be better adapted to withstand the ice impact. The replacement of Desmarestia by Himantothallus at greater depth can be explained only partially at present.  相似文献   

12.
Vertical CO2 profiles (between 0.02 and 14.0 m) were studied in forest canopies of Pinus contorta, Populus tremuloides, and in a riparian forest with Acer negundo and Acer grandidentatum during two consecutive growing seasons. Profiles, measured continuously during 1- to 13-day periods in four to five stands differing in overstorey canopy area index (CAI < 4.5; including leaves, branches and stems), were well stratified, with highest [CO2] just above the forest floor. Canopy [CO2] profiles were influenced by stand structure (CAI, presence of understorey vegetation), and were highly dependent on vegetation type (deciduous and evergreen). A doubling of CAI in Acer spp. and P. tremuloides stands did not show an effect on upper canopy [CO2], when turbulent mixing was high. However, increasing understorey biomass in Acer spp. stands had a profound effect on lower canopy [CO2]. In open stands with a vigorous understorey layer, higher soil respiration rates were offset by increased understorey gas exchange, resulting in [CO2] below those of the convective boundary layer (CBL). Midday depletions up to 20 ppmv below CBL values could be frequently observed in deciduous canopies. In evergreen canopies, [CO2] stayed generally above the CBL background values, [CO2] profiles were more uniform, and gradients were smaller than in deciduous stands with similar CAI. Seasonal changes of canopy [CO2] reflected changes in soil respiration rates as well as plant phenology and gas exchange of both dominant tree and understorey vegetation. Seasonal patterns were less pronounced in evergreen than in deciduous forests.  相似文献   

13.
Little is known about the importance of the forest overstorey relative to other factors in controlling the spatial variability in understorey species composition in near-natural temperate broadleaved forests. We addressed this question for the 19 ha ancient forest Suserup Skov (55°22′ N, 11°34′ E) in Denmark, one of the few old-growth temperate broadleaved forest remnants in north-western Europe, by inventorying understorey species composition and environmental conditions in 163 100 m2 plots. We use unconstrained and constrained ordinations, variation partitioning, and Indicator Species Analysis to provide a quantitative assessment of the importance of the forest overstorey in controlling understorey species composition. Comparison of the gradients extracted by unconstrained and constrained ordinations showed that the main gradients in understorey species composition in our old-growth temperate broadleaved forest remnant are not caused by variability in the forest overstorey, but are related to topography and soil, edge effects, and unknown broad-scale factors. Nevertheless, overstorey-related variables uniquely accounted for 15% of the total explained variation in understorey species composition, with the pure overstorey-related (Rpo), topography and soil (Rpt), edge and anthropogenic disturbance effects (Rpa), and spatial (Rps) variation fractions being of equal magnitude. The forward variable selection showed that among the overstorey-related variables understorey light availability and to a lesser extent vertical forest structure were most important for understorey species composition. No unique influence of overstorey tree species identity could be documented. There were many indicator species for high understorey light levels and canopy gap centres, but none for medium or low light or closed canopy. Hence, no understorey species behaved as obligate shade plants. Our study shows that, the forest overstorey has a weak control of understorey species composition in near-natural broadleaved forest, in contrast to results from natural and managed forests comprising both conifer and broadleaved species. Nevertheless, >20% of the understorey species found were indicators of high light conditions or canopy openings. Hence, variability in canopy structure and understorey light availability is important for maintaining understorey species diversity.  相似文献   

14.
Canopy-forming algae often coexist with an understorey of encrusting coralline algae that bleach following the loss of canopies. We tested the hypothesis that canopy loss causes a reduction in photosynthetic activity of encrusting coralline algae concomitant with their bleaching. When canopies were experimentally removed, corallines bleached and their photosynthetic activity was rapidly reduced to half their activity observed under canopies. This result prompted us to test, and subsequently accept, the hypothesis that exposure of understorey corallines to enhanced light intensity per se (simulation of canopy loss) acts as a mechanism that causes bleaching and reduced photosynthetic activity. Despite bleaching, encrusting corallines maintained reduced levels of photosynthetic activity, and this may explain why, under certain conditions, bleached corallines can persist in the absence of canopy-forming algae. Nevertheless, our data provide evidence that the positive association between canopy-forming algae and encrusting coralline algae is maintained because of shade provided by the canopy.  相似文献   

15.
Despite being one of the most intensely studied habitat types worldwide, the intertidal region around Antarctica has received little more than superficial study. Despite this, the first detailed study of a single locality on the Antarctic Peninsula reported previously unanticipated levels of species richness, biomass and diversity in cryptic intertidal habitats. The current study extends the coverage achieved from this single locality. The intertidal zone at sites in the Scotia Arc, the Falkland Islands and the Antarctic Peninsula was investigated. At all the study sites selected, a wide range of macrofauna was found inhabiting the littoral fringe. These communities, although generally cryptic and occupying predominantly the undersides of boulders and protected interstices, at some locations and sites were rich at multiple taxonomic levels. Across the study locations species richness in the intertidal zone ranged from 7 to 30 species. The highest species richness and diversity were found at high latitude localities, which experienced the highest physical disturbance due to ice scour, and appeared superficially to be denuded of life. Species assemblages varied with latitude with Adelaide Island having a high proportion of bryozoans relative to all other localities.  相似文献   

16.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

17.
Abstract. The Clements' Deterministic model of plant communities implies that a change in one species, especially a change in the physiognomic dominant, would have profound effects on the remainder of the community. Gleason's Individualistic model suggests there would be little effect. These alternative models are tested by examining the forest composition on both sides of a boundary along which the tree Nothofagus menziesii is slowly invading. Classification of forest composition, excluding N. menziesii, gave little evidence of an effect of N. menziesii on the lower strata: understorey vegetation types were distributed across the boundary. Some differences were found at individual sites, but these were often inconsistent between sites. Ordination, also excluding N. menziesii, similarly showed that none of the first three understorey axes reflected any effect of N. menziesii. The fourth axis was correlated with the presence of N. menziesii, but only when canopy trees were included. It is concluded that specific composition of the canopy in these montane New Zealand evergreen forests has little effect on the understorey, supporting Gleason's Individualistic concept of the community.  相似文献   

18.
Tropical mangrove forests are characterized by clear zonation along a tidal gradient, and it has been supposed that the zonation is primarily controlled by soil factors. However, effects of disturbance on mangrove forests are still not well understood and may play an important role on the vegetation patterns and forest dynamics in some forest formations. In this study, the pattern of disturbance regime and its effects on regeneration of tropical mangrove forests along a tidal gradient were investigated in Ranong, Thailand. We established one or two 0.5 ha plots in four vegetation zones, i.e. Sonneratia albaAvicennia alba zone, Rhizophora apiculata zone, Ra – Bruguiera gymnorrhiza zone, Ceriops tagalXylocarpus spp. zone. Gap size (percentage gap area to total study area and individual gap size) was the largest in Sa–Aa zone which is located on the most seaward fringe, and it declined from seaward to inland. Canopy trees of S. alba and A. alba had stunted trunks and showed low tree density. On the contrary, canopy dominants in the other three inland zones, e.g. R. apiculata, B. gymnorrhiza, and Xylocarpus spp., had slender trunks and showed high tree density. Accordingly, differences in disturbance regime among the four zones were resulted from the forest structural features of each zone. Disturbance regime matched with regeneration strategies of canopy dominants. Seedlings and saplings of S. alba and A. alba, which need sunny condition for their growth, were abundant in gaps than in understorey. By contrast, R. apiculata, B. gymnorrhiza, and Xylocarpus spp., which can tolerate less light than S. alba and A. alba, had greater seedling and sapling density under closed canopy than gaps. Many large gaps may enhance the abundance of S. alba and A. alba in Sa–Aa zone, and a few small gaps may prevent the light demanding species to establish and grow in the other inland zones. Correspondence of disturbance regime and regeneration strategies (e.g. light requirement) of canopy dominants may contribute to the maintenance of the present species composition in each of the vegetation zones.  相似文献   

19.
The species richness (number of vascular plants per hectare) of Australian plant communities (containing a mosaic of gap, regeneration, maturation and senescent phases) is correlated with the annual biomass productivity of the overstorey canopy.The annual production of leaves and stem in the canopy of the plant community is shown to be limited by the requirements of photosynthesis (particularly light and the availability of water) and the length of the growing season.The species richness of Australian plant communities is the product of the blance between the dominance of the overstorey and the response of the understorey to the shading of the overstorey. For all climatic regions and zones the species richness of the overstorey of the plant community is shown to be exponentially related to the annual shoot growth of the overstorey canopy, until the latitudinal or altitudinal tree line is reached. With latitudinal increase outside the tropics, overstorey canopies of forest communities absorb increasingly more of the incident solar radiation. markedly reducing the species richness of the understorey strata. In contrast, in these latitudes the overstorey of plant communities with widely spaced trees or tall shrubs will absorb far less solar radiation, thus enabling the species richness of the understorey to be maintained.  相似文献   

20.
The effects of selective logging on the diversity and species composition of moths were investigated by sampling from multiple sites in primary forest, both understorey and canopy, and logged forest at Danum Valley, Sabah, Malaysia. The diversity of individual sites was similar, although rarefied species richness of logged forest was 17% lower than for primary forest (understorey and canopy combined). There was significant heterogeneity in faunal composition and measures of similarity (NESS index) among primary forest understorey sites which may be as great as those between primary understorey and logged forest. The lowest similarity values were between primary forest understorey and canopy, indicating a distinct canopy fauna. A number of species encountered in the logged forest were confined to, or more abundant in, the canopy of primary forest. Approximately 10% of species were confined to primary forest across a range of species' abundances, suggesting this is a minimum estimate for the number of species lost following logging. The importance of accounting for heterogeneity within primary forest and sampling in the canopy when measuring the effects of disturbance on tropical forest communities are emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号