首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA sequences representing approximately 40% of the large-subunit rRNA gene from the lower dipteran Chironomus thummi were analyzed. Once aligned with their Drosophila counterparts, sequence and base content comparisons were carried out. Sequence identity was found to be high overall, except for six regions that displayed a local bias in nucleotide composition toward AT. These regions were identified as expansion segments D3, D4, D5, D6, D7a, and D12. Besides base sequence divergence, differences in length were observed between the respective variable domains of the two species, particularly for D7a. Prediction of secondary structure showed that the folding of the Chironomus expansion segments analyzed is in agreement with the general patterns proposed for eukaryotic LSU rRNA. The comparison with Drosophila revealed also that the Chironomus secondary structures of the variable domains are supported by multiple compensatory substitutions or even compensatory insertions. Chironomus D7a displayed an unusual structural feature with respect to the insect D7a models that have been inferred up to now. The structural constraint observed in the expansion segments of Diptera so distantly related as midges and Drosophila suggests that these regions contribute to some functional role. Concerning the D7a of insects so far analyzed, there can be, in addition to a conserved secondary structure, a nucleotide composition constraint that might be important for the process giving rise to the alpha and beta halves of the 26S rRNA. Correspondence to: E. Gorab  相似文献   

2.
We analyze the secondary structure of two expansion segments (D2, D3) of the 28S ribosomal (rRNA)-encoding gene region from 527 chalcidoid wasp taxa (Hymenoptera: Chalcidoidea) representing 18 of the 19 extant families. The sequences are compared in a multiple sequence alignment, with secondary structure inferred primarily from the evidence of compensatory base changes in conserved helices of the rRNA molecules. This covariation analysis yielded 36 helices that are composed of base pairs exhibiting positional covariation. Several additional regions are also involved in hydrogen bonding, and they form highly variable base-pairing patterns across the alignment. These are identified as regions of expansion and contraction or regions of slipped-strand compensation. Additionally, 31 single-stranded locales are characterized as regions of ambiguous alignment based on the difficulty in assigning positional homology in the presence of multiple adjacent indels. Based on comparative analysis of these sequences, the largest genetic study on any hymenopteran group to date, we report an annotated secondary structural model for the D2, D3 expansion segments that will prove useful in assigning positional nucleotide homology for phylogeny reconstruction in these and closely related apocritan taxa.  相似文献   

3.
The D2-D3 expansion segments of the 28S ribosomal RNA (rRNA) were sequenced and compared to predict secondary structures for Hoplolaiminae species based on free energy minimization and comparative sequence analysis. The free energy based prediction method provides putative stem regions within primary structure and these base pairings in stems were confirmed manually by compensatory base changes among closely and distantly related species. Sequence differences ranged from identical between Hoplolaimus columbus and H. seinhorsti to 20.8% between Scutellonema brachyurum and H. concaudajuvencus. The comparative sequence analysis and energy minimization method yielded 9 stems in the D2 and 6 stems in the D3 which showed complete or partial compensatory base changes. At least 75% of nucleotides in the D2 and 68% of nucleotides in the D3 were related with formation of base pairings to maintain secondary structure. GC contents in stems ranged from 61 to 73% for the D2 and from 64 to 71% for the D3 region. These ranges are higher than G-C contents in loops which ranged from 37 to 48% in the D2 and 33-45% in the D3. In stems, G-C/C-G base pairings were the most common in the D2 and the D3 and also non-canonical base pairs including A•A and U•U, C•U/U•C, and G•A/A•G occurred in stems. The predicted secondary model and new sequence alignment based on predicted secondary structures for the D2 and D3 expansion segments provide useful information to assign positional nucleotide homology and reconstruction of more reliable phylogenetic trees.  相似文献   

4.
The complete nucleotide sequence of Citrus limon 26S rDNA has been determined. The sequence has been aligned with large ribosomal RNA (L-rRNA) sequences of Escherichia coli, Saccharomyces cerevisiae and Oryza sativa. Nine extensive expansion segments in dicot 26S rRNA relative to E. coli 23S rRNA have been identified and compared with analogous segments of monocot, yeast, amphibian and human L-rRNAs. A secondary structure model for lemon 26S rRNA has been derived based on the refined model of E. coli 23S rRNA. It has been compared with other eukaryotic L-rRNAs models in terms of location of functionally important regions. Origin and evolution of L-rRNA expansion segments are discussed.  相似文献   

5.
The D1/D2 domains of large subunit (LSU) rDNA have commonly been used for phylogenetic analyses of dinoflagellates; however, their properties have not been evaluated in relation to other D domains due to a deficiency of complete sequences. This study reports the complete LSU rRNA gene sequence in the causative unarmored dinoflagellate Cochlodinium polykrikoides, a member of the order Gymnodiniales, and evaluated the segmented domains and secondary structures when compared with its relatives. Putative LSU rRNA coding regions were recorded to be 3433 bp in length (49.0% GC content). A secondary structure predicted from the LSU and 5.8S rRNAs and parsimony analyses showed that most variation in the LSU rDNA was found in the 12 divergent (D) domains. In particular, the D2 domain was the most informative in terms of recent evolutional and taxonomic aspects, when compared with both the phylogenetic tree topologies and molecular distance (approximately 10 times higher) of the core LSU. Phylogenetic analysis was performed with a matrix of LSU DNA sequences selected from domains D2 to D4 and their flanking core sequences, which showed that C. polykrikoides was placed on the same branch with Akashiwo sanguinea in the “GPP” complex, which is referred to the gymnodinioid, peridinioid and prorocentroid groups. A broad phylogeny showed that armored and unarmored dinoflagellates were never clustered together; instead, they were clearly divided into two groups: the GPP complex and Gonyaulacales. The members of Gymnodiniales were always interspersed with peridinioid, prorocentroid and dinophysoid forms. This supports previous findings showing that the Gymnodiniales are polyphyletic. This study highlights the proper selection of LSU rDNA molecules for molecular phylogeny and signatures.  相似文献   

6.
This paper examines the effects of DNA sequence evolution on RNA secondary structures and compensatory mutations. Models of the secondary structures of Drosophila melanogaster 18S ribosomal RNA (rRNA) and of the complex between 2S, 5.8S, and 28S rRNAs have been drawn on the basis of comparative and energetic criteria. The overall AU richness of the D. melanogaster rRNAs allows the resolution of some ambiguities in the structures of both large rRNAs. Comparison of the sequence of expansion segment V2 in D. melanogaster 18S rRNA with the same region in three other Drosophila species and the tsetse fly (Glossina morsitans morsitans) allows us to distinguish between two models for the secondary structure of this region. The secondary structures of the expansion segments of D. melanogaster 28S rRNA conform to a general pattern for all eukaryotes, despite having highly divergent sequences between D. melanogaster and vertebrates. The 70 novel compensatory mutations identified in the 28S rRNA show a strong (70%) bias toward A-U base pairs, suggesting that a process of biased mutation and/or biased fixation of A and T point mutations or AT-rich slippage-generated motifs has occurred during the evolution of D. melanogaster rDNA. This process has not occurred throughout the D. melanogaster genome. The processes by which compensatory pairs of mutations are generated and spread are discussed, and a model is suggested by which a second mutation is more likely to occur in a unit with a first mutation as such a unit begins to spread through the family and concomitantly through the population. Alternatively, mechanisms of proofreading in stem-loop structures at the DNA level, or between RNA and DNA, might be involved. The apparent tolerance of noncompensatory mutations in some stems which are otherwise strongly supported by comparative criteria within D. melanogaster 28S rRNA must be borne in mind when compensatory mutations are used as a criterion in secondary-structure modeling. Noncompensatory mutation may extend to the production of unstable structures where a stem is stabilized by RNA- protein or additional RNA-RNA interactions in the mature ribosome. Of motifs suggested to be involved in rRNA processing, one (CGAAAG) is strongly overrepresented in the 28S rRNA sequence. The data are discussed both in the context of the forces involved with the evolution of multigene families and in the context of molecular coevolution in the rDNA family in particular.   相似文献   

7.
Complete sequences of the rRNA genes of Drosophila melanogaster   总被引:19,自引:0,他引:19  
In this, the first of three papers, we present the sequence of the ribosomal RNA (rRNA) genes of Drosophila melanogaster. The gene regions of D. melanogaster rDNA encode four individual rRNAs: 18S (1,995 nt), 5.8S (123 nt), 2S (30 nt), and 28S (3,945 nt). The ribosomal DNA (rDNA) repeat of D. melanogaster is AT rich (65.9% overall), with the spacers being particularly AT rich. Analysis of DNA simplicity reveals that, in contrast to the intergenic spacer (IGS) and the external transcribed spacer (ETS), most of the rRNA gene regions have been refractory to the action of slippage-like events, with the exception of the 28S rRNA gene expansion segments. It would seem that the 28S rRNA can accommodate the products of slippage-like events without loss of activity. In the following two papers we analyze the effects of sequence divergence on the evolution of (1) the 28S gene "expansion segments" and (2) the 28S and 18S rRNA secondary structures among eukaryotic species, respectively. Our detailed analyses reveal, in addition to unequal crossing-over, (1) the involvement of slippage and biased mutation in the evolution of the rDNA multigene family and (2) the molecular coevolution of both expansion segments and the nucleotides involved with compensatory changes required to maintain secondary structures of RNA.   相似文献   

8.
Mollusks are an extraordinarily diverse group of animals with an estimated 200,000 species, second only to the phylum Arthropoda. We conducted a comparative analysis of complete mitochondrial ribosomal large subunit sequences (LSU) of a chiton, two bivalves, six gastropods, and a cephalopod. In addition, we determined secondary structure models for each of them. Comparative analyses of nucleotide variation revealed substantial length variation among the taxa, with stylommatophoran gastropods possessing the shortest lengths. Phylogenetic analyses of the nucleotide sequence data supported the monophyly of Albinaria, Euhadra herklotsi + Cepaea nemoralis, Stylommatophora, Cerithioidea, and when only transversions are included, the Bivalvia. The phylogenetic limits of the mitochondrial LSU rRNA gene within mollusks appear to be up to 400 million years, although this estimate will have to be tested further with additional taxa. Our most novel finding was the discovery of phylogenetic signal in the secondary structure of rRNA of mollusks. The absence of entire stem/loop structures in Domains II, III, and V can be viewed as three shared derived characters uniting the stylommatophoran gastropods. The absence of the aforementioned stem/loop structure explains much of the observed length variation of the mitochondrial LSU rRNA found within mollusks. The distribution of these unique secondary structure characters within mollusks should be examined.  相似文献   

9.
10.
Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of Drosophila and the tsetse fly species Glossina morsitans morsitans. At the primary sequence level, most of the differences observed in the sequences obtained are single base substitutions. This is in marked contrast with observations in vertebrate species in which the insertion or deletion of repetitive motifs, probably generated by a DNA-slippage mechanism, is a major factor in the evolution of these regions. The secondary structure of the two regions, supported by multiple compensatory base changes, is highly conserved between the species examined and supports the existence of a general folding pattern for all eukaryotes. Intriguingly, the evolutionary rate of expansion segments is very slow relative to other genic and non-genic regions of the Drosophila genome. These results suggest that the evolution of expansion segments in the rDNA multigene family is a balance between the homogenization of new mutations by unequal crossing over and a combination of selection against some such mutations per se and selection for subsequent compensatory mutations, in order to maintain a particular RNA secondary structure.  相似文献   

11.
In the ciliated protozoan, Tetrahymena pyriformis, the mitochondrial large subunit ribosomal RNA (LSU rRNA) is discontinuous, consisting of two discrete RNA species: a 280-nucleotide LSU alpha (constituting the 5'-portion) and a 2315-nucleotide LSU beta (corresponding to the remaining 3'-portion of this rRNA). The T. pyriformis mitochondrial genome contains two copies of the LSU alpha.beta gene complex, and we have previously provided evidence that both copies are transcribed (Heinonen, T. Y. K., Schnare, M. N., Young, P. G., and Gray, M. W. (1987) J. Biol. Chem. 262, 2879-2887). We now report the complete sequences of the two copies of the LSU alpha.beta gene complex. These are not identical, but differ at 5 out of the 2595 positions by single nucleotide substitutions in one sequence relative to the other. In the secondary structure model we propose here, two of these differences are located in base-paired regions of the LSU rRNA; however, they do not interrupt the complementary interactions in these helices. The other three differences occur in single-stranded regions of the secondary structure. The base substitutions documented here are not localized to those regions of LSU rRNA that are the most highly conserved in global phylogenetic comparisons, and therefore it seems unlikely that they are of fundamental functional significance. Whether they might exert more subtle effects on ribosome function remains to be determined.  相似文献   

12.
13.
A method to investigate the structure of RNA molecules within intact plant tissues has been developed. The RNA structures are analyzed using dimethyl sulfate (DMS), which modifies substituents of adenine and cytosine residues within single-stranded regions of RNA molecules. Reactive sites are identified by primer extension analysis. Using this procedure, an analysis of the secondary structure of the cytoplasmic 18S ribosomal RNA in soybean seedling leaves has been completed. DMS modification data are in good agreement with the phylogenetic structure predicted for soybean 18S rRNA. However, there are a few notable exceptions where residues thought to be involved in double-stranded regions in all 18S rRNAs are strongly modified in soybean leaf samples. These data taken together with the phylogenetic structure suggest that alternate structures may exist in vivo.The further applicability of this technique is demonstrated by comparing the modification pattern obtained in vivo to that obtained in vitro for a particular mRNA molecule encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. The results obtained are compared to a predicted minimum energy secondary structure. The data indicate that the conformation of RNA molecules within the cell may not be reflected in a structural analysis of purified mRNA molecules.  相似文献   

14.
The nearly complete 18S rRNA sequence of the myxozoan parasite Sphaerospora truttae shows an extraordinary length (2,552bp) in comparison with other myxozoans and with metazoans in general (average 1,800-1,900bp). The sequence shows nucleotide insertions in most variable regions of the 18S rRNA (V2, V4, V5 and V7), with especially large expansion segments in V4 and V7. In the myxozoans, nucleotide insertions and specific secondary structures in these regions of the gene were found to be strongly related to large scale phylogenetic clustering and thus with the invertebrate host type. Whereas expansion segments were generally found to be absent in the malacasporeans and the clade of primary marine myxozoan species, they occur in all taxa of the clade containing freshwater species, where they showed a consistent secondary structure throughout. The longest expansion segments occur in S. truttae, Sphaerospora elegans and Leptotheca ranae, which represent a clade that has emerged after the malacosporeans and before the radiation of all other myxozoan genera. These three species demonstrate structural links to the malacosporeans as well as other unique features. A smaller number of nucleotide insertions in different subhelices and specific secondary structures appear to have evolved independently in two marine genera, i.e. Ceratomyxa and Parvicapsula. The secondary structural elements of V4 and V7 of the myxozoan 18S rRNAs were found to be highly informative and revealed evolutionary trends of various regions of the gene hitherto unknown, since previous analyses have been based on primary sequence data excluding these regions. Furthermore, the unique features of the V4 region in S. truttae allowed for the design of a highly specific PCR assay for this species.  相似文献   

15.
According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10.  相似文献   

16.
17.
18.
In the protist Euglena gracilis, the cytosolic small subunit (SSU) rRNA is a single, covalently continuous species typical of most eukaryotes; in contrast, the large subunit (LSU) rRNA is naturally fragmented, comprising 14 separate RNA molecules instead of the bipartite (28S + 5.8S) eukaryotic LSU rRNA typically seen. We present extensively revised secondary structure models of the E. gracilis SSU and LSU rRNAs and have mapped the positions of all of the modified nucleosides in these rRNAs (88 in SSU rRNA and 262 in LSU rRNA, with only 3 LSU rRNA modifications incompletely characterized). The relative proportions of ribose-methylated nucleosides and pseudouridine (∼ 60% and ∼ 35%, respectively) are closely similar in the two rRNAs; however, whereas the Euglena SSU rRNA has about the same absolute number of modifications as its human counterpart, the Euglena LSU rRNA has twice as many modifications as the corresponding human LSU rRNA. The increased levels of rRNA fragmentation and modification in E. gracilis LSU rRNA are correlated with a 3-fold increase in the level of mispairing in helical regions compared to the human LSU rRNA. In contrast, no comparable increase in mispairing is seen in helical regions of the SSU rRNA compared to its homologs in other eukaryotes. In view of the reported effects of both ribose-methylated nucleoside and pseudouridine residues on RNA structure, these correlations lead us to suggest that increased modification in the LSU rRNA may play a role in stabilizing a ‘looser’ structure promoted by elevated helical mispairing and a high degree of fragmentation.  相似文献   

19.
The nuclear large subunit (LSU) rRNA gene is a rich source of phylogenetic characters because of its large size, mosaic of slowly and rapidly evolving regions, and complex secondary structure variation. Nevertheless, many studies have indicated that inconsistency, bias, and gene-specific error (e.g., within-individual gene family variation, cryptic sequence simplicity, and sequence coevolution) can complicate animal phylogenies based on LSU rDNA sequences. However, most of these studies sampled small gene fragments from expansion segments--among animals only five nonchordate complete LSU sequences are published. In this study, we sequenced near-complete nuclear LSU genes from 11 representative daphniids (Crustacea). The daphniid expansion segment V6 was larger and showed more length variation (90-351 bp) than is found in all other reported LSU V6 sequences. Daphniid LSU (without the V6 region) phylogenies generally agreed with the existing phylogenies based on morphology and mtDNA sequences. Nevertheless, a major disagreement between the LSU and the expected trees involved a positively misleading association between the two taxa with the longest branches, Daphnia laevis and D. occidentalis. Both maximum parsimony (MP) and maximum likelihood (ML) optimality criteria recovered this association, but parametric simulations indicated that MP was markedly more sensitive to this bias than ML. Examination of data partitions indicated that the inconsistency was caused by increased nucleotide substitution rates in the branches leading to D. laevis and D. occidentalis rather than among-taxon differences in base composition or distribution of sites that are free to vary. These results suggest that lineage-specific rate acceleration can lead to long-branch attraction even in the conserved genes of animal species that are almost morphologically indistinguishable.  相似文献   

20.
Three yeast strains, which are phenotypically indistinguishable from Debaryomyces hansenii, were recovered from secondary mineral deposits (stalactites and stromatolites) obtained in the Crystal Eyes Cave, Roraima Tepui Mountain, Venezuela. Analyses of the D1/D2 domains of the LSU rRNA gene as well as the concatenated sequences of the nearly entire SSU rRNA gene, the ITS regions and the D1/D2 domains of the LSU rRNA gene confirmed the placement of these strains in the genus Debaryomyces, but relationship with all valid species of D. hansenii complex was distant. Based on the observed considerable sequence divergence the three strains are proposed as a new species, D. psychrosporus sp. nov., with the type strain NCAIM Y.01972(T) (CBS 11845(T), NRRL Y-48723(T)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号