首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multimerization of polyomavirus middle-T antigen.   总被引:2,自引:0,他引:2       下载免费PDF全文
The oncogenic protein of polyomavirus, middle-T antigen, associated with cell membranes and interacts with a variety of cellular proteins involved in mitogenic signalling. Middle-T antigen may therefore mimic the function of cellular tyrosine kinase growth factor receptors, like the platelet-derived growth factor or epidermal growth factor receptor. Growth factor receptor signalling is initiated upon the binding of a ligand to the extracellular domain of the receptor. This results in activation of the intracellular tyrosine kinase domain of the receptor, followed by receptor phosphorylation, presumably as a consequence of dimerization of two receptor molecules. Similar to middle-T antigen, phosphorylation of growth factor receptors leads to recruitment of cellular signalling molecules downstream in the signalling cascade. In this study, we investigated whether middle-T antigen, similar to tyrosine kinase growth factor receptors, is able to form dimeric signalling complexes. We found that association with cellular membranes was a prerequisite for multimerization, most likely dimer formation. A chimeric middle-T antigen carrying the membrane-targeting sequence of the vesicular stomatitis virus G protein instead of the authentic polyomavirus sequence still dimerized. However, mutants of middle-T antigen unable to associate with 14-3-3 proteins, like d18 and S257A, did not form dimers but were still oncogenic. This indicates that both membrane association and binding of 14-3-3 are necessary for dimer formation of middle-T antigen but that only the former is essential for cell transformation.  相似文献   

2.
Mutants of polyomavirus middle-T antigen   总被引:17,自引:0,他引:17  
Polyomavirus middle-T antigen induces the transformation of established cell lines in culture and is known to interact with and/or modulate the activity of several enzymes (pp60c.src, protein kinase C and phosphatidylinositol kinase) in vitro. This review is a compilation of the reported mutants of middle-T antigen and their biochemical and biological properties as they relate to the transformation event. The mutants of polyomavirus middle-T antigen have been previously classified phenotypically. Given the now large number of mutants, the classification presented here is based upon the position within the molecule. A model of middle-T is presented in which the protein is considered as consisting of three domains: a hydrophobic domain (the putative membrane-binding domain), the amino-terminal half of the molecule (the putative pp60c.src-binding domain) and the intervening amino acids (the putative modulatory domain). A current model for the induction of transformation by polyomavirus middle-T is presented.  相似文献   

3.
A Wyss  S Kaech    K Ballmer-Hofer 《Journal of virology》1990,64(10):5163-5166
Middle-T antigen (middle-T), the transforming gene product of polyomavirus, associates with several cellular tyrosine kinases, such as pp60c-src. Complex formation leads to kinase activation and is essential for cell transformation. Middle-T-associated as well as uncomplexed pp60c-src is predominantly found in the plasma membrane. We transfected mouse 3T3 fibroblasts with a mutated c-src gene (2Ac-src), allowing the expression of a protein containing alanine instead of glycine in position 2 of the primary translation product. Contrary to the wild-type c-src gene product, pp60c-src(2A) was not myristylated and accumulated in the cytoplasm instead of being transferred to cellular membranes. The mutant protein was able to associate with middle-T and was activated similarly to the wild-type c-src gene product. Both wild-type and 2A mutant protein were membrane associated upon complex formation with middle-T. This finding suggests that the putative carboxy-terminal membrane anchor sequence of middle-T is sufficient to hold middle-T-associated pp60c-src(2A) in the plasma membrane.  相似文献   

4.
5.
Tyrosine residues of middle-T and tyrosine phosphorylation are thought to be important in the transformation of cultured rodent cells by polyomavirus. Of the potential tyrosine sites in the carboxyl-terminal half of middle-T, tyrosines 297, 315, and 322 have been studied previously, whereas tyrosine 250 has not. Two mutant plasmids, XD121 and pT250, encode polyomavirus middle-T species in which the tyrosine 250 residue is affected. XD121 is a deletion mutant in which the region encoding tyrosine 250, together with three adjacent amino acids, is deleted, whereas pT250 is a point mutant in which the tyrosine 250 codon has been converted to a phenylalanine codon. The plasmids were handicapped in transforming ability, as judged by focus formation on a monolayer of Rat-1 cells. Both demonstrated a reduction in the number of foci produced and a lag in the time of appearance of foci when compared with wild-type plasmid. The importance of residue 250 in this phenotype was indicated by the observation that plasmids containing multiple mutations proximal to the tyrosine 250 codon were wild type in their transforming ability. Furthermore, a revertant of pT250 (pT250-w.t.), which utilized the alternative tyrosine codon of TAC, was shown to regain full transforming activity. A combined-mutant plasmid, pTH, encodes a middle-T species in which both tyrosines 250 and 315 are converted to phenylalanine. This plasmid was totally defective in the transformation of rodent cells in a focus formation assay; however, it did impart a small measure of anchorage-independent growth when the encoded protein was expressed in NIH 3T3 cells. The in vitro kinase activity and pp60c-src association of the mutant middle-T antigens were examined. These assays demonstrated a reduction in phosphate acceptor activity for the middle-T species encoded by pT250 and pTH. Quantitative kinase assays showed that all of the tyrosine-mutant middle-T species, encoded by pAS131 (containing the tyrosine 315 codon-to-phenylalanine codon mutation), pT250, and pTH, were able to enhance pp60c-src kinase activity but only at levels which were intermediate and which reflected their transforming abilities relative to wild type.  相似文献   

6.
A large number of mutations were introduced into the carboxy-terminal domain of pp60c-src. The level of phosphorylation on Tyr-416 and Tyr-527, the transforming activity (as measured by focus formation on NIH 3T3 cells), kinase activity, and the ability of the mutant pp60c-src to associate with the middle-T antigen of polyomavirus were examined. The results indicate that Tyr-527 is a major carboxy-terminal element responsible for regulating pp60c-src in vivo. A good but not perfect correlation exists between lack of phosphorylation at Tyr-527 and increased phosphorylation at Tyr-416, between elevated phosphorylation on Tyr-416 and activated kinase activity, and between activated kinase activity and transforming activity. Phosphorylation of Tyr-527 was insensitive to the mutation of adjacent residues, indicating that the primary sequence only has a minor role in recognition by kinases or phosphatases which regulate it in vivo. Three mutants which have in common a modified Glu-524 residue were phosphorylated on Tyr-416 and Tyr-527 and were weakly transforming. This suggests that other mechanisms besides complete dephosphorylation of Tyr-527 can lead to increased phosphorylation of Tyr-416 and activation of the transforming activity of pp60c-src. Furthermore, the residues between Asp-518 and Pro-525 were required to form a stable complex with middle-T antigen. The proximity of these sequences to Tyr-527 suggests a model in which middle-T activates pp60c-src by binding directly to this region of the molecular and thereby preventing phosphorylation of Tyr-527. Alternatively, middle-T binding may mediate a conformational change in this region, which in turn induces an alteration in the level of phosphorylation at Tyr-527 and Tyr-416.  相似文献   

7.
Labelling studies with N-ETHYLMALEIMIDE SHOW THAT EITHER IN THE PRESENCE OF Mg2+, thiamine pyrophosphate (TPP) and pyruvate or in the presence of NADH the overall activity of the pyruvate dehydrogenase complex from Azotobacter vinelandii is inhibited without much inhibition of the partial reactions. The complex undergoes a conformational change upon incubation with NADH. The inhibition by bromopyruvate is less specific. Specific incorporation of a fluorescent maleimide derivative was observed on the two transacetylase isoenzymes. Binding studies with a similar spin label analogue show that 3 molecules/FAD are incorporated by incubation of pyruvate, Mg2+ and TPP, whereas 2 molecules/FAD are incorporated via incubation with NADH. The spin label spectra support the idea that in the complex the active centres of the component enzymes are connected by rapid rotation of the lipoyl moiety. Three acetyl groups are incorporated in the complex by incubation with [2-14C]pyruvate. Time-dependent incorporation supports the view that the two transacetylase isoenzymes react in non-identical ways with the pyruvate dehydrogenase components of the complex. The results show that the complex contains 2 low-molecular-weight transacetylase molecules and 4 molecules of the high-molecular-weight isoenzyme. Mn2+-binding studies show that the complex binds 10 ions, with different affinities. 2 Mn2+ ions are bound with a 20-fold higher affinity than the remaining 8 Mn2+ ions. The latter 8 ions bind with equal affinities and are thought to reflect binding to the pyruvate dehydrogenase components of the complex. It is concluded that the complex contains 8 pyruvate dehydrogenase molecules, 4 high-molecular-weight transacetylase molecules, 2 low-molecular-weight transacetylase molecules and 1 dimeric (2-FAD-containing) symmetric molecule of lipoamide dehydrogenase. Evidence comes from pyruvate-dependent inactivation and labelling studies that the pyruvate dehydrogenase components contain either an - SH group or an S-S bridge which participates in the hydroxyethyl transfer to the transacetylase components.  相似文献   

8.
The c-fyn proto-oncogene is a member of a family of closely related genes of which c-src is the prototype. Using peptide antibodies which had been raised against sequences predicted to be specific for the human c-fyn gene product, the c-fyn protein was identified. It is a tyrosine kinase with apparent mol. wt of 59 kd that is also phosphorylated and myristylated. Like pp60c-src and pp62c-yes, pp59c-fyn is able to form a stable complex with middle-T antigen, the transforming protein of polyomavirus. The transformation-defective middle-T mutant NG59, which is unable to associate stably with pp60c-src does not associate with pp59c-fyn. In contrast to pp60c-src, complex formation with middle-T antigen does not lead to a significant increase in the tyrosine kinase activity of pp59c-fyn. These findings lead us to suggest that middle-T mediated transformation may be a consequence of the deregulation of several members of the src-family of protein tyrosine kinases.  相似文献   

9.
Middle-T antigen of mouse polyomavirus (MomT) associates with the cellular tyrosine kinases c-Src, c-Yes, and Fyn, while middle-T antigen of hamster polyomavirus (HamT) exclusively binds Fyn. This interaction is essential for polyomavirus-mediated transformation of cells in culture and tumor formation in animals. Here we show that the kinase domain of Fyn is sufficient for association with MomT but not for binding of HamT. We further demonstrate that a Fyn mutant lacking the SH2 domain is able to bind MomT but fails to associate with HamT, indicating that the SH2 domain of Fyn is essential for stable association with HamT. HamT, but not MomT, contains a tyrosine residue, Tyr-324, in the sequence context YEEI. Mutation of Tyr-324 to phenylalanine led to a drastic reduction of associated Fyn and abolished the oncogenicity of HamT. This suggests that Tyr-324 is the major phosphotyrosine residue mediating the binding of HamT to the SH2 domain of Fyn. These findings show that mouse and hamster polyomaviruses use different strategies to target Src-related tyrosine kinases.  相似文献   

10.
The complex of polyoma virus middle-T antigen and pp60c-src.   总被引:44,自引:7,他引:37       下载免费PDF全文
We have recently proposed that the transforming protein of polyoma virus, middle-T antigen, forms a complex with pp60c-src. Here we provide additional evidence for the existence of the complex using both monoclonal antibodies specific for middle-T and antibodies raised against synthetic peptides corresponding to sequences from both middle-T and pp60c-src. The complex was retained during partial purification of middle-T and was stable to incubation under various conditions. A survey of a number of mutants of middle-T antigen showed that there was a complete correlation between the ability of middle-T to accept phosphate in the in vitro kinase reaction and the presence of a middle-T: pp60c-src complex. This result is in accord with our hypothesis that middle-T itself is not a protein kinase but rather that pp60c-src phosphorylates middle-T. All mutant forms of middle-T antigen capable of transformation had associated pp60c-src. The middle-T of two non-transforming mutants (hr-t mutants) did not have associated pp60c-src, whereas other non-transforming middle-T species did associate with pp60c-src. We propose that the complex plays an essential role in transformation by polyoma virus, but that the existence of the complex per se may not be sufficient.  相似文献   

11.
Middle-T antigen of mouse polyomavirus, an oncogenic DNA virus, associates with and activates the cellular tyrosine kinases c-Src, c-Yes, and Fyn. This interaction is essential for polyomavirus-mediated transformation of cells in culture and tumor formation in animals. To determine the domain of c-Src directing association with middle-T, mutant c-Src proteins lacking the amino-terminal unique domain and the myristylation signal, the SH2 domain, the SH3 domain, or all three of these domains were coexpressed with middle-T in NIH 3T3 cells. All mutants were found to associate with middle-T, demonstrating that the kinase domain of c-Src, including the carboxy-terminal regulatory tail, is sufficient for association with middle-T. Moreover, we found that Hck, another member of the Src kinase family, does not bind middle-T, while chimeric kinases consisting of the amino-terminal domains of c-Src fused to the kinase domain of Hck or the amino-terminal domains of Hck fused to the kinase domain of c-Src associated with middle-T. Hck mutated at its carboxy-terminal regulatory residue, tyrosine 501, was also found to associate with middle-T. These results suggest that in Hck, the postulated intramolecular interaction between the carboxy-terminal regulatory tyrosine and the SH2 domain prevents association with middle-T. This intramolecular interaction apparently also limits the ability of c-Src to associate with middle-T, since removal of the SH2 or SH3 domain increases the efficiency with which middle-T binds c-Src.  相似文献   

12.
Antibodies were raised against three synthetic peptides corresponding to sequences surrounding tyrosine 315, a putative in vitro phosphorylation site in polyomavirus middle-T antigen. Only one of the peptides (called C and corresponding to residues 311 to 330) elicited antibodies that recognized middle-T efficiently. Middle-T present in immunoprecipitates formed with purified anti-C serum still accepted phosphate on tyrosine in an in vitro kinase reaction. This implies that tyrosines other than 315 and 322 that lie within the antibody binding region are phosphorylated under these conditions. This conclusion was supported by the altered partial V8 proteolysis fingerprint of the labeled middle-T. Two-dimensional tryptic fingerprint analysis of 32P-labeled middle-T showed that several tryptic peptides identified as including tyrosine 315 and 322 were missing from middle-T labeled in anti-C immunoprecipitates compared with middle-T labeled in immunoprecipitates made by using anti-tumor cell serum. However, one major labeled peptide remained. This peptide was also present in fingerprints of 32P-labeled middle-T coded by M45, dl23, pAS131, and dl1013, but a peptide with altered mobility was present in dl8 middle-T. This identified the peptide as including tyrosine 250. We deduce from these data that (i) the presence of the antibody against peptide C inhibits phosphorylation of tyrosines 315 and 322; (ii) middle-T labeled in the kinase reaction after immunoprecipitation with anti-C serum is phosphorylated on tyrosine 250; and (iii) when anti-tumor cell serum is used in the in vitro kinase reaction, middle-T is phosphorylated at multiple sites, including residues 250, 315, and 322.  相似文献   

13.
14.
The majority of the carboxy-terminal half of polyomavirus middle-T antigen has been variously mutated and, with the exception of the putative membrane-binding domain (amino acids 394 to 415), was found to be largely dispensible for the transforming activity of the protein. A comparison of the small-T antigen amino acid sequences (equivalent to the region of middle-T encoded by exon 1) of simian virus 40, BK virus, polyomavirus, and a recently described hamster papovavirus highlighted regions of potential interest in mapping functions to the amino-terminal half of polyomavirus middle-T antigen. The regions of interest include amino acids 168 to 191 (previously investigated by this group [S. H. Cheng, W. Markland, A. F. Markham, and A. E. Smith, EMBO J. 5:325-334, 1986]), two cysteine-rich clusters (amino acids 120 to 125 and 148 to 153), and amino acids 92 to 117 (within the limits of the previously described hr-t mutant, SD15). Point mutations, multiple point mutations, and deletions were made by site-specific and site-directed mutagenesis within the cysteine-rich clusters and residues 92 to 117. Studies of the transforming ability of the altered middle-T species demonstrated that this activity is highly sensitive to amino acid changes. All four regions (as defined above) within the amino-terminal half of middle-T have now been studied in detail. The phenotype of the mutants is predominantly transformation defective, and the corresponding variant middle-T species are characterized by being either totally or severely handicapped in the ability to associate actively with pp60c-src. Whether the mutations affect the regions of interaction between middle-T and pp60c-src or simply interfere with the overall conformation of this domain is not known. However, there would appear to be a conformational constraint on this portion of the molecule with regard to its interaction with pp60c-src and by extension to the ability of the middle-T species to transform.  相似文献   

15.
The complex of Ku with DNA is demonstrated to have multiple forms as assayed by gel retardation analysis. In CV1 cells this variation of complex can be modulated in response to viral infection with SV40. By Western blot analysis, a correlation can be made between modification of the complex formed on DNA in response to viral infection with variation of the 85 kDa subunit of Ku. Modification of the 85 kDa subunit can also be seen when cells are exposed to various extracellular stimuli including variation in serum levels, PMA and CaPO4.  相似文献   

16.
Polyomavirus large T antigen (large T) is a highly phosphorylated protein that can be separated by proteolysis into two domains that have independent function. A cluster of phosphorylation sites was found in the protease-sensitive region connecting the N-terminal and C-terminal domains. Edman degradation of 32P-labeled protein identified serines 267, 271, and 274 and threonine 278 as sites of phosphorylation. Analysis of site-directed mutants confirmed directly that residues 271, 274, and 278 were phosphorylated. Threonine 278, shown here to be phosphorylated by cyclin/cyclin-dependent kinase activity, is required for viral DNA replication in either the full-length large T or C-terminal domain context. The serine phosphorylations are unimportant in the C-terminal domain context even though their mutations activates viral DNA replication in full-length large T. This finding suggests that these sites may function in relating the two domains to each other. Although the phosphorylation sites were involved in viral DNA replication, none was important for the ability of large T to drive cellular DNA replication as measured by bromodeoxyuridine incorporation, and they did not affect large T interactions with the Rb tumor suppressor family.  相似文献   

17.
The coronavirus mouse hepatitis virus (MHV) performs RNA replication on double membrane vesicles (DMVs) in the cytoplasm of the host cell. However, the mechanism by which these DMVs form has not been determined. Using genetic, biochemical, and cell imaging approaches, the role of autophagy in DMV formation and MHV replication was investigated. The results demonstrated that replication complexes co-localize with the autophagy proteins, microtubule-associated protein light-chain 3 and Apg12. MHV infection induces autophagy by a mechanism that is resistant to 3-methyladenine inhibition. MHV replication is impaired in autophagy knockout, APG5-/-, embryonic stem cell lines, but wild-type levels of MHV replication are restored by expression of Apg5 in the APG5-/-cells. In MHV-infected APG5-/-cells, DMVs were not detected; rather, the rough endoplasmic reticulum was dramatically swollen. The results of this study suggest that autophagy is required for formation of double membrane-bound MHV replication complexes and that DMV formation significantly enhances the efficiency of replication. Furthermore, the rough endoplasmic reticulum is implicated as the possible source of membranes for replication complexes.  相似文献   

18.
19.
20.
Except for its unique amino-terminal region (residues 1 through 83), which possibly dictates substrate recognition, pp59c-fyn bears a high degree of homology with other members of the src family of tyrosine kinases. Here we show that the carboxy terminus of pp59c-fyn is necessary for stable middle-T-antigen association, that pp59c-fyn is normally phosphorylated on both serine and tyrosine residues, and that Tyr-531 and Tyr-420 are phosphorylation sites in vivo and in vitro, respectively. Analysis of a spontaneously generated mutant encoding a truncated form of pp59c-fyn and of variants specifically mutated at the Tyr-531 and Tyr-420 phosphorylation sites indicates that pp59c-fyn has regulatory elements analogous to those that have already been identified for other src-like tyrosine kinases. However, further examination of the pp59c-fyn variants suggests the likelihood of additional means by which its activities might be regulated. Although alteration of Tyr-531 to phenylalanine (531F) in pp59c-fyn results in a protein which is more active enzymatically that the wild type, the enhancement is much less than that for the analogous variant of pp60c-src. Furthermore, contrary to results of similar experiments on other src-like proto-oncogene products, 531F did not induce transformation of NIH 3T3 cells. Studies involving pp59c-fyn-pp60c-src chimeras in which the unique amino-terminal sequences (residues 1 through 83) of the two kinases were precisely interchanged implied that the inability of 531F to induce transformation is probably not caused by the absence of substrates for pp59c-fyn in NIH 3T3 cells but rather by the insufficient enhancement of pp59c-fyn kinase activity. It is therefore probable that the kinase and transforming activities of pp59c-fyn are repressed by additional regulatory elements possibly located in the amino-terminal half of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号