首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blue dextran--Sepharose and Cibacron blue 3G-A interact with pyruvate kinase of Neurospora crassa. The enzyme is readily released from the substituted Sepharose column by elution with 0.17 M potassium phosphate buffer (pH 7.9), or 2 mM fructose 1,6-diphosphate (FDP), but not with either of the substrates, ADP and phosphoenolpyruvate (PEP), at 2 mM. Cibacron blue 3G A is a noncompetitive inhibitor of pyruvate kinase with respect to both substrates. It appears to compete with the allosteric effector, FDP, for binding to the enzyme surface. A lack of elution of the enzyme from the immobilized blue dextran matrix by adenine nucleotides and the absence of a difference spectrum in the 650- to 700-nm range suggest that a "dinucleotide-fold" substructure is not implicated in the dye binding sites on pyruvate kiase. The interaction of Cibacron blue 3G-A and this enzyme can be followed fluorometrically; incremental additon of the dye to the enzyme solution results in a progressive decrease in the fluorescence of surface tryptophanyl residues. The quenching of fluorescence of exposed aromatic groups is subject to reversal following addition of FDP to the pyruvte kinase--Cibacron blue complex.  相似文献   

2.
Five Escherichia coli type 1 pilus mutants that had point mutations in fimH, the gene encoding the type 1 pilus adhesin FimH, were characterized. FimH is a minor component of type 1 pili that is required for the pili to bind and agglutinate guinea pig erythrocytes in a mannose-inhibitable manner. Point mutations were located by DNA sequencing and deletion mapping. All mutations mapped within the signal sequence or in the first 28% of the predicted mature protein. All mutations were missense mutations except for one, a frameshift lesion that was predicted to cause the loss of approximately 60% of the mature FimH protein. Bacterial agglutination tests with polyclonal antiserum raised to a LacZ-FimH fusion protein failed to confirm that parental amounts of FimH cross-reacting material were expressed in four of the five mutants. The remaining mutant, a temperature-sensitive (ts) fimH mutant that agglutinated guinea pig erythrocytes after growth at 31 degrees C but not at 42 degrees C, reacted with antiserum at both temperatures in a manner similar to the parent. Consequently, this mutant was chosen for further study. Temperature shift experiments revealed that new FimH biosynthesis was required for the phenotypic change. Guinea pig erythrocyte and mouse macrophage binding experiments using the ts mutant grown at the restrictive and permissive temperatures revealed that whereas erythrocyte binding was reduced to a level comparable to that of a fimH insertion mutant at the restrictive temperature, mouse peritoneal macrophages were bound with parental efficiency at both the permissive and restrictive temperatures. Also, macrophage binding by the ts mutant was insensitive to mannose inhibition after growth at 42 degrees C but sensitive after growth at 31 degrees C. The ts mutant thus binds macrophages with one receptor specificity at 31 degrees C and another at 42 degrees C.  相似文献   

3.
Mouse thymus thymidylate synthase has been purified to apparent electrophoretic homogeneity and compared with the enzyme from mouse tumour L1210 and Ehrlich ascites carcinoma cells. The enzyme is a dimer composed of 35,000 mol. wt monomers. Mouse thymus and tumour enzymes exhibit allosteric properties reflected by cooperative binding of both dUMP and 5-fluoro-dUMP. Activation energy for the reaction, catalyzed by thymidylate synthase from mouse tumour but not from mouse thymus, lowers at temperatures above 34 degrees C, reflecting a change of rate-limiting step in dTMP formation. MgATP at millimolar concentrations inhibits mouse thymus enzyme.  相似文献   

4.
Protein kinase A (cAMP dependent protein kinase catalytic subunit, EC 2.7.11.11) binds simultaneously ATP and a phosphorylatable peptide. These structurally dissimilar allosteric ligands influence the binding effectiveness of each other. The same situation is observed with substrate congeners, which reversibly inhibit the enzyme. In this review these allosteric effects are quantified using the interaction factor, which compares binding effectiveness of ligands with the free enzyme and the pre-loaded enzyme complex containing another ligand. This analysis revealed that the allosteric effect depends upon structure of the interacting ligands, and the principle “better binding: stronger allostery” observed can be formalized in terms of linear free-energy relationships, which point to similar mechanism of the allosteric interaction between the enzyme-bound substrates and/or inhibitor molecules. On the other hand, the type of effect is governed by ligand binding effectiveness and can be inverted from positive allostery to negative allostery if we move from effectively binding ligands to badly binding compounds. Thus the outcome of the allostery in this monomeric enzyme is the same as defined by classical theories for multimeric enzymes: making the enzyme response more efficient if appropriate ligands bind.  相似文献   

5.
The phosphoryl transferring enzymes pyruvate kinase, cAMP-dependent protein kinase and the pyrophosphoryl transferring enzyme PP-Rib-P synthetase utilize the beta, gamma bidentate metal--ATP chelate (delta-isomer) as substrate, as determined with substitution-insert CrIIIATP or CoIII(NH3)4ATP complexes. In addition, these enzymes bind a second divalent cation, which is an essential activator for pyruvate kinase and PP-Rib-P synthetase and an inhibitor of protein kinase. The enzyme-bound metal has been used as a paramagnetic reference point in T1 measurements to determine distances to the protons and phosphorus atoms of the bound nucleotide and acceptor substrates. These distances have been used to construct models of the conformations of the bound substrates. The activating metal forms a second sphere complex of the metal-nucleotide substrate on pyruvate kinase and PP-Rib-P synthetase while the inhibitory metal directly coordinates the polyphosphate chain of the metal-nucleotide substrate on protein kinase. Essentially no change is found in the dihedral angle at the glycosidic bond of ATP upon binding to pyruvate kinase (chi = 30 degrees), an enzyme of low base specificity, but significant changes in the torsional angle of ATP occur on binding to protein kinase (chi = 84 degrees) and PP-Rib-P synthetase (chi = 62 degrees), enzymes with high adenine-base specificity. Intersubstrate distances, measured with tridentate CrATP or beta, gamma bidentate CrAMPPCP as paramagnetic reference points, have been used to deduce the distance along the reaction coordinate on each enzyme. The reaction coordinate distances on pyruvate kinase (# +/- 1 A) and PP-Rib-P synthetase (not less than 3.8 A) are consistent with associative mechanisms, while that on protein kinase (5 +/- 0.7 A) allows room for a dissociative mechanism.  相似文献   

6.
Ribonucleotide reductases are a family of essential enzymes that catalyze the reduction of ribonucleotides to their corresponding deoxyribonucleotides and provide cells with precursors for DNA synthesis. The different classes of ribonucleotide reductase are distinguished based on quaternary structures and enzyme activation mechanisms, but the components harboring the active site region in each class are evolutionarily related. With a few exceptions, ribonucleotide reductases are allosterically regulated by nucleoside triphosphates (ATP and dNTPs). We have used the surface plasmon resonance technique to study how allosteric effects govern the strength of quaternary interactions in the class Ia ribonucleotide reductase from Escherichia coli, which like all class I enzymes has a tetrameric alpha(2) beta(2) structure. The component alpha(2)called R1 harbors the active site and two types of binding sites for allosteric effector nucleotides, whereas the beta(2) component called R2 harbors the tyrosyl radical necessary for catalysis. Our results show that only the known allosteric effector nucleotides, but not non-interacting nucleotides, promote a specific interaction between R1 and R2. Interestingly, the presence of substrate together with allosteric effector nucleotide strengthens the complex 2-3 times with a similar free energy change as the mutual allosteric effects of substrate and effector nucleotide binding to protein R1 in solution experiments. The dual allosteric effects of dATP as positive allosteric effector at low concentrations and as negative allosteric effector at high concentrations coincided with an almost 100-fold stronger R1-R2 interaction. Based on the experimental setup, we propose that the inhibition of enzyme activity in the E. coli class Ia enzyme occurs in a tight 1:1 complex of R1 and R2. Most intriguingly, we also discovered that thioredoxin, one of the physiological reductants of ribonucleotide reductases, enhances the R1-R2 interaction 4-fold.  相似文献   

7.
Allosteric regulation involves conformational transitions or fluctuations between a few closely related states, caused by the binding of effector molecules. We introduce a quantity called binding leverage that measures the ability of a binding site to couple to the intrinsic motions of a protein. We use Monte Carlo simulations to generate potential binding sites and either normal modes or pairs of crystal structures to describe relevant motions. We analyze single catalytic domains and multimeric allosteric enzymes with complex regulation. For the majority of the analyzed proteins, we find that both catalytic and allosteric sites have high binding leverage. Furthermore, our analysis of the catabolite activator protein, which is allosteric without conformational change, shows that its regulation involves other types of motion than those modulated at sites with high binding leverage. Our results point to the importance of incorporating dynamic information when predicting functional sites. Because it is possible to calculate binding leverage from a single crystal structure it can be used for characterizing proteins of unknown function and predicting latent allosteric sites in any protein, with implications for drug design.  相似文献   

8.
9.
R W Oberfelder  L L Lee  J C Lee 《Biochemistry》1984,23(17):3813-3821
The mechanism of allosteric regulation of rabbit muscle pyruvate kinase (PK) was examined in the presence of the allosteric inhibitor phenylalanine (Phe). Steady-state kinetic, equilibrium binding, and structural studies were conducted to provide a broad data base to establish a reasonable model for the interactions. Phe was shown to induce apparent cooperativity in the steady-state kinetic measurements at pH 7.5 and 23 degrees C. The apparent Km for phosphoenolpyruvate was shown to increase with increasing Phe concentrations. These results imply that Phe reduces the affinity of PK for phosphoenolpyruvate. This conclusion was substantiated by equilibrium binding studies which yielded association constants of phosphoenolpyruvate as a function of Phe concentration. The binding constant of Phe was also determined at pH 7.0 and 23 degrees C. The effect of ligands on the hydrodynamic properties of PK was monitored by difference sedimentation velocity, sedimentation velocity, and equilibrium experiments. The results showed that PK remains tetrameric both in the presence and in the absence of Phe. However, Phe induces a small decrease in the sedimentation coefficient of the enzyme; hence, it suggests a loosening of the protein structure. The accessibility of the sulfhydryl residues of the enzyme also increases in the presence of Phe. Furthermore, the Phe-induced conformational change was approximately 90% complete when only 25% of the binding sites were saturated. This result suggested that the regulatory behavior of PK might satisfactorily be described by the two-state model of Monod-Wyman-Changeux [Monod, J., Wyman, J., & Changeux, J.-P. (1965) J. Mol. Biol. 12, 88-118].  相似文献   

10.
Escherichia coli cells that produce only plasmid-encoded wild-type or mutant GroEL were generated by bacteriophage P1 transduction. Effects of mutations that affect the allosteric properties of GroEL were characterized in vivo. Cells containing only GroEL(R197A), which has reduced intra-ring positive cooperativity and inter-ring negative cooperativity in ATP binding, grow poorly upon a temperature shift from 25 to 42 degrees C. This strain supports the growth of phages T4 and T5 but not phage lambda and produces light at 28 degrees C when transformed with a second plasmid containing the lux operon. In contrast, cells containing only GroEL(R13G, A126V) which lacks negative cooperativity between rings but has intact intra-ring positive cooperativity grow normally and support phage growth but do not produce light at 28 degrees C. In vitro refolding of luciferase in the presence of this mutant is found to be less efficient compared with wild-type GroEL or other mutants tested. Our results show that allostery in GroEL is important in vivo in a manner that depends on the physiological conditions and is protein substrate specific.  相似文献   

11.
The effects of temperature on the initial velocity kinetics of allosteric ATP sulfurylase from Penicillium chrysogenum were measured. The experiments were prompted by the structural similarity between the C-terminal regulatory domain of fungal ATP sulfurylase and fungal APS kinase, a homodimer that undergoes a temperature-dependent, reversible dissociation of subunits over a narrow temperature range. Wild-type ATP sulfurylase yielded hyperbolic velocity curves between 18 and 30 degrees C. Increasing the assay temperature above 30 degrees C at a constant pH of 8.0 increased the cooperativity of the velocity curves. Hill coefficients (n(H)) up to 1.8 were observed at 42 degrees C. The bireactant kinetics at 42 degrees C were the same as those observed at 30 degrees C in the presence of PAPS, the allosteric inhibitor. In contrast, yeast ATP sulfurylase yielded hyperbolic plots at 42 degrees C. The P. chrysogenum mutant enzyme, C509S, which is intrinsically cooperative (n(H) = 1.8) at 30 degrees C, became more cooperative as the temperature was increased yielding n(H) values up to 2.9 at 42 degrees C. As the temperature was decreased, the cooperativity of C509S decreased; n(H) was 1.0 at 18 degrees C. The cumulative results indicate that increasing the temperature increases the allosteric constant, L, i.e., promotes a shift in the base-level distribution of enzyme molecules from the high MgATP affinity R state toward the low MgATP affinity T state. As a result, the enzyme displays a true "temperature optimum" at subsaturating MgATP. The reversible temperature-dependent transitions of fungal ATP sulfurylase and APS kinase may play a role in energy conservation at high temperatures where the organism can survive but not grow optimally.  相似文献   

12.
Gamma-secretase is a multi-component enzyme complex that performs an intramembranous cleavage, releasing amyloid-beta (Abeta) peptides from processing intermediates of the beta-amyloid precursor protein. Because Abeta peptides are thought to be causative for Alzheimer's disease, inhibiting gamma-secretase represents a potential treatment for this neurodegenerative condition. Whereas inhibitors directed at the active center of gamma-secretase inhibit the cleavage of all its substrates, certain non-steroidal antiinflammatory drugs (NSAIDs) have been shown to selectively reduce the production of the more amyloidogenic Abeta(1-42) peptide without inhibiting alternative cleavages. In contrast to the majority of previous studies, however, we demonstrate that in cell-free systems the mode of action of selected NSAIDs and their derivatives, depending on the concentrations used, can either be classified as modulatory or inhibitory. At modulatory concentrations, a selective and, with respect to the substrate, noncompetitive inhibition of Abeta(1-42) production was observed. At inhibitory concentrations, on the other hand, biochemical readouts reminiscent of a nonselective gamma-secretase inhibition were obtained. When these compounds were analyzed for their ability to displace a radiolabeled, transition-state analog inhibitor from solubilized enzyme, noncompetitive antagonism was observed. The allosteric nature of radioligand displacement suggests that NSAID-like inhibitors change the conformation of the gamma-secretase enzyme complex by binding to a novel site, which is discrete from the binding site for transition-state analogs and therefore distinct from the catalytic center. Consequently, drug discovery efforts aimed at this site may identify novel allosteric inhibitors that could benefit from a wider window for inhibition of gamma (42)-cleavage over alternative cleavages in the beta-amyloid precursor protein and, more importantly, alternative substrates.  相似文献   

13.
We have isolated two unlinked yeast genes complementing the cell division cycle mutant cdc25-1, one containing the wild type allele CDC25 and the other acting as an extragenic suppressor of the cdc25-1 lesion if present on a multicopy plasmid. Nucleotide sequence analysis of the suppressor gene has revealed an open reading frame that encodes a 45,000-dalton protein belonging to the protein kinase family. The cdc25-suppressing protein kinase (PK-25) shows 48% sequence similarity to the catalytic subunit (CA) of mammalian cAMP-dependent protein kinase and 27-31% similarity to cyclic nucleotide-independent enzymes, including the yeast CDC28 gene product. The PK-25 gene was targeted by integrative transformation into a chromosomal region unlinked to the CYR2 site, the structural gene of CA. The cdc25-suppressing protein kinase is also functionally different from CA, since cyr2 strains deficient in the free catalytic subunit remain temperature sensitive if transformed with a multicopy plasmid containing the PK-25 gene. Furthermore, a deficiency of the cAMP-binding regulatory subunit (RA) caused by the bcy1 mutation fails to suppress the cdc25 mutation, indicating that PK-25 does not interact with the cAMP receptor protein. Our data suggest that the cdc25 suppressor gene encodes a cAMP-independent protein kinase involved in the control of the cell cycle start.  相似文献   

14.
The allosteric regulation of binding to and the activation of cGMP-dependent protein kinase (cGMP kinase) was studied under identical conditions at 30 degrees C using three forms of cGMP-kinase which differed in the amino-terminal segment, e.g. native cGMP kinase, phosphorylated cGMP kinase which contained 1.4 +/- 0.4 mol phosphate/subunit and constitutively active cGMP kinase which lacked the amino-terminal dimerization domain. These three enzyme forms have identical kinetic constants, e.g. number of cGMP-binding sites, Km values for MgATP and the heptapeptide kemptide, and Vmax values. In the native enzyme, MgATP decreases the affinity for binding site 1. This effect is abolished by 1 M NaCl. In contrast, high concentrations of Kemptide increase the affinity of binding site 2 about fivefold. Under the latter conditions, identical Kd values of 0.2 microM were obtained for sites 1 and 2. Salt, MgATP and Kemptide do not affect the binding kinetics of the phosphorylated or the constitutively active enzyme, suggesting that allosteric regulation depends solely on the presence of a native amino-terminal segment. Cyclic GMP activates the native enzyme at Ka values which are identical with the Kd values for both binding sites. The activation of cGMP-dependent protein kinase is noncooperative but the Ka value depends on the substrate peptide concentration. These results show that the activity of cGMP kinase is primarily regulated by conformational changes within the amino-terminal domain.  相似文献   

15.
Ferrate ion, a phosphate analog and a potent oxidizing agent, is known to inactivate a number of enzymes which interact with phosphoryl compounds. In contrast, enzymes which do not interact with phosphoryl compounds are not affected by comparable concentrations of ferrate. To further explore the specificity of ferrate as a reagent which is specific for phosphoryl binding sites, a study of its effect on human hemoglobin A was undertaken. In the deoxy form, this protein is known to interact with 2,3-bisphosphoglycerate, its natural allosteric inhibitor of cooperative binding of oxygen, while as oxyhemoglobin it does not interact with the inhibitor. Treatment with ferrate ion caused the loss of approximately three amino acid residues per beta chain of human deoxyhemoglobin, His-2, His-143, and Tyr-145, and one residue, presumably Tyr-42, per alpha chain. Oxyhemoglobin was not affected by the reagent. 2,3-Bisphosphoglycerate was found to protect deoxyhemoglobin from the action of ferrate. His-2 and His-143 are among the residues reported to be implicated in the binding of 2,3-bisphosphoglycerate by deoxyhemoglobin [A. Arnone (1972) Nature (London) 237, 146-148].  相似文献   

16.
J C Hansen  J Gorski 《Biochemistry》1989,28(2):623-628
Partitioning of estrogen receptors in aqueous two-phase polymer systems has provided the basis for a detailed kinetic analysis of the effects of temperature on estrogen receptor (ER) structure in vitro. Exposure to temperatures of 0-30 degrees C increased the rate of change in ER partition coefficients by up to 100-fold but did not affect the final extent of the process. The temperature-dependent change in ER partition coefficients was characterized by a linear Arrhenius plot and an activation energy of 25 kcal/mol. The rate of the temperature-dependent ER transition (28 degrees C) was found to be unaffected by greater than 50-fold changes in receptor concentration, which indicates that the temperature-dependent change in partition coefficients reflects a first-order process. The partition coefficients of heated ER were unaffected by subsequent 18-h incubations at 0 degree C, indicating that the temperature-dependent ER transition is irreversible in vitro. Direct heating of the unoccupied ER resulted in both a change in ER partition coefficients and a loss of ER binding sites. The temperature-dependent change in unoccupied ER partition coefficients was complete within 30 min at 28 degrees C and yielded a first-order rate constant that was the same as that obtained for heating the receptor-estradiol complex at 28 degrees C. In contrast, the loss of unoccupied ER binding sites that occurred during 28 degrees C incubations did not reach completion after 150 min of heating and was found to behave as a second-order process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Antibodies against pyruvate kinase of Neurospora crassa, induced in rabbits, were used to monitor the interaction of ligands with this enzyme. The technique of microcomplement fixation was employed to probe for conformational alterations elicited by binding of substrates (phosphoenolpyruvate (PEP) and adenosine diphosphate), the allosteric activator (fructose 1,6-diphosphate), and the inhibitor (valine). On binding of PEP and valine to pyruvate kinase a pronounced reduction in the extent of complement fixation was observed. The second substrate, ADP, had no effect while FDP elicited a moderate suppression of complement fixation. These results suggest that as a consequence of conformational changes induced by PEP and valine, some antigenic determinants on the surface of pyruvate kinase are rendered inaccessible to the antibodies.  相似文献   

18.
J P Flikweert  R K Hoorn  G E Staal 《Biochimie》1975,57(6-7):677-681
Ca2+ ions have a biphasic effect on the allosteric pyruvate kinase (EC 2.7.1.40) from human erythrocytes: Ca2+ is an activator at low phosphoenolpyruvate (PEP) concentrations: at increased PEP concentrations Ca2+ behaves as an inhibitor. In the presence of ATP the same effect was observed and at low PEP concentrations Ca2+ ions can completely abolish the ATP inhibitory effect. At high Ca2+ concentrations there is a loss of the cooperativity towards PEP. The enzyme activated by fructose-1,6-diphosphate (FDP) is inhibited by Ca2+ ions at all concentrations of PEP tested. Mg2+ ions are not able to counteract the activation by Ca2+ ions at low PEP concentrations. The results are interpreted on the basis of the model of Monod.  相似文献   

19.
Kinetics of thermal inactivation of acrylodan-labeled cAMP dependent protein kinase catalytic subunit, its binary complexes with ATP and peptide inhibitor PKI[5–24], respectively, and the ternary complex involving both of these ligands were studied at different temperatures (5–50 °C). The thermodynamic parameters ΔH and ΔS for ligand binding equilibria as well as for the allosteric interaction between the binding sites of these ligands were obtained by using the Van’t Hoff analysis. The results indicated that more inter- and intra-molecular non-covalent bonds were involved in ATP binding with the protein when compared to the peptide binding. Similarly, nucleotide and peptide binding steps were accompanied with different entropy effects, while almost no entropy change accompanied PKI[5–24] binding, suggesting that the protein flexibility was not affected in this case. Differently from the binary complex formation the ternary complex formation was accompanied by a significant entropy change and with intensive formation of new non-covalent interactions (ΔH). At the same time both ligand binding steps as well as the allosteric interaction between ligand binding sites could be described by a common entropy–enthalpy compensation plot, pointing to a similar mechanism of these phenomena. It was concluded that numerous weak interactions govern the allostery of cAMP dependent protein kinase catalytic subunit.  相似文献   

20.
The interactions of nucleotides at the allosteric and catalytic sites of phosphorylase kinase were examined. Binding of nucleoside triphosphates at the nucleoside diphosphate allosteric activation site inhibited enzymatic activity; this was observed with either ATP or GTP. Increasing concentrations of ADP caused a biphasic response: low concentrations activated and higher concentrations inhibited. Inhibition was due to the binding of ADP at the catalytic site, as opposed to an allosteric inhibitory site. GDP activated at low concentrations, but did not inhibit even at relatively high concentrations, and is therefore a specific probe for the allosteric site. Maximal activity of the nonactivated holoenzyme at pH 6.8 is achieved at an optimal ratio of ATP to ADP, such that the inhibitory actions of ATP at the allosteric site and of ADP at the catalytic site are balanced. Various potential molecular mechanisms to explain the allosteric activation by ADP were examined and ruled out, thus strengthening our previous conclusion that the activation is predominantly caused by a conformational transition in the beta subunits directly induced by the binding of ADP (Cheng, A., Fitzgerald, T. J., and Carlson, G. M. (1985) J. Biol. Chem. 260, 2535-2542; Trempe, M. R., and Carlson, G. M. (1987) J. Biol. Chem. 262, 4333-4340; Cheng, A., Fitzgerald, T. J., Bhatnager, D., Roskoski, R., Jr., and Carlson, G. M. (1988) J. Biol. Chem. 263, 5534-5542). The catalytic site exhibited high stereospecificity for inhibition by the Rp and Sp epimers of adenosine 5'-O-(1-thiodiphosphate), with the Rp epimer (Ki = 0.5 microM) being 136-fold more effective than its Sp counterpart. This can readily explain the inability of the Rp epimer to be an effective allosteric activator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号