首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiotensin II (Ang II) is a potent vasoactive peptide and displays growth factor-like properties. Different high-affinity Ang II receptor subtypes (AT1A, AT1B and AT2) have been cloned. They are expressed in various brain structures. Additionally, it has been assumed that Mas could interact directly or indirectly with the renin-angiotensin system. The AT1 receptor mediates pressor and mitogenic effects of Ang II, whereas physiological function and signaling mechanisms of the AT2 receptor remain poorly understood. Recent reports have shown that Ang II could mediate apoptosis through AT2 receptors. Since the AT1A, AT2 and Mas knockout mice provide new tools for uncovering potential actions of Ang II, the cell number in different brain structures of male adult wild-type mice and mice deficient for AT1A, AT2 or Mas was evaluated to get more insight into the role of Ang II in central nervous system development. In nearly all investigated brain structures (cortex, hippocampus, amygdala, thalamus), the cell number was significantly higher in AT2-deficient mice in comparison to wild-type mice. To the contrary, in AT1A-deficient mice the cell number was significantly less than in controls in the lateral geniculate and the medial amygdaloid nucleus. However, cell numbers were not changed in Mas-knockout mice compared to their wild-types. These results show the contrary effects of both angiotensin receptors on cell growth and represent the first demonstration of their action on neuronal cell development evidenced in the adult mouse brain.  相似文献   

2.
These studies examined the receptors involved in angiotensin II (Ang II) stimulated secretion of systemic oxytocin (OT) and the role of this peptide in release of OT during suckling. Plasma OT concentrations were measured following intracerebroventricular (icv) injection of vehicle, Ang II, or Ang II following pretreatment with a selective AT1 (Losartan) or AT2 (PD 123319) receptor antagonist. Furthermore, we measured Ang II-induced OT release during central alpha-adrenergic receptor blockade (phentolamine). Finally, plasma OT concentrations before and during suckling were evaluated following central administration of Ang II receptor antagonists. The increase in systemic OT following central Ang II was abolished by AT1 receptor blockade and inhibited by the AT2 receptor antagonist. Furthermore, pretreatment with phentolamine significantly diminished systemic OT release in response to icv Ang II. Finally, central Ang II receptor blockade did not alter the increase in circulating OT during suckling. These data demonstrate that Ang II evoked OT release is mediated through activation of both AT1 and AT2 receptors and suggest that a component of Ang II-induced OT stimulation is due to norepinephrine release. Furthermore, central angiotensin systems do not have a direct role in stimulating OT release during suckling.  相似文献   

3.
The role of Angiotensin II (Ang II) as a growth promoting or modulating factor has recently become a field of intensive research. A central issue in developmental neurobiology is the understanding of mechanisms governing the formation of spatially ordered connections. In this study, we show the localization of Ang II receptor subtypes by autoradiography in 2-week-old rat hindbrains confronting these data with membrane binding assays. Competition studies done on membrane preparations evidence no major changes on the relative affinities for both receptor subtypes between 2-week-old and adult rat tissues. By autoradiography, we found that all the areas (1-10) of the 2-week-old cerebellum showed both receptor subtypes present in complementary adjacent layers. Areas expressing a high level of AT2 receptors follow: inferior colicullus (IC), dorso tegmental nucleus, central (DTgC), subcoeruleus, alpha, sensory root of the trigeminal nerve, principal sensory root trigeminal nucleus (Pr5, Pr5VL) supragenual nucleus, genu facial nerve, facial nucleus, cerebellar peduncles, vestibular and lateral nuclei. Spinal trigeminal, (oral) and Raphe nuclei express AT1 receptor subtype. The high level of Ang II AT2 receptors present in the cerebellar peduncles might have a meaning on the establishment of the olivo-cerebellar connection. The high expression of Ang II AT2 receptors on 2-week-old rat hindbrains, a critical age on development, as well as its disappearance in the adult, strongly suggests a probable role of these receptors in cell migration and neuronal synaptogenesis.  相似文献   

4.
We aimed to clarify responsiveness to angiotensin (Ang) II in the porcine basilar artery and the role of Ang II receptor subtypes by functional, radioligand binding, and cell culture studies. Ang II induced more potent contractions in the proximal part than in the distal part of isolated porcine basilar arteries. The contraction induced by Ang II was inhibited by the Ang II type 1 (AT1) receptor antagonist losartan, but the Ang II type 2 (AT2) receptor antagonist PD123319 enhanced it. After removal of the endothelium, the effect of losartan remained but the effect of PD123319 was abolished. The specific binding site of [3H]Ang II on the smooth muscle membrane was inhibited by losartan, but not by PD123319. Stimulation of angiotensin II increased nitric oxide (NO) production in cultured basilar arterial endothelial cells. This production was inhibited by PD123319 and the NO synthase inhibitor L-NG-nitroarginine. These results suggest that the contraction induced by Ang II might be mediated via the activation of AT1 receptors on the basilar arterial smooth muscle cells and be modulated via the activation of AT2 receptors on the endothelial cells, followed by NO production.  相似文献   

5.

Background

Ghrelin is a novel growth hormone–releasing peptide administered to treat chronic heart failure (CHF). However, the underlying mechanism of its protective effects against heart failure (HF) remains unclear.

Methods and Results

A total of 68 patients with CHF and 20 healthy individuals were included. The serum levels of Angiotensin II (Ang II) and ghrelin were measured using ELISA. The results showed that Ang II and ghrelin were both significantly increased in CHF patients and that the ghrelin levels were significantly positively correlated with Ang II. The left anterior descending coronary artery was ligated to establish a rat model of CHF, and cultured cardiomyocytes from neonatal rats were stimulated with Ang II to explore the role of ghrelin in CHF. The results showed that ghrelin inhibited cardiomyocyte apoptosis both in vivo and in vitro. Furthermore, caspase-3 expression was examined, and the results revealed that Ang II induces cardiomyocyte apoptosis through the caspase-3 pathway, whereas ghrelin inhibits this action. Lastly, to further elucidate the mechanism by which ghrelin inhibits Ang II action, the expression of the AT1 and AT2 receptors was evaluated; the results showed that Ang II up-regulates the AT1 and AT2 receptors in cardiomyocytes, whereas ghrelin inhibits AT1 receptor up-regulation but does not affect AT2 receptor expression.

Conclusions

These data suggest that the serum levels of ghrelin are significantly positively correlated with Ang II in CHF patients and that ghrelin can inhibit Ang II-induced cardiomyocyte apoptosis by down-regulating AT1R, thereby playing a role in preventing HF.  相似文献   

6.
Although tyrosine kinases are critically involved in the angiotensin II (Ang II) type 1 (AT1) receptor signaling, how AT1 receptors activate tyrosine kinases is not fully understood. We examined the structural requirements of the AT1 receptor for transactivation of the epidermal growth factor (EGF) receptor (EGFR). Studies using carboxyl terminal-truncated AT1 receptors indicated that the amino acid sequence between 312 and 337 is required for activation of EGFR. The role of the conserved YIPP motif in this sequence in transactivation of EGFR was investigated by mutating tyrosine 319. Ang II failed to activate EGFR in cells expressing AT1-Y319F, whereas EGFR was activated even without Ang II in cells expressing AT1-Y319E, which mimics the AT1 receptor phosphorylated at Tyr-319. Immunoblot analyses using anti-phospho Tyr-319-specific antibody showed that Ang II increased phosphorylation of Tyr-319. EGFR interacted with the AT1 receptor but not with AT1-Y319F in response to Ang II stimulation, whereas the EGFR-AT1 receptor interaction was inhibited in the presence of dominant negative SHP-2. The requirement of Tyr-319 seems specific for EGFR because Ang II-induced activation of other tyrosine kinases, including Src and JAK2, was preserved in cells expressing AT1-Y319F. Extracellular signal-regulated kinase activation was also maintained in AT1-Y319F through activation of Src. Overexpression of wild type AT1 receptor in cardiac fibroblasts enhanced Ang II-induced proliferation. By contrast, overexpression of AT1-Y319F failed to enhance cell proliferation. In summary, Tyr-319 of the AT1 receptor is phosphorylated in response to Ang II and plays a key role in mediating Ang II-induced transactivation of EGFR and cell proliferation, possibly through its interaction with SHP-2 and EGFR.  相似文献   

7.
Angiotensin II (Ang II) stimulates tumor growth and angio-genesis in some solid cancer cells, but its anti-apoptosis role in breast cancer remains unclear. To address this issue, we investigated the effect of Ang II on adriamycin-induced apoptosis in breast cancer MCF-7 cells. Treatment of human breast cancer MCF-7 cells with adriamycin, a DNA topoisomerase IIα inhibitor, caused apoptosis. However, cells pretreated with Ang II were resistant to this apoptosis. Ang II significantly reduced the ratio of apoptotic cells and stimulation of phospho-Akt-Thr308 and phospho-Akt-Ser473 in a dose-dependent and time-dependent manner. In addition, Ang II significantly prevented apoptosis through inhibiting the cleavage of procaspase-9, a major downstream effector of Akt. TheAng II type 1 receptor (AT1R) was responsible for these effects. Among the signaling molecules downstream of AT1R, we revealed that the phosphatidylinositol 3-kinase/Akt pathway plays a predominant role in the anti-apoptotic effect of Ang II. Our data indicated that Ang n plays a critical anti-apoptotic role in breast cancer cells by a mechanism involving AT1R/phosphatidylinositol 3-kinase/Akt activation and the subsequent suppression of caspase-9 activation.  相似文献   

8.
The aims of the present study are to investigate the presence and distribution of angiotensin II (Ang II), as well as AT1 and AT2 receptors, in endocardial endothelial cells (EECs) and to determine if the effect of Ang II on intracellular calcium in these cells is mediated via the AT1 or the AT2 receptor. Immunofluorescence and 3D confocal microscopy techniques were used on 20-week-old fetal human EECs. Our results showed that Ang II and its receptors, the AT1 and the AT2 types, are present and exhibit a different distribution in human EECs. Ang II labelling is found throughout the cell with a fluorescence signal higher in the cytosol when compared with the nucleus. Like Ang II, the AT1 receptor fluorescence signal is also homogeneously distributed in human EECs but with a preferential labelling at the level of the nucleus, while the AT2 receptor labelling is solely present in the nucleus. Using fluo-3 and 3D confocal microscopy technique, superfusion of human EECs with increasing concentration of Ang II induced a dose-dependent sustained increase in free cytosolic and nuclear Ca2+ levels. This effect of Ang II on human EEC's intracellular Ca2+ ([Ca2+]) was completely prevented by losartan, an AT1 receptor antagonist. Our results suggest that Ang II, as well as AT1 and AT2 receptors, is present but differentially distributed in EECs of 20-week-old fetal human hearts, and that the AT1 receptor mediates the effects of Ang II on [Ca2+]i in these cells.  相似文献   

9.
Microexplant cultures from three-day-old rats were used to investigate whether angiotensin II (Ang II), through its AT(1) and AT(2) receptors, could be involved in the morphological differentiation of cerebellar cells. Specific activation of the AT(2) receptor during 4-day treatment induced two major morphological changes. The first was characterized by increased elongation of neurites. The second change was cell migration from the edge of the microexplant toward the periphery. Western blot analyses and indirect immunofluorescence studies revealed an increase in the expression of neuron-specific betaIII-tubulin, as well as an increase in expression of the microtubule-associated proteins tau and MAP2. These effects were demonstrated by co-incubation of Ang II with 1 microM DUP 753 (AT(1) receptor antagonist) or with 10 nM CGP 42112 (AT(2) receptor agonist) but abolished when Ang II was co-incubated with 1 microM PD 123319 (AT(2) receptor antagonist), indicating that differentiation occurs through AT(2) receptor activation and that the AT(1) receptor inhibits the AT(2) effect. Taken together, these results demonstrate that Ang II is involved in cerebellum development for both neurite outgrowth and cell migration, two important processes in the organization of the various layers of the cerebellum.  相似文献   

10.
11.
Miura S  Karnik SS 《The EMBO journal》2000,19(15):4026-4035
Conventional models of ligand-receptor regulation predict that agonists enhance the tone of signals generated by the receptor in the absence of ligand. Contrary to this paradigm, stimulation of the type 2 (AT(2)) receptor by angiotensin II (Ang II) is not required for induction of apoptosis but the level of receptor protein expression is critical. We compared Ang II-dependent and -independent AT(2) receptor signals involved in regulating apoptosis of cultured fibroblasts, epithelial cells and vascular smooth muscle cells. We found that induction of apoptosis-blocked by pharmacological inhibition of p38 mitogen-activated protein kinase and caspase 3-is a constitutive function of the AT(2) receptor. Biochemical and genetic studies suggest that the level of AT(2) receptor expression is critical for physiological ontogenesis and its expression is restricted postnatally, coinciding with cessation of developmental apoptosis. Re-expression of the AT(2) receptor in remodeling tissues in the adult is linked to control of tissue growth and regeneration. Therefore, we propose that overexpression of the AT(2) receptor itself is a signal for apoptosis that does not require the renin-angiotensin system hormone Ang II.  相似文献   

12.
Recent studies of beta(2)-adrenergic receptor suggest that agonist-promoted receptor internalization may play an important role in extracellular signal-regulated kinase (ERK) activation by G protein-coupled receptors. In the present study, we explored the effects of angiotensin II (Ang II) type-1 receptor (AT(1)) internalization on Ang II-induced activation of ERK using the receptor internalization blocker concanavalin A (ConA) and the carboxyl terminus-truncated receptor mutants with impaired internalization. ConA inhibited AT(1) receptor internalization without affecting ligand binding to the receptor, Ang II-induced generation of second messengers, and activation of tyrosine kinases Src and Pyk2 in vascular smooth muscle cells (VSMC). ConA blocked ERK activation evoked by Ang II and the calcium ionophore A23187. Impairment of AT(1) receptor internalization by truncating the receptor carboxyl terminus did not affect Ang II-induced ERK activation. ConA induced proteolytic cleavage of the epidermal growth factor (EGF) receptor at carboxyl terminus and abolished Ang II-induced transactivation of the EGF receptor, which is critical for ERK activation by Ang II in VSMC. ConA also induced proteolysis of erbB-2 but not platelet-derived growth factor receptor. Thus, ConA blocks Ang II-induced ERK activation in VSMC through a distinct mechanism, the ConA-mediated proteolysis of the EGF receptor.  相似文献   

13.
Speth RC 《Regulatory peptides》2003,115(3):203-209
Studies predating the discovery of the two major subtypes of angiotensin II (Ang II) receptors, AT1 and AT2, revealed anomalous characteristics of sarcosine1,glycine8 Ang II (Sar1,Gly8 Ang II). It competed poorly for 125I-Ang II binding in bovine brain but potently antagonized dipsogenic responses to intracerebroventricularly administered Ang II. Subsequent recognition that bovine brain contains AT(2) receptors, while dipsogenic responses to Ang II are mediated by AT1 receptors, suggests that Sar1,Gly(8) Ang II is AT1 selective. Sar1,Gly8 Ang II competed for 125I-sarcosine1,isoleucine8 Ang II binding to AT1 receptors in pituitary, liver and adrenal (the latter with the AT2 selective antagonist PD 123,319) with Ki's of 0.66, 1.40 and 1.36 nM, respectively. In contrast, the Ki of Sar1,Gly8 Ang II for AT2 receptors in rat adrenal (with the selective AT1 antagonist losartan) was 52 nM. 125I-Sar1,Gly8 Ang II (0.5-3 nM) bound to AT1 receptors in pituitary, liver, heart, adrenal, and hypothalamic membranes with high affinity (Kd=0.43, 1.6, 2.3, 0.96 and 1.8 nM, respectively), but showed no saturable binding to the adrenal AT2 receptor. 125I-Sar1,Gly8 Ang II selectively labeled AT1 receptors in sections of adrenal using receptor autoradiography. Thus, binding studies reveal Sar1,Gly8 Ang II to be the first angiotensin peptide analog to show AT1 receptor selectivity. 125I-Sar1,Gly8 Ang II offers a new means to selectively radiolabel AT1 receptors and may help to characterize ligand docking sites and agonist switches for AT1 versus AT2 receptors.  相似文献   

14.
Diabetes mellitus (DM) is a primary risk factor for cardiovascular diseases and heart failure. Activation of the retinoic acid receptor (RAR) and retinoid X receptor (RXR) has an anti-diabetic effect; but, a role in diabetic cardiomyopathy remains unclear. Using neonatal and adult cardiomyocytes, we determined the role of RAR and RXR in hyperglycemia-induced apoptosis and expression of renin-angiotensin system (RAS) components. Decreased nuclear expression of RARα and RXRα, activation of apoptotic signaling and cell apoptosis was observed in high glucose (HG) treated neonatal and adult cardiomyocytes and diabetic hearts in Zucker diabetic fatty (ZDF) rats. HG-induced apoptosis and reactive oxygen species (ROS) generation was prevented by both RAR and RXR agonists. Silencing expression of RARα and RXRα, by small interference RNA, promoted apoptosis under normal conditions and significantly enhanced HG-induced apoptosis, indicating that RARα and RXRα are required in regulating cell apoptotic signaling. Blocking angiotensin type 1 receptor (AT(1) R); but, not AT(2) R, attenuated HG-induced apoptosis and ROS generation. Moreover, HG induced gene expression of angiotensinogen, renin, AT(1) R, and angiotensin II (Ang II) synthesis were inhibited by RARα agonists and promoted by silencing RARα. Activation of RXRα, downregulated the expression of AT(1) R; and RXRα silencing accelerated HG induced expression of angiotensinogen and Ang II synthesis, whereas there was no significant effect on renin gene expression. These results indicate that reduction in the expression of RARα and RXRα has an important role in hyperglycemia mediated apoptosis and expression of RAS components. Activation of RAR/RXR signaling protects cardiomyocytes from hyperglycemia, by reducing oxidative stress and inhibition of the RAS.  相似文献   

15.
Angiotensin II (Ang II) receptor subtypes AT1 and AT2 share 34% overall homology, but the least homology is in their third intracellular loop (3rd ICL). In an attempt to elucidate the role of the 3rd ICL in determining the similarities and differences in the functions of the AT1 and the AT2 receptors, we generated a chimeric receptor in which the 3rd ICL of the AT2 receptor was replaced with that of the AT1 receptor. Ligand-binding properties and signaling properties of this receptor were assayed by expressing this receptor in Xenopus oocytes. Ligand-binding studies using [125I-Sar1-Ile8] Ang II, a peptidic ligand that binds both the AT1 and the AT2 receptor subtypes, and 125I-CGP42112A, a peptidic ligand that is specific for the AT2 receptor, showed that the chimeric receptor has lost affinity to both ligands. However, IP3 levels of the oocytes expressing the chimeric receptor were comparable to the IP3 levels of the oocytes expressing the AT1 receptor, suggesting that the chimeric receptors could couple to phospholipase C pathway in response to Ang II. We have shown previously that the nature of the amino acid present in the position 215 located in the fifth transmembrane domain (TMD) of the AT2 receptor plays an important role in determining its affinity to different ligands. Our results from the ligand-binding studies of the chimeric receptor further support the idea that the structural organization of the region spanning the 5th TMD and the 3rd ICL of the AT2 receptor has an important role in determining the ligand-binding properties of this receptor.  相似文献   

16.
The influence of angiotensin II (Ang II) on cardiac structural and electrophysiological remodeling was discussed including the novel concept that the renin angiotensin aldosterone is involved in the regulation heart cell volume. Particular attention was given to the role of Ang II AT1 receptors as mechanosensors which are activated by mechanic stretch independently of Ang II. These findings highly suggest that RAS inhibitors or AT1 receptor blockers have additional beneficial therapeutics effects by changing mechanical transduction. The influence of cell swelling on cell communication as well as the effect of Ang II on cell volume and the consequent activation of ionic channels and the generation of cardiac arrhythmias was reviewed. The discovery of ACE2 and its relevance to heart pathology was also discussed.  相似文献   

17.
18.
At the cellular level, 5'-AMP-activated protein kinase (AMPK) serves as a critical link between energy homeostasis and the regulation of fundamental biological activities, including apoptosis. Angiotensin (Ang) II plays a key role in fibrotic lung remodeling. We recently demonstrated that Ang II induces apoptosis in pulmonary artery endothelial cells (PAEC) through the Ang type 2 receptor (AT(2)). AT(2) activates Src-homology two-domain-containing phosphatase-2 (SHP-2) in a signaling cascade leading to Bcl-x(L) mRNA destabilization and initiation of intrinsic apoptosis. We investigated the requirement of AMPK and ATP generation for Ang II-induced apoptosis in PAEC. Ang II activated AMPK, which was required for ATP generation. Inhibition of ATP production by compound C, an AMPK inhibitor, or by oligomycin suppressed Ang II-induced apoptosis. Experiments in Chinese hamster ovary-K1 cells expressing ectopic AT(2) (wild-type, mutant D90A, or carboxy terminal truncated mutant tC319) demonstrated that AT(2) activation of AMPK required the active conformation of the receptor and the carboxy terminal 44 amino acids. AMPK associated with and activated SHP-2 and was required for Bcl-x(L) mRNA destabilization. These are the first findings demonstrating that AMPK is activated by Ang II to produce ATP required for apoptosis. Our data also indicate that AMPK plays an energy-independent role by mediating SHP-2 activation.  相似文献   

19.
Aside from the well known role of angiotensin II (Ang II) in blood pressure regulation and fluid homeostasis, accumulating evidence suggests that the octapeptide hormone also plays a role in growth and development. There are two major classes of Ang II receptors (AT1and AT2) which mediate Ang II action. Both classes are members of the large superfamily of seven transmembrane domain spanning receptors. Fetal tissue express high levels of AT receptors. Throughout fetal and postpartum life, the AT1and AT2tissue distribution changes dramatically. The evolution of each receptor type is distinct and varies according to the organ. Thus, the different patterns of temporal expression of each receptor class could be related to various roles that Ang II may play during development.  相似文献   

20.
Members of the G-protein-coupled receptor superfamily (GPCRs) undergo homo- and/or hetero-oligomerization to induce cell signaling. Although some of these show constitutive activation, it is not clear how such GPCRs undergo homo-oligomerization with transmembrane helix movement. We previously reported that angiotensin II (Ang II) type 2 (AT(2)) receptor, a GPCR, showed constitutive activation and induced apoptosis independent of its ligand, Ang II. In the present study, we analyzed the translocation and oligomerization of the AT(2) receptor with transmembrane movement when the receptor induces cell signaling. Constitutively active homo-oligomerization, which was due to disulfide bonding between Cys(35) in one AT(2) receptor and Cys(290) in another AT(2) receptor, was localized in the cell membrane without Ang II stimulation and induced apoptosis without changes in receptor conformation. These results provide the direct evidence that the constitutively active homo-oligomeric GPCRs by intermolecular interaction in two extracellular loops is translocated to the cell membrane and induces cell signaling independent of receptor conformation and ligand stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号