首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Be X  Hong Y  Wei J  Androphy EJ  Chen JJ  Baleja JD 《Biochemistry》2001,40(5):1293-1299
E6AP is a cellular protein that binds cancer-related papillomaviral E6 proteins. The E6 binding domain, called E6ap, is located on an 18-amino acid segment of E6AP. The corresponding peptide was synthesized and its structure determined by nuclear magnetic resonance spectroscopy. The overall structure of the peptide is helical. A consensus E6-binding sequence among different E6 interacting proteins contains three conserved hydrophobic residues. In the structure of the E6AP peptide, the three conserved leucines (Leu 9, Leu 12, and Leu 13) form a hydrophobic patch on one face of the alpha-helix. Substitution of any of these leucines with alanine abolished binding to E6 protein, indicating that the entire hydrophobic patch is necessary. Mutation of a glutamate to proline, but not alanine, also disrupted the interaction between E6 and E6AP protein, suggesting that the E6-binding motif of the E6AP protein must be helical when bound to E6. Comparison of the E6ap structure and mutational results with those of another E6-binding protein (E6BP/ERC-55) indicates the existence of a general E6-binding motif.  相似文献   

2.
The sliding clamp of the Escherichia coli replisome is now understood to interact with many proteins involved in DNA synthesis and repair. A universal interaction motif is proposed to be one mechanism by which those proteins bind the E. coli sliding clamp, a homodimer of the beta subunit, at a single site on the dimer. The numerous beta(2)-binding proteins have various versions of the consensus interaction motif, including a related hexameric sequence. To determine if the variants of the motif could contribute to the competition of the beta-binding proteins for the beta(2) site, synthetic peptides derived from the putative beta(2)-binding motifs were assessed for their abilities to inhibit protein-beta(2) interactions, to bind directly to beta(2), and to inhibit DNA synthesis in vitro. A hierarchy emerged, which was consistent with sequence similarity to the pentameric consensus motif, QL(S/D)LF, and peptides containing proposed hexameric motifs were shown to have activities comparable to those containing the consensus sequence. The hierarchy of peptide binding may be indicative of a competitive hierarchy for the binding of proteins to beta(2) in various stages or circumstances of DNA replication and repair.  相似文献   

3.
Sweeney MC  Wang X  Park J  Liu Y  Pei D 《Biochemistry》2006,45(49):14740-14748
Inhibitor of apoptosis (IAP) proteins regulate programmed cell death by inhibiting members of the caspase family of proteases. The X-chromosome-linked IAP (XIAP) contains three baculovirus IAP repeat (BIR) domains, which bind directly to the N-termini of target proteins including those of caspases-3, -7, and -9. In the present study, we defined the consensus sequences of the motifs that interact with the three BIR domains in an unbiased manner. A combinatorial peptide library containing four random residues at the N-terminus was constructed and screened using BIR domains as probes. We found that the BIR3 domain binds a highly specific motif containing an alanine or valine at the N-terminus (P1 position), an arginine or proline at the P3 position, and a hydrophobic residue (Phe, Ile, and Tyr) at the P4 position. The BIR2-binding motif is less stringent. Although it still requires an N-terminal alanine, it tolerates a wide variety of amino acids at P2-P4 positions. The BIR1 failed to bind to any peptides in the library. SPR analysis of individually synthesized peptides confirmed the library screening results. Database searches with the BIR2- and BIR3-binding consensus sequences revealed a large number of potential target proteins. The combinatorial library method should be readily applicable to other BIR domains or other types of protein modular domains.  相似文献   

4.
Cervical cancers evolve from lesions generated by genital human papillomaviruses (HPV). "Low-risk" genital HPVs cause benign proliferations whereas "high-risk" types have the potential to progress into cancer. High-risk HPV E6 oncoproteins interact with the ubiquitin ligase E6AP and target several cellular proteins, including p53 and proteins of the MAGI family, towards ubiquitin-mediated degradation. E6AP, like other E6 binding proteins such as E6BP, IRF-3 and paxillin, interacts with E6 via a consensus leucine-charged motif. Here we have investigated the kinetics of the interactions of a 15-mer peptide containing the LxxvarphiLsh motif of E6AP with E6. For this we have developed a Biacore assay based on antibody-capture on the sensor surface of GST- and/or MBP-E6AP peptide constructs followed by E6 protein injection. Our experiments show that E6 oncoproteins from four major high-risk (16, 18, 33 and 58) HPV types bind to E6AP with equilibrium dissociation constants in the low micromolar range. The kinetic dissociation parameters of these interactions are remarkably similar. On the other hand, low-risk HPV 11 E6 does not interact with E6AP even at relatively high concentrations. We also show that the two zinc-binding domains of E6 are required for E6AP recognition. Finally, we have analysed the binding properties of site-directed mutants of the E6AP-derived peptide. We demonstrate the importance for binding of conserved aliphatic side-chains and the moderate role of the global negative charge of the peptide. This work provides the first quantitative data on an HPV E6-mediated interaction, which support the current models of E6AP-mediated degradation.  相似文献   

5.
6.
An essential step leading to fertilization is the binding of a sperm to the egg plasma membrane. Fertilin beta, a membrane bound protein on the extracellular surface of sperm, partially mediates this binding via the alpha6beta1 integrin. Fertilin beta is a member of the still expanding family of ADAM proteins (a disintegrin and metalloprotease) that are implicated in many cellular functions ranging from neurogenesis to myoblast fusion and cytokine processing. Fertilin beta contains a highly conserved motif (D/E)ECD in the disintegrin domain. This suggests that (D/E)ECD could be the consensus sequence for recognition of disintegrins by alpha6beta1 integrins. Previously, it has been demonstrated that small peptides containing different moieties of this consensus sequence are inhibitors of in vitro fertilization. In the present study, we sought to determine whether a four amino acid peptide sequence with two adjacent acidic residues improved inhibition, and investigated the importance for inhibition of a cysteine versus a cystine. A series of linear and cyclic peptides were synthesized, in which either one or both adjacent acidic residues in the sequence DECD were mutated to their corresponding amides (N or Q). To explore the required oxidation state of the cysteine in the (D/E)ECD sequence, it was protected as a mixed disulfide. Our results indicate that only one acidic residue is required for inhibition of fertilization and a reduced C is required.  相似文献   

7.
Wang C  Ye M  Han G  Chen R  Zhang M  Jiang X  Cheng K  Wang F  Zou H 《Proteomics》2011,11(17):3578-3581
Multiple residues with consensus sequence, i.e. motif, on proteins are closely related to protein function. However, there is no effective method for targeted analysis of such proteins. The challenge for analysis of these classes of proteins by MS is how to selectively enrich peptides containing consensus sequence from protein digest. Although enrichment of peptides containing one type of amino acid residue was successfully achieved by chemically labeling followed by chromatographic isolation, however, it is almost impossible to label and isolate signature peptides containing multiple residues with consensus sequence by chemical approach. Herein, we developed an enzymatic approach based on the specific recognition between enzyme and its substrates to enrich such peptides. This approach was realized by modification of a residue in the consensus sequence via enzyme that can recognize the sequence followed by the isolation of the modified peptides. cAMP-dependent protein kinase was used to validate this approach and 168 peptides containing consensus motif were identified with selectivity of 67.2%. Those peptides resulted in the identification of 88 proteins with consensus sequence from serum sample. As this motif-oriented peptide enrichment approach allows targeted analysis of a subset of proteins with consensus sequence, it will have broad application in biological studies.  相似文献   

8.
The human papillomavirus (HPV) type 16 (HPV16) E6 protein can stimulate mechanistic target of rapamycin complex 1 (mTORC1) signaling and cap-dependent translation through activation of the PDK1 and mTORC2 kinases. Here we report that HPV18 E6 also enhances cap-dependent translation. The integrity of LXXLL and PDZ protein binding domains is important for activation of cap-dependent translation by high-risk mucosal HPV E6 proteins. Consistent with this model, low-risk mucosal HPV6b and HPV11 E6 proteins, which do not contain a PDZ protein binding motif, also activate cap-dependent translation and mTORC1, albeit at a lower efficiency than high-risk HPV E6 proteins. In contrast, cutaneous HPV5 and HPV8 E6 proteins, which lack LXXLL and PDZ motif protein binding, do not enhance cap-dependent translation. Mutagenic analyses of low-risk HPV E6 proteins revealed that association with the LXXLL motif containing ubiquitin ligase E6AP (UBE3A) correlates with activation of cap-dependent translation. Hence, activation of mTORC1 and cap-dependent translation may be important for the viral life cycle in specific epithelial tissue types and contribute to cellular transformation in cooperation with other biological activities of high-risk HPV E6-containing proteins.  相似文献   

9.
The endoplasmic reticulum-resident chaperone heat-shock protein 47 (HSP47) plays an essential role in procollagen biosynthesis. The function of HSP47 relies on its specific interaction with correctly folded triple-helical regions comprised of Gly-Xaa-Yaa repeats, and Arg residues at Yaa positions have been shown to be important for this interaction. The amino acid at the Yaa position (Yaa(-3)) in the N-terminal-adjoining triplet containing the critical Arg (defined as Arg(0)) was also suggested to be directly recognized by HSP47 (Koide, T., Asada, S., Takahara, Y., Nishikawa, Y., Nagata, K., and Kitagawa, K. (2006) J. Biol. Chem. 281, 3432-3438). Based on this finding, we examined the relationship between the structure of Yaa(-3) and HSP47 binding using synthetic collagenous peptides. The results obtained indicated that the structure of Yaa(-3) determined the binding affinity for HSP47. Maximal binding was observed when Yaa(-3) was Thr. Moreover, the required relative spatial arrangement of these key residues in the triple helix was analyzed by taking advantage of heterotrimeric collagen-model peptides, each of which contains one Thr(-3) and one Arg(0). The results revealed that HSP47 recognizes the Yaa(-3) and Arg(0) residues only when they are on the same peptide strand. Taken together, the data obtained led us to define the HSP47-binding structural epitope in the collagen triple helix and also define the HSP47-binding motif in the primary structure. A motif search against human protein database predicted candidate clients for this molecular chaperone. The search result indicated that not all collagen family proteins require the chaperoning by HSP47.  相似文献   

10.
11.
The C-terminal domain of poly(A)-binding protein (PABC) is a peptide-binding domain found in poly(A)-binding proteins (PABPs) and a HECT (homologous to E6-AP C-terminus) family E3 ubiquitin ligase. In protein synthesis, the PABC domain of PABP functions to recruit several translation factors possessing the PABP-interacting motif 2 (PAM2) to the mRNA poly(A) tail. We have determined the solution structure of the human PABC domain in complex with two peptides from PABP-interacting protein-1 (Paip1) and Paip2. The structures show a novel mode of peptide recognition, in which the peptide binds as a pair of beta-turns with extensive hydrophobic, electrostatic and aromatic stacking interactions. Mutagenesis of PABC and peptide residues was used to identify key protein-peptide interactions and quantified by isothermal calorimetry, surface plasmon resonance and GST pull-down assays. The results provide insight into the specificity of PABC in mediating PABP-protein interactions.  相似文献   

12.
13.
Eukaryotic signal transduction involves the assembly of transient protein-protein complexes mediated by modular interaction domains. Specific Pro-rich sequences with the consensus core motif PxxP adopt the PPII helix conformation upon binding to SH3 domains. For short Pro-rich peptides, little or no ordered secondary structure is usually observed before binding interactions. The association of a Pro-rich peptide with the SH3 domain involves unfavorable binding entropy due to the loss of rotational freedom on forming the PPII helix. With the aim of stabilizing the PPII helix conformation in the Pro-rich HPK1 decapeptide PPPLPPKPKF (P2), a series of P2 analogues was prepared, in which specific Pro positions were alternatively occupied by 4(S)- or 4(R)-4-fluoro-L-proline. The interactions of these peptides with the SH3 domain of the HPK1-binding partner HS1 were quantitatively analyzed by the NILIA-CD approach. A CD thermal analysis of the P2 analogues was performed to assess their propensity to adopt the PPII helix conformation. Contrary to our expectations, the K(d) values of the analogues were lower than that of the parent peptide P2. These results clearly show that the induction of a stable PPII helix conformation in short Pro-rich peptides is not sufficient to increase their affinity toward the SH3 domain and that the effect of 4-fluoroproline strongly depends on the position of this residue in the sequence and the chirality of the substituent in the pyrrolidine ring.  相似文献   

14.
SUMO E3 ligase of the Siz/PIAS family that promotes sumoylation of target proteins contains SAP motif in its N-terminal region. The SAP motif with a consensus sequence of 35 residues was first proposed to be as a new DNA binding motif found in diverse nuclear proteins involved in chromosomal organization. We have determined solution structures of the SAP domains of SUMO ligases Siz1 from yeast and rice by NMR spectroscopy, showing that the structure of the SAP domain (residues 2-105) of rice Siz1 is a four-helix bundle with an up-down-extended loop-down-up topology, whereas the SAP domain (residues 1-111) of yeast Siz1 is comprised of five helices where the fifth helix alpha5 causes a significant change in the alignment of the four-helix bundle characteristic to the SAP domains of the Siz/PIAS family. We have also demonstrated that both SAP domains have binding ability to an A/T-rich DNA, but that binding affinity of yeast Siz1 SAP is at least by an order of magnitude higher than that of rice Siz1 SAP. Our NMR titration experiments clearly showed that yeast Siz1 SAP uses alpha2-helix for DNA binding more effectively than rice Siz1 SAP, which would result from the dislocation of this helix due to the existence of the extra helix alpha5. In addition, based on the structures of the SAP domains determined here and registered in Protein Data Bank, general features of structures of the SAP domains are discussed in conjunction with equivocal nature of their DNA binding.  相似文献   

15.
The E6 oncoprotein derived from the tumour-associated human papillomavirus (HPV) types induces the ubiquitin-mediated degradation of several cellular proteins by conjugating them with the cellular ubiquitin ligase E6-AP. This is a HECT domain-containing ligase that was originally identified through its involvement in the E6-mediated degradation of the cellular tumour suppressor protein p53. Here we have investigated, in more detail, the nature of the E6/E6-AP interaction using binding peptides isolated from an E6-specific library. The selected peptides were either predicted or shown to have an alpha-helical core resembling the E6-binding motif on E6-AP, as well as amino acid alterations that increased their affinity for E6. These peptides were potent inhibitors of the E6/E6-AP interaction. Further analysis of the effects of these peptides on the ability of E6 to direct the proteolytic degradation of its various substrates, including p53, Dlg and the MAGI family of proteins, as well as using E6-AP immunodepletion, revealed striking differences in the mechanism by which E6 targets its cellular substrates for degradation. These results suggest that the site on E6 bound by E6-AP is also most likely occupied by other, as yet unidentified, ubiquitin ligases.  相似文献   

16.
The Escherichia coli SurA protein is a periplasmic molecular chaperone that facilitates correct folding of outer membrane porins. The peptide binding specificity of SurA has been characterized using phage display of heptameric peptides of random sequence. The consensus binding pattern of aromatic-polar-aromatic-nonpolar-proline amino acids emerges for both SurA and a SurA "core domain," which remains after deletion of a peripheral peptidyl-proline isomerase domain. Isothermal titration calorimetry with a high affinity heptameric peptide of sequence WEYIPNV yields peptide affinities in the range of 1-14 microm for both SurA and its core domain. Although the peptide consensus aromatic-polar-aromatic-nonpolar-proline occurs infrequently in E. coli proteins, the less restrictive tripeptide motif aromatic-random-aromatic appears with greater-than-random frequency in outer membrane proteins and is prevalent in the "aromatic bands" of the porin beta barrel structures. Thus, SurA recognizes a peptide motif that is characteristic of integral outer membrane proteins.  相似文献   

17.
C Zwieb 《Nucleic acids research》1992,20(17):4397-4400
A group of RNA binding proteins, termed tetraloop binding proteins, includes ribosomal protein S15 and protein SRP19 of signal recognition particle. They are primary RNA binding proteins, recognize RNA tetranucleotide loops with a GNAR consensus motif, and require a helical region located adjacent to the tetraloop. Closely related RNA structures that fit these criteria appear in helix 6 of SRP RNA, in helices 22 and 23A of 16 S ribosomal RNA, and, as a pseudoknot, in the regulatory region of the rpsO gene.  相似文献   

18.
Lee C  Laimins LA 《Journal of virology》2004,78(22):12366-12377
A number of PDZ domain-containing proteins have been identified as binding partners for the oncoprotein E6 of the high-risk type human papillomaviruses (HPVs). These include hDlg, hScrib, MAGI-1, MAGI-2, MAGI-3, and MUPP1. The PDZ domain-binding motif (-X-T-X-V) at the carboxy terminus of E6 is essential for targeting PDZ proteins for proteasomal degradation. The presence of this motif only in the high-risk HPVs suggests its possible role in HPV-induced oncogenesis. To investigate the role of the PDZ domain-binding motif of E6 in the HPV life cycle, two mutant HPV31 genomes were constructed: E6ValDelta, with a deletion of the last amino acid residue of E6 (valine), and E6ETQVDelta, with a deletion of the entire PDZ domain-binding motif of E6 (ETQV). Three human foreskin keratinocyte (HFK) cell lines were established which maintained transfected wild-type HPV31 or either of two mutant genomes. Cells containing either of two mutant genomes were significantly retarded in their growth rates and reduced in their viral copy numbers compared to those transfected with wild-type genomes. Western analysis did not reveal any significant changes in the levels of PDZ proteins following stable transfection of any HPV31 genomes into HFKs. Although the E6ETQVDelta-transfected HFKs exhibited a pattern of morphological differentiation that appeared different from the HPV31 wild-type-transfected HFKs in organotypic raft cultures, immunohistochemical analysis failed to identify substantial changes in the differentiation-dependent membrane localization of hDlg proteins. These results suggest that binding of E6 to PDZ proteins modulates the early viral functions such as proliferation and maintenance of the viral copy number in undifferentiated cells.  相似文献   

19.
An hypothesis is tested that individual peptides corresponding to the transmembrane helices of the membrane protein, rhodopsin, would form helices in solution similar to those in the native protein. Peptides containing the sequences of helices 1, 4 and 5 of rhodopsin were synthesized. Two peptides, with overlapping sequences at their termini, were synthesized to cover each of the helices. The peptides from helix 1 and helix 4 were helical throughout most of their length. The N- and C-termini of all the peptides were disordered and proline caused opening of the helical structure in both helix 1 and helix 4. The peptides from helix 5 were helical in the middle segment of each peptide, with larger disordered regions in the N- and C-termini than for helices 1 and 4. These observations show that there is a strong helical propensity in the amino acid sequences corresponding to the transmembrane domain of this G-protein coupled receptor. In the case of the peptides from helix 4, it was possible to superimpose the structures of the overlapping sequences to produce a construct covering the whole of the sequence of helix 4 of rhodopsin. As similar superposition for the peptides from helix 1 also produced a construct, but somewhat less successfully because of the disordering in the region of sequence overlap. This latter problem was more severe for helix 5 and therefore a single peptide was synthesized for the entire sequence of this helix, and its structure determined. It proved to be helical throughout. Comparison of all these structures with the recent crystal structure of rhodopsin revealed that the peptide structures mimicked the structures seen in the whole protein. Thus similar studies of peptides may provide useful information on the secondary structure of other transmembrane proteins built around helical bundles.  相似文献   

20.
MLLE (previously known as PABC) is a peptide-binding domain that is found in poly(A)-binding protein (PABP) and EDD (E3 isolated by differential display), a HECT E3 ubiquitin ligase also known as HYD (hyperplastic discs tumor suppressor) or UBR5. The MLLE domain from PABP recruits various regulatory proteins and translation factors to poly(A) mRNAs through binding of a conserved 12 amino acid peptide motif called PAM2 (for PABP-interacting motif 2). Here, we determined crystal structures of the MLLE domain from PABP alone and in complex with PAM2 peptides from PABP-interacting protein 2. The structures provide a detailed view of hydrophobic determinants of the MLLE binding coded by PAM2 positions 3, 5, 7, 10, and 12 and reveal novel intermolecular polar contacts. In particular, the side chain of the invariant MLLE residue K580 forms hydrogen bonds with the backbone of PAM2 residues 5 and 7. The structures also show that peptide residues outside of the conserved PAM2 motif contribute to binding. Altogether, the structures provide a significant advance in understanding the molecular basis for the binding of PABP by PAM2-containing proteins involved in translational control, mRNA deadenylation, and other cellular processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号