首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Pre-beta1-HDL, a putative discoid-shaped high density lipoprotein (HDL) of approximately 67-kDa mass that migrates with pre-beta mobility in agarose gel electrophoresis, contains apolipoprotein A-I (apoA-I), phospholipids, and unesterified cholesterol. It participates in the retrieval of cholesterol from peripheral tissues. In this study we established a new sandwich enzyme immunoassay (EIA) for measuring plasma pre-beta1-HDL using mouse anti-human pre-beta1-HDL monoclonal antibody (MAb 55201) and goat anti-human apoA-I polyclonal antibody. MAb 55201 reacted with apoA-I in lipoprotein [A-I] with molecular mass less than 67 kDa, and with pre-beta1-HDL separated by nondenaturing two-dimensional electrophoresis, whereas it did not react with apoA-I in alpha-HDL. Pre-beta1-HDL levels measured by this method declined when incubated at 37 degrees C for 2 h, whereas this decrease was not observed in the presence of 2 mM lecithin:cholesterol acyltransferase inhibitor 5,5'-dithiobis (2-nitrobenzoic acid). To clarify the clinical significance of measuring pre-beta1-HDL by this method, 47 hyperlipidemic subjects [male/female 22/25; age 55 +/- 14 years; body mass index 25 +/- 4.5 kg/m(2); total cholesterol (TC) 245 +/- 64 mg/dl; triglyceride (TG) 232 +/- 280 mg/dl; HDL cholesterol (HDL-C) 51 +/- 23 mg/dl] and 25 volunteers (male/female 15/10; age 36 +/- 9.3 years; body mass index 23 +/- 3.5 kg/m(2); TC 183 +/- 28 mg/dl; TG 80 +/- 34 mg/dl; HDL-C 62 +/- 15 mg/dl) were involved. Plasma pre-beta1-HDL levels were significantly higher in hyperlipidemic subjects than in volunteers (39.3 +/- 10.1 vs. 22.5 +/- 7.5 mg/ml, P < 0.001) whereas plasma apoA-I levels did not differ (144.2 +/- 28.4 vs. 145.3 +/- 16.3 mg/dl).These results indicate that this sandwich EIA method specifically recognizes apoA-I associated with pre-beta1-HDL.  相似文献   

2.
The contribution of ABCA1-mediated efflux of cellular phospholipid (PL) and cholesterol to human apolipoprotein A-I (apoA-I) to the formation of pre beta 1-HDL (or lipid-poor apoA-I) is not well defined. To explore this issue, we characterized the nascent HDL particles formed when lipid-free apoA-I was incubated with fibroblasts in which expression of the ABCA1 was upregulated. After a 2 h incubation, the extracellular medium contained small apoA-I/PL particles (pre beta 1-HDL; diameter = 7.5 +/- 0.4 nm). The pre beta 1-HDL (or lipid-poor apoA-I) particles contained a single apoA-I molecule and three to four PL molecules and one to two cholesterol molecules. An apoA-I variant lacking the C-terminal alpha-helix did not form such particles when incubated with the cell, indicating that this helix is critical for the formation of lipid-poor apoA-I particles. These pre beta 1-HDL particles were as effective as lipid-free apoA-I molecules in mediating both the efflux of cellular lipids via ABCA1 and the formation of larger, discoidal HDL particles. In conclusion, pre beta 1-HDL is both a product and a substrate in the ABCA1-mediated reaction to efflux cellular PL and cholesterol to apoA-I. A monomeric apoA-I molecule associated with three to four PL molecules (i.e., lipid-poor apoA-I) has similar properties to the lipid-free apoA-I molecule.  相似文献   

3.
Physical activity can raise the level of circulating HDL cholesterol. Pre beta 1-HDL is thought to be either the initial acceptor of cellular cholesterol or virtually the first particle in the pathway of the formation of HDL from apolipoprotein A-I and cellular lipids. We have therefore sought to identify pre beta 1-HDL in arterial and venous circulations of exercising legs in healthy individuals and in subjects with stable Type 2 diabetes mellitus. Blood samples were taken simultaneously from the femoral artery and vein before and after 25 min cycling exercise. The major findings were, first, that exercise significantly increased plasma concentration of pre beta 1-HDL (20% increase, P < 0.05) and second, that the pre beta 1-HDL concentration was significantly higher in the venous compared with the arterial blood both before and after exercise in both diabetics and controls. In the combined population, formation of pre beta 1-HDL at rest was 9.9 +/- 5.2 mg/min and exercise enhanced pre beta 1-HDL formation 6.6-fold in both groups.  相似文献   

4.
Miida T  Yamada T  Yamadera T  Ozaki K  Inano K  Okada M 《Biochemistry》1999,38(51):16958-16962
Serum amyloid A protein (SAA), an acute-phase reactant in reactive amyloidosis, has high affinity for high-density lipoprotein (HDL). When SAA is added to HDL, SAA displaces apolipoprotein A-I (apoA-I) and phospholipid from the HDL particles. These dissociated components may form prebeta1-HDL because free apoA-I can associate with phospholipid to become a lipoprotein having prebeta mobility. To determine whether SAA generates prebeta1-HDL from alpha-migrating HDL, we investigated the effects of recombinant SAA on HDL subfraction concentration using nondenaturing two-dimensional gradient gel electrophoresis. When we added SAA (0.5 mg/mL) to plasma, the prebeta1-HDL concentration increased by 164% (from 4.7% +/- 1.3% to 12.4% +/- 3.2% of apoA-I, p < 0.005). The increase in prebeta1-HDL was proportional to the dose of SAA. When we added SAA to a column of Sepharose beads coupled to the isolated HDL (alpha-migrating HDL), prebeta1-HDL was dissociated from the column together with the SAA-associated HDL. In summary, we demonstrate that SAA generates prebeta1-HDL from alpha-migrating HDL. We speculate that SAA-mediated HDL remodeling may take place in inflammation.  相似文献   

5.
ApoC-I has several different lipid-regulating functions including, inhibition of receptor-mediated uptake of plasma triglyceride-rich lipoproteins, inhibition of cholesteryl ester transfer activity, and mediation of tissue fatty acid uptake. Since little is known about the rate of production and catabolism of plasma apoC-I in humans, the present study was undertaken to determine the plasma kinetics of VLDL and HDL apoC-I using a primed constant (12 h) intravenous infusion of deuterium-labeled leucine. Data were obtained for 14 subjects: normolipidemics (NL, n = 4), hypertriglyceridemics (HTG, n = 4) and combined hyperlipidemics (CHL, n = 6). Plasma VLDL triglyceride (TG) levels were 0.59 +/- 0.03, 4.32 +/- 0.77 (P < 0.01 vs. NL), and 2.20 +/- 0.39 mmol/l (P < 0.01 vs. NL), and plasma LDL cholesterol (LDL-C) levels were 2.34 +/- 0.22, 2.48 +/- 0.26, and 5.35 +/- 0.48 mmol/l (P < 0.01 vs. NL), respectively. HTG and CHL had significantly (P < 0.05) increased levels of total plasma apoC-I (12.5 +/- 1.2 and 12.4 +/- 1.3 mg/dl, respectively) versus NL (7.9 +/- 0.6 mg/dl), due to significantly (P < 0.01) elevated levels of VLDL apoC-I (5.8 +/- 0.8 and 4.5 +/- 0.8 vs. 0.3 +/- 0.1 mg/dl). HTG and CHL also had increased rates of VLDL apoC-I transport (i.e., production) versus NL: 2.29 +/- 0.34 and 3.04 +/- 0.53 versus 0.24 +/- 0.11 mg/kg.day (P < 0.01), with no significant change in VLDL apoC-I residence times (RT): 1.16 +/- 0.12 versus 0.69 +/- 0.06 versus 0.74 +/- 0.17. Although HDL apoC-I concentrations were not significantly lower in HTG and CHL versus NL, HDL apoC-I rates of transport were inversely related to plasma and VLDL-TG levels (r = -0.63 and -0.62, respectively, P < 0.05). Our results demonstrate that increased levels of plasma and VLDL apoC-I in hypertriglyceridemic subjects (with or without elevated LDL-C levels) are associated with increased levels of plasma VLDL apoC-I production.  相似文献   

6.
The study was performed to investigate the influence of lipoproteins (LP) on the thromboxane (TX) A2 formation capacity of platelets in clotting whole blood in vitro. The different lipoprotein fractions VLDL, LDL, HDL2 and HDL3 were isolated from blood of normo- or dyslipidemic volunteers by ultracentrifugation. These lipoproteins were incubated in blood with different levels of serum total cholesterol (TC) taken from normolipidemics (TC < 200 mg/dl), moderate hypercholesterolemics (TC: 200–250 mg/dl) or subjects with high cholesterol level (TC > 250 mg/dl), respectively. The amount of serum TXA2 formed within 60 min at 37°C was measured by enzyme immunoassay. The results obtained show that the efficacy of separate LP fractions to influence the TXA2 production depends not only on the type of LP fraction but also on the source of plasma used for isolation of LP and on the cholesterol level in the blood for incubation: LDL taken from normolipidemics or moderate hyperlipidemics inhibited the TXA2 formation in blood from normolipidemics (P < 0.02, respectively), but enhanced it in blood from persons with moderate hypercholesterolemia (P < 0.05). LDL from hyperlipidemics enhanced TXA2 production in blood from hyperlipidemics (P < 0.05). The HDL2 fractions inhibited the TXA2 formation in blood from normo- and hypercholesterolemics (P < 0.02, resp.), but there was no effect of HDL2 in clotting blood from persons with moderate hypercholesterolemia. All HDL3 fractions tested inhibited the TXA2 formation in all types of blood used for clotting (P < 0.02, resp.), probably due to their great cholesterol accepting capacity.  相似文献   

7.
The effect of alloxan-induced insulin deficiency on high density lipoprotein (HDL) metabolism was studied in rabbits. Rabbits with alloxan-induced diabetes had significantly higher (P less than 0.001, mean +/- SEM) plasma concentrations of glucose (541 +/- 13 vs. 130 +/- 2 mg/dl), triglyceride (2851 +/- 332 vs. 101 +/- 10 mg/dl), and total plasma cholesterol (228 +/- 55 vs. 42 +/- 4 mg/dl) than did normal control rabbits. However, diabetic rabbits had lower plasma HDL-cholesterol (7.2 +/- 1 vs. 51.3 +/- 1.3 mg/dl, P less than 0.001) and HDL apoA-I (38.3 +/- 6.0 vs. 87.2 +/- 4.3 mg/dl, P less than 0.001) concentrations. HDL kinetics were compared in diabetic and normal rabbits, using either 125I-labeled HDL or HDL labeled with 125I-labeled apoA-I, and it was demonstrated that HDL fractional catabolic rate (FCR) was slower and residence time was longer in the diabetic rabbits when either tracer was used. The slow FCR and the low apoA-I pool size led to reduced apoA-I/HDL synthetic rate in diabetic rabbits (0.97 +/- 0.11 vs. 0.34 +/- 0.07 mg per kg per hr). Thus, the reduced plasma HDL-cholesterol concentrations seen in rabbits with alloxan-induced insulin deficiency was associated with a lower total apoA-I/HDL synthetic rate. Since insulin treatment restored to normal all of the changes in plasma lipoprotein concentration and kinetics seen in diabetic rabbits, it is unlikely that the phenomena observed were secondary to a nonspecific toxic effect of alloxan. These data strongly support the view that insulin plays an important role in regulation of HDL metabolism.  相似文献   

8.
Numerous factors are known to affect the plasma metabolism of HDL, including lipoprotein receptors, lipid transfer protein, lipolytic enzymes and HDL apolipoproteins. In order to better define the role of HDL apolipoproteins in determining plasma HDL concentrations, the aims of the present study were: a) to compare the in vivo rate of plasma turnover of HDL apolipoproteins [i.e., apolipoprotein A-I (apoA-I), apoC-I, apoC-III, and apoE], and b) to investigate to what extent these metabolic parameters are related to plasma HDL levels. We thus studied 16 individuals with HDL cholesterol levels ranging from 0.56-1.66 mmol/l and HDL apoA-I levels ranging from 89-149 mg/dl. Plasma kinetics of HDL apolipoproteins were investigated using a primed constant (12 h) infusion of deuterated leucine. Plasma HDL apolipoprotein levels were 41.8 +/- 1.5, 9.7 +/- 0.5, 4.9 +/- 0.5, and 0.7 +/- 0.1 micromol/l for apoA-I, apoC-I, apoC-III and apoE. Plasma transport rates (TRs) were 388.6 +/- 24.7, 131.5 +/- 12.5, 66.5 +/- 9.1, and 31.4 +/- 3.3 nmol.kg-1.day-1; and residence times (RTs) were 5.1 +/- 0.4, 3.7 +/- 0.3, 3.6 +/- 0.3, and 1.1 +/- 0.1 days, respectively. HDL cholesterol and apoA-I levels were significantly correlated with HDL apoA-I RT (r = 0.69 and r = 0.56), and were not significantly correlated with HDL apoA-I TR. In contrast, HDL apoC-I, apoC-III, and apoB levels were all positively related to their TRs and not their RTs. HDL apoC-III TR was positively correlated with levels of HDL apoC-III (r = 0.73, P < 0.01), and with those of HDL cholesterol and apoA-I (r = 0.54 and r = 0.53, P < 0.05, respectively). HDL apoC-III TR was in turn related to HDL apoA-I RT (r = 0.51, P < 0.05). Together, these results provide in vivo evidence for a link between the metabolism of HDL apoC-III and apoA-I, and suggest a role for apoC-III in the regulation of plasma HDL levels.  相似文献   

9.
The hepatic lipase acting on triglyceride-rich high-density lipoprotein2 (HDL2) induces the formation of pre beta 1-HDL, leaving a residual alpha-migrating HDL particle that was named "remnant-HDL2" (Barrans, A., Collet, X., Barbaras, R., Jaspard, B., Manent, J., Vieu, C., Chap, H., and Perret, B. (1994) J. Biol. Chem. 269, 11572-11577.]. In this study, these two product particles generated by hepatic lipase were isolated by density gradient ultracentrifugation. Particles were first characterized in terms of chemical composition, density, and mass. The pre beta 1-HDL obtained in vitro contain one to two molecules of apoA-I, associated with phospholipids, and free and esterified cholesterol. When compared to triglyceride-rich HDL2, remnant-HDL2 have lost on average one molecule of apoA-I, 60% of triacylglycerols, and 15% of phospholipids. The estimated composition is concordant with the hypothesis of the splitting of a substrate particle into one pre beta 1-HDL and one remnant-HDL2. Spectroscopic studies were carried out to monitor changes in lipid fluidity upon lipolysis. The fluorescence anisotropy was measured using (1,6)-diphenyl-hexa-(1,3, 5)-triene as a probe, and the degree of order was calculated from electron spin resonance spectra using the 5-nitroxy-derivative of stearic acid. Both approaches showed a decreased lipid fluidity in remnant-HDL2, as compared to triglyceride-rich HDL2. The immunoreactivity of apoA-I toward several monoclonal antibodies was assayed as a reflection of changes of apoA-I conformation. In remnant-HDL2, as compared to triglyceride-rich HDL2, a lower reactivity was noted with the 2G11 antibody, which interacts in the NH2 terminal part of apoA-I. Finally, remnant-HDL2 was clearly different from HDL3 with respect to all of the parameters studied, demonstrating that hepatic lipase does not promote the direct conversion of HDL2 to HDL3. Thus, hepatic lipase produces remnant-HDL2 particles, which display modifications of apoA-I conformation and of fluidity of the lipid environment. This newly described HDL2 subfraction may play a major role in the reverse cholesterol transport.  相似文献   

10.
Heterozygous familial hypercholesterolemia (FH) is associated with a moderate decrease of plasma apoA-I and HDL-cholesterol levels. The aim of the study was to test the hypothesis that these abnormalities were related to an increase of HDL-apoA-I fractional catabolic rate (FCR). We performed a 14-h infusion of [5,5,5-(2)H(3)]leucine in seven control subjects and seven heterozygous FH patients (plasma total cholesterol 422 +/- 27 vs. 186 +/- 42 mg/dL, P < 0.001, respectively). Plasma apoA-I concentration was not changed in FH compared to controls (respectively 115 +/- 18 vs. 122 +/- 15 mg/dL, NS), and HDL-cholesterol level was decreased (37 +/- 7 vs. 46 +/- 19 mg/dL, NS). Kinetics of HDL metabolism were modeled as a single compartment as no differences were observed between HDL(2) and HDL(3) subclasses. Both mean apoA-I FCR and absolute production rate (APR) were increased in FH (respectively, 0.36 +/- 0.14 vs. 0.22 +/- 0.05 pool/d, P < 0.05, and 18.0 +/- 7.7 and 11.2 +/- 2.3 mg/kg/d, P < 0.05). Higher HDL-triglyceride and HDL-apoE levels were observed in patients with heterozygous FH. (Respectively 19 +/- 8 vs. 8 +/- 3 mg/dL, P < 0.05, and 5.3 +/- 0.8 vs. 3.7 +/- 0.9 mg/dL, P < 0.05). We conclude that the catabolism of HDL-apoA-I is increased in heterozygous FH patients. However, plasma apoA-I concentration was maintained because of an increased HDL-apoA-I production rate.  相似文献   

11.
Prebeta1 HDL is the initial plasma acceptor of cell-derived cholesterol in reverse cholesterol transport. Recently, small amphipathic peptides composed of D-amino acids have been shown to mimic apolipoprotein A-I (apoA-I) as a precursor for HDL formation. ApoA-I mimetic peptides have been proposed to stimulate the formation of prebeta1 HDL and increase reverse cholesterol transport in apoE-null mice. The existence of a monoclonal antibody (MAb 55201) and a corresponding ELISA method that is selective for the detection of the prebeta(1) subclass of HDL provides a means of establishing a correlation between apoA-I mimetic dose and prebeta1 HDL formation in human plasma. Using this prebeta1 HDL ELISA, we demonstrate marked apoA-I mimetic dose-dependent prebeta1 HDL formation in human plasma. These results correlated with increases in band density of the plasma prebeta1 HDL, when observed by Western blotting, as a function of increased apoA-I mimetic concentration. Increased prebeta1 HDL formation was observed after as little as 1 min and was maximal within 1 h. Together, these data suggest that a high-throughput prebeta1 HDL ELISA provides a way to quantitatively measure a key component of the reverse cholesterol transport pathway in human plasma, thus providing a possible method for the identification of apoA-I mimetic molecules.  相似文献   

12.
A quantitative solid phase immunoassay has been developed for the determination of the mass of electrophoretically separated prebeta apolipoprotein A-I (apoA-I) in human plasma. Conditions have been identified for the quantitative transfer and immunoblotting of the apolipoprotein in the absence of organic solvents or detergents. In normolipidemic plasma, the prebeta-migrating fraction of apoA-I represented 4.2 +/- 1.8% of total apoA-I (61 +/- 26 micrograms of apoA-I per ml of plasma). Significantly higher levels were found in hypercholesterolemia of genetic origin, in primary and secondary hypertriglyceridemia, and in congenital lecithin:cholesterol acyltransferase deficiency. In all cases prebeta-migrating apoA-I consisted in large part of low molecular weight lipoprotein species, compared to the size of the major, alpha-migrating apoA-I fraction.  相似文献   

13.
The properties of the mature and pro-forms of recombinant apolipoprotein A-I (apoA-I) were compared with those of apoA-I isolated from human plasma. When the synthesis and secretion of pro- and mature forms of apoA-I from a baculovirus/insect cell expression system were compared in parallel experiments, the amount of the pro-form of apoA-I synthesized and secreted was severalfold higher than that of the mature form of apoA-I. A comparison of the properties of the pro- and mature forms of recombinant apoA-I and human plasma apoA-I showed no difference between all three in their secondary structure, their ability to self-associate, lipid-binding capacity, lecithin: cholesterol acyltransferase activation, and binding to the phospholipid transfer protein. The properties of reconstituted high density lipoprotein (HDL) particles formed from the proteins and their ability to promote cholesterol and phospholipid efflux from human skin fibroblasts were also similar. However, their ability to bind to plasma HDL subfractions differed, because twice as much proapoA-I associated with prebeta(1)-HDL and prebeta(2)-HDL subfractions compared with both mature recombinant and plasma apoA-I. Correspondingly, the amount of proapoA-I in alpha-HDL subfractions, especially in alpha(1)-HDL and alpha(2)-HDL, was decreased. We conclude that while the propeptide of apoA-I is required for the effective synthesis and secretion of apoA-I, cleavage of this peptide is a requisite for the effective interconversion of HDL subfractions.  相似文献   

14.
The effect of frozen storage on lipoprotein distribution of apolipoprotein C-III (apoC-III) and apoE was investigated by measuring apoC-III and apoE by ELISA in HDL and apoB-containing lipoproteins of human plasma samples (n = 16) before and after 2 weeks of frozen storage (-20 degrees C). HDLs were separated by heparin-manganese precipitation (HMP) or by fast-protein liquid chromatography (FPLC). Total plasma apoC-III and apoE levels were not affected by frozen storage. HDL-HMP apoC-III and apoE levels were significantly higher in frozen versus fresh samples: 7.7 +/- 0.7 versus 6.7 +/- 0.7 mg/dl (P < 0.05) and 2.0 +/- 0.1 versus 1.2 +/- 0.1 mg/dl (P < 0.001), respectively. HDL-FPLC apoC-III and apoE, but not triglyceride (TG) or cholesterol, levels were also higher in frozen samples: 12.0 +/- 1.2 versus 7.5 +/- 0.6 mg/dl (P < 0.001) and 2.7 +/- 0.2 versus 1.6 +/- 0.2 mg/dl (P < 0.001), respectively. Frozen storage led to a decrease in apoC-III (-17 +/- 9%) and apoE (-19 +/- 9%) in triglyceride-rich lipoprotein. Redistribution of apoC-III and apoE was most evident in samples with high TG levels. HDL apoC-III and apoE levels were also significantly higher when measured in plasma stored at -80 degrees C. Our results demonstrate that lipoprotein distribution of apoC-III and apoE is affected by storage of human plasma, suggesting that analysis of frozen plasma should be avoided in studies relating lipoprotein levels of apoC-III and/or apoE to the incidence of coronary artery disease.  相似文献   

15.
Koukos G  Chroni A  Duka A  Kardassis D  Zannis VI 《Biochemistry》2007,46(37):10713-10721
To explain the etiology and find a mode of therapy of genetically determined low levels of high-density lipoprotein (HDL), we have generated recombinant adenoviruses expressing apolipoprotein A-I (apoA-I)(Leu141Arg)Pisa and apoA-I(Leu159Arg)FIN and studied their properties in vitro and in vivo. Both mutants were secreted efficiently from cells but had diminished capacity to activate lecithin/cholesterol acyltransferase (LCAT) in vitro. Adenovirus-mediated gene transfer of either of the two mutants in apoA-I-deficient (apoA-I-/-) mice resulted in greatly decreased total plasma cholesterol, apoA-I, and HDL cholesterol levels. The treatment also decreased the cholesteryl ester to total cholesterol ratio (CE/TC), caused accumulation of prebeta1-HDL and small size alpha4-HDL particles, and generated only few spherical HDL particles, as compared to mice expressing wild-type (WT) apoA-I. Simultaneous treatment of the mice with adenoviruses expressing either of the two mutants and human LCAT normalized the plasma apoA-I, HDL cholesterol levels, and the CE/TC ratio, restored normal prebeta- and alpha-HDL subpopulations, and generated spherical HDL. The study establishes that apoA-I(Leu141Arg)Pisa and apoA-I(Leu159Arg)FIN inhibit an early step in the biogenesis of HDL due to inefficient esterification of the cholesterol of the prebeta1-HDL particles by the endogenous LCAT. Both defects can be corrected by treatment with LCAT.  相似文献   

16.
Urocortin 1 (Ucn1) may be involved in the pathophysiology of heart failure (HF), but the impact of Ucn1 administration on progression of the disease is unknown. The aim of this study was to investigate the effects of Ucn1 in sheep from the onset of cardiac overload and during the subsequent development of HF. Eight sheep underwent two 4-day periods of HF induction by rapid left ventricular pacing (225 beats/min) in conjunction with continuous infusions of Ucn1 (0.1 microg.kg(-1).h(-1) iv) and a vehicle control (0.9% saline). Compared with control, Ucn1 attenuated the pacing-induced decline in cardiac output (2.43 +/- 0.46 vs. 3.70 +/- 0.89 l/min on day 4, P < 0.01) and increases in left atrial pressure (24.9 +/- 1.0 vs. 11.9 +/- 1.1 mmHg, P < 0.001) and peripheral resistance (38.7 +/- 9.4 vs. 25.2 +/- 6.1 mmHg.l(-1).min, P < 0.001). Ucn1 wholly prevented increases in plasma renin activity (4.02 +/- 1.17 vs. 0.87 +/- 0.1 nmol.l(-1).h(-1), P < 0.001), aldosterone (1,313 +/- 324 vs. 413 +/- 174 pmol/l, P < 0.001), endothelin-1 (3.8 +/- 0.5 vs. 2.0 +/- 0.1 pmol/l, P < 0.001), and vasopressin (10.8 +/- 4.1 vs. 1.8 +/- 0.2 pmol/l, P < 0.05) during pacing alone and blunted the progressive increases in plasma epinephrine (2,132 +/- 697 vs. 1,250 +/- 264 pmol/l, P < 0.05), norepinephrine (3.61 +/- 0.73 vs. 2.07 +/- 0.52 nmol/l, P < 0.05), and atrial (P < 0.05) and brain (P < 0.01) natriuretic peptide levels. Ucn1 administration also maintained urine sodium excretion (0.75 +/- 0.34 vs. 1.59 +/- 0.50 mmol/h on day 4, P < 0.05) and suppressed pacing-induced declines in creatinine clearance (P < 0.05). These findings indicate that Ucn1 treatment from the onset of cardiac overload has the ability to repress the ensuing hemodynamic and renal deterioration and concomitant adverse neurohumoral activation, thereby delaying the development of overt HF. These data strongly support a use for Ucn1 as a therapeutic option early in the course of the disease.  相似文献   

17.
We investigated the significance of hydrophobic and charged residues 218–226 on the structure and functions of apoA-I and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of apoA-I[L218A/L219A/V221A/L222A] in apoA-I−/− mice decreased plasma cholesterol and apoA-I levels to 15% of wild-type (WT) control mice and generated pre-β- and α4-HDL particles. In apoA-I−/− × apoE−/− mice, the same mutant formed few discoidal and pre-β-HDL particles that could not be converted to mature α-HDL particles by excess LCAT. Expression of the apoA-I[E223A/K226A] mutant in apoA-I−/− mice caused lesser but discrete alterations in the HDL phenotype. The apoA-I[218–222] and apoA-I[E223A/K226A] mutants had 20% and normal capacity, respectively, to promote ABCA1-mediated cholesterol efflux. Both mutants had ∼65% of normal capacity to activate LCAT in vitro. Biophysical analyses suggested that both mutants affected in a distinct manner the structural integrity and plasticity of apoA-I that is necessary for normal functions. We conclude that the alteration of the hydrophobic 218–222 residues of apoA-I disrupts apoA-I/ABCA1 interactions and promotes the generation of defective pre-β particles that fail to mature into α-HDL subpopulations, thus resulting in low plasma apoA-I and HDL. Alterations of the charged 223, 226 residues caused milder but discrete changes in HDL phenotype.  相似文献   

18.
Lymphocyte egress from the vascular compartment into the lymph node (LN) parenchyma occurs at the postcapillary venules, termed high endothelial venules (HEVs). Lymphocyte adhesion and migration through the HEVs is a receptor-mediated, energy-dependent, process. The aim of this study was to investigate the role of MHC Class II antigen expression on lymphocyte-HEV interaction in normal (CBA) and autoimmune (MRL/l) mice. Using the HEV binding assay, lymphocyte adhesion to LN sections pretreated with monoclonal antibody (MAb; 10-2.16) was decreased compared to diluent (mean of the differences +/- standard deviation; xd +/- SD: 0.749 +/- 0.22, P less than 0.0075)- and myeloma immunoglobulin-pretreated controls (xd = 0.462 +/- 0.13, P less than 0.005). Similar inhibition of binding was found in MRL/l LN sections pretreated with MAb 10-2.16. Binding inhibition was concentration dependent, but total inhibition was never achieved. Several other anti-Ia MAb's were used, but failed to inhibit lymphocyte attachment. Lymphocyte binding to control sections treated with MAb's against MHC Class I antigen, plasminogen activator (PAM-3), anti-thrombin III (AT-IIIm), and MECA-325 antigen was not significantly different from diluent controls. LN cell suspensions pretreated with MAb 10-2.16 bound normally to LN sections. By contrast, MAb to lymphocyte homing receptor (MEL-14) inhibited lymphocyte adhesion. The role of Class II antigens in lymphocyte-HEV interactions is discussed.  相似文献   

19.
To study the role of the two postheparin plasma lipolytic enzymes, lipoprotein lipase (LPL) and hepatic lipase (HL) in high density lipoprotein (HDL) metabolism at a population level, we determined serum lipoproteins, apoproteins A-I, A-II, B, and E, and postheparin plasma LPL and HL activities in 65 subjects with a mean HDL-cholesterol of 34 mg/dl and in 62 subjects with a mean HDL-cholesterol of 87 mg/dl. These two groups represented the highest and lowest 1.4 percentile of a random sample consisting 4,970 subjects. The variation in HDL level was due to a 4.1-fold difference in the HDL2 cholesterol (P less than 0.001) whereas the HDL3 cholesterol level was increased only by 32% (P less than 0.001) in the group with high HDL-cholesterol. Serum apoA-levels were 128 +/- 2.2 mg/dl and 210 +/- 2.8 mg/dl (mean +/- SEM) in hypo- and hyper-HDL cholesterolemia, respectively. Serum apoA-II concentration was elevated by 28% (P less than 0.001) in hyperalphalipoproteinemia. The apoA-I/A-II ratio was elevated only in women with high HDL-cholesterol but not in men, suggesting that elevation of apoA-I is involved in hyperalphalipoproteinemia in females, whereas both apoA proteins are elevated in men with high HDL cholesterol. Serum concentration of apoE and its phenotype distribution were similar in the two groups. The HL activity was reduced in the high HDL-cholesterol group (21.2 +/- 1.5 vs. 38.5 +/- 1.8 mumol/h/ml, P less than 0.001), whereas the LPL activity was elevated in the group with high HDL-cholesterol compared to subjects with low HDL-cholesterol (27.8 +/- 1.3 vs. 19.9 +/- 0.8 mumol/h/ml, P less than 0.001). The HL and LPL activities correlated in opposing ways with the HDL2 cholesterol (r = 0.57, P less than 0.001 and r = 0.51, P less than 0.001, respectively), and this appeared to be independent of the relative ponderosity by multiple correlation analysis. The results demonstrate major influence of both HL and LPL on serum HDL cholesterol concentration at a population level.  相似文献   

20.
Five lines of transgenic mice, which had integrated the human apolipoprotein (apo) A-I gene and various amounts of flanking sequences, were established. Normally, apoA-I is expressed mainly in liver and intestine, but all of the transgenic lines only expressed apoA-I mRNA in liver, strongly suggesting that 256 base pairs of 5'-flanking sequence was sufficient for liver apoA-I gene expression but that 5.5 kilobase pairs was not sufficient for intestinal expression. Mean plasma levels of human apoA-I varied in different lines from approximately 0.1 to 200% of normal mouse levels. This was not dependent on the amount of flanking sequence. Lipoprotein levels were studied in detail in one of the lines with a significantly increased apoA-I pool size. In one study, the total plasma apoA-I level (mouse plus human) was 381 +/- 43 mg/dl in six animals from this line, compared to 153 +/- 17 mg/dl in matched controls. Total and high density lipoprotein cholesterol (HDL-C) levels were increased 60% in transgenic animals, compared to controls (total cholesterol: 125 +/- 12 versus 78 +/- 13 mg/dl, p = 0.0001; HDL-C 90 +/- 7 versus 55 +/- 11 mg/dl, p = 0.0001). The molar ratio of HDL-C/apoA-I was significantly lower in transgenic animals, 17 +/- 1 versus 25 +/- 2 (p = 0.0001), suggesting the increase was in smaller HDL particles. This was confirmed by native gradient gel electrophoresis. This was not due to aberrant metabolism of human apoA-I in the mouse, since human apoA-I was distributed throughout the HDL particle size range and was catabolized at the same rate as mouse apoA-I. In another study of 23 transgenic mice, HDL-C and human apoA-I levels were highly correlated (r = 0.87, p less than 0.001). The slope of the correlation line also indicated the additional HDL particles were in the smaller size range. We conclude that human apoA-I can be incorporated into mouse HDL, and excessive amounts increase HDL-C levels primarily by increasing smaller HDL particles, comparable to human HDL3 (HDL-C/apoA-I molar ratio = 18).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号