首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study the rate of triplet transfer from chlorophyll to carotenoids in solubilized LHCII was investigated by flash spectroscopy using laser pulses of approximately 2 ns for both pump and probe. Special attention has been paid to calibration of the experimental setup and to avoid saturation effects. Carotenoid triplets were identified by the pronounced positive peak at approximately 507 nm in the triplet-singlet difference spectra. DeltaOD (507 nm) exhibits a monoexponential relaxation kinetics with characteristic lifetimes of 2-9 micros (depending on the oxygen content) that was found to be independent of the pump pulse intensity. The rise of DeltaOD (507 nm) was resolved via a pump probe technique where an optical delay of up to 20 ns was used. A thorough analysis of these experimental data leads to the conclusion that the kinetics of carotenoid triplet formation in solubilized LHCII is almost entirely limited by the lifetime of the excited singlet state of chlorophyll but neither by the pulse width nor by the rate constant of triplet-triplet transfer. Within the experimental error the rate constant of triplet-triplet transfer from chlorophyll to carotenoids was estimated to be kTT > (0.5 ns)-1. This value exceeds all data reported so far by at least one order of magnitude. The implications of this finding are briefly discussed.  相似文献   

2.
Laser flash-induced changes of the fluorescence yield were studied in aggregates of light-harvesting complex II (LHCII) on a time scale ranging from microseconds to seconds. Carotenoid (Car) and chlorophyll (Chl) triplet states, decaying with lifetimes of several microseconds and hundreds of microseconds, respectively, are responsible for initial light-induced fluorescence quenching via singlet-triplet annihilation. In addition, at times ranging from milliseconds to seconds, a slow decay of the light-induced fluorescence quenching can be observed, indicating the presence of additional quenchers generated by the laser. The generation of the quenchers is found to be sensitive to the presence of oxygen. It is proposed that long-lived fluorescence quenchers can be generated from Chl triplets that are not transferred to Car molecules. The quenchers could be Chl cations or other radicals that are produced directly from Chl triplets or via Chl triplet-sensitized singlet oxygen. Decay of the quenchers takes place on a millisecond to second time scale. The decay is slowed by a few orders of magnitude at 77 K indicating that structural changes or migration-limited processes are involved in the recovery. Fluorescence quenching is not observed for trimers, which is explained by a reduction of the quenching domain size compared to that of aggregates. This type of fluorescence quenching can operate under very high light intensities when Chl triplets start to accumulate in the light-harvesting antenna.  相似文献   

3.
The fluorescence quantum yield in spinach chloroplasts at room temperature has been studied utilizing a 0.5-4.0 mus duration dye laser flash of varying intensities as an excitation source. The yield (phi) and carotenoid triplet concentration were monitored both during and following the laser flash. The triplet concentration was monitored by transient absorption spectoscopy at 515 nm, while the yield phi following the laser was probed with a low intensity xenon flash. The fluorescence is quenched by factors of up to 10-12, depending on the intensity of the flash and the time interval following the onset of the flash. This quenching is attributed to a quencher Q whose concentration is denoted by Q. The relative instantaneous concentration of Q was calculated from phi utilizing the Stern-Volmer equation, and its buildup and decay kinetics were compared to those of carotenoid triplets. At high flash intensities (greater than 10(16) photon . cm-2) the decay kinetics of Q are slower than those of the carotenoid triplets, while at lower flash intensities they are similar. Q is sensitive to oxygen and it is proposed that Q, at the higher intensities, is a trapped chlorophyll triplet. This hypothesis accounts well for the continuing rise of the carotenoid triplet concentration for 1-2 mus after the cessation of the laser pulse by a slow detrapping mechanism, and the subsequent capture of the triplet energy by carotenoid molecules. At the maximum laser intensities, the carotenoid triplet concentration is about one per 100 chlorophyll molecules. The maximum chlorophyll ion concentration generated by the laser pulses was estimated to be below 0.8 ions/100 chlorophyll molecules. None of the observations described here were altered when a picosecond pulse laser train was substituted for the microsecond pulse. A simple kinetic model describing the generation of singlets and triplets (by intersystem crossing), and their subsequent interaction leading to fluorescence quenching, accounts well for the observations. The two coupled differential equations describing the time dependent evolution of singlet and triplet excited states are solved numerically. Using a single-triplet bimolecular rate constant of gammast = 10(-8) cm3 . s-1, the following observations can be accounted for: (1) the rapid initial drop in phi and its subsequent levelling off with increasing time during the laser pulse, (2) the buildup of the triplets during the pulse, and (3) the integrated yield of triplets per pulse as a function of the energy of the flash.  相似文献   

4.
The fluorescence yield (F) of spinach chloroplasts at 100°K measured at 735 nm (photosystem I fluorescence—F 735) and at 685 nm (photosystem II fluorescence—F 685) has been determined with different modes of laser excitation. The modes of excitation included a single picosecond pulse, sequences of picosecond pulses (4, 22, and 300 pulses spaced 5 ns apart) and a single nonmode-locked 2-μs pulse (MP mode). The F 735/F 685 intensity ratios decrease from 1.62 to 0.61 when a single picosecond pulse (or low-power continuous helium-neon laser) is replaced by excitation with the 300-ps pulse train (PPT mode) or MP mode. In the PPT mode of excitation, the 735-nm fluorescence band is quenched by a factor of 45 as the intensity is increased from 1015 to 1018 photons/cm2 per pulse train and the 685-nm fluorescence is quenched by a factor of 10. In the MP mode, the quenching factors are 25 and 7, respectively, in the same intensity range. Fluorescence quantum yield measurements with different picosecond pulse sequences indicate that relatively long-lived quenching species are operative, which survive from one picosecond pulse to another within the pulse train. The excitonic processes possible in the photosynthetic units are discussed in detail. The differences in the quenching factors between the MP and PPT modes of excitation are attributed to singlet-singlet annihilation, possible when picosecond pulses are utilized, but minimized in the MP mode of excitation. The long-lived quenchers are identified as triplets and/or bulk chlorophyll ions formed by singlet-singlet annihilation. The preferential quenching in photosystem I is attributed to triplet excitons. The influence of heating effects, photochemistry, bleaching, and two-photon processes is also considered and is shown to be negligible.  相似文献   

5.
The fluorescence quantum yield in spinach chloroplasts at room temperature has been studied utilizing a 0.5–4.0 μs duration dye laser flash of varying intensities as an excitation source. The yield (Ф) and carotenoid triplet concentration were monitored both during and following the laser flash. The triplet concentration was monitored by transient absorption spectroscopy at 515 nm, while the yield Ф following the laser was probed with a low intensity xenon flash. The fluorescence is quenched by factors of up to 10–12, depending on the intensity of the flash and the time interval following the onset of the flash. This quenching is attributed to a quencher Q whose concentration is denoted by Q. The relative instantaneous concentration of Q was calculated from Ф utilizing the Stern-Volmer equation, and its buildup and decay kinetics were compared to those of carotenoid triplets. At high flash intensities (1016 photon · cm−2) the decay kinetics of Q are slower than those of the carotenoid triplets, while at lower flash intensities they are similar. Q is sensitive to oxygen and it is proposed that Q, at the higher intensities, is a trapped chlorophyll triplet. This hypothesis accounts well for the continuing rise of the carotenoid triplet concentration for 1–2 μs after the cessation of the laser pulse by a slow detrapping mechanism, and the subsequent capture of the triplet energy by carotenoid molecules.

At the maximum laser intensities, the carotenoid triplet concentration is about one per 100 chlorophyll molecules. The maximum chlorophyll ion concentration generated by the laser pulses was estimated to be below 0.8 ions/100 chlorophyll molecules. None of the observations described here were altered when a picosecond pulse laser train was substituted for the microsecond pulse.

A simple kinetic model describing the generation of singlets and triplets (by intersystem crossing), and their subsequent interaction leading to fluorescence quenching, accounts well for the observations. The two coupled differential equations describing the time dependent evolution of singlet and triplet excited states are solved numerically. Using a singlet-triplet bimolecular rate constant of γst = 10−8 cm3 · s−1, the following observations can be accounted for: (1) the rapid initial drop in Ф and its subsequent levelling off with increasing time during the laser pulse, (2) the buildup of the triplets during the pulse, and (3) the integrated yield of triplets per pulse as a function of the energy of the flash.  相似文献   


6.
A newly developed fluorescence measuring system is employed for the recording of chlorophyll fluorescence induction kinetics (Kautsky-effect) and for the continuous determination of the photochemical and non-photochemical components of fluorescence quenching. The measuring system, which is based on a pulse modulation principle, selectively monitors the fluorescence yield of a weak measuring beam and is not affected even by extremely high intensities of actinic light. By repetitive application of short light pulses of saturating intensity, the fluorescence yield at complete suppression of photochemical quenching is repetitively recorded, allowing the determination of continuous plots of photochemical quenching and non-photochemical quenching. Such plots are compared with the time courses of variable fluorescence at different intensities of actinic illumination. The differences between the observed kinetics are discussed. It is shown that the modulation fluorometer, in combination with the application of saturating light pulses, provides essential information beyond that obtained with conventional chlorophyll fluorometers.  相似文献   

7.
We introduce time-resolved infrared spectroscopy as a powerful method to study the kinetics of RNA folding and unfolding transitions. A laser-induced temperature jump is used to initiate a perturbation in the RNA structure. A probe laser, tuned to a specific infrared absorption of the RNA, is then used to monitor the subsequent relaxation kinetics. A 10-ns pump pulse permits the investigation of fast, nanosecond events. In this work we probe two vibrational transitions, one at 1620 cm(-1) and one at 1661 cm(-1). The former transition reports mainly on the dynamics of A and U interactions, the latter is attributed to mainly G and C interactions. Our results reveal three distinct kinetic phases for each vibrational transition probed. We propose two models to describe the data. In one mechanism, the unfolded state partitions into two separate populations; each is conformationally biased to proceed via one of two distinct pathways. In an alternative model, folding proceeds through a series of sequentially populated intermediates. In both cases, the first step in the proposed folding mechanism is rate limiting (hundreds of microseconds) and involves a collapse into incorrectly folded intermediate populations. Two faster kinetic phases (tens of microseconds and hundreds of nanoseconds) follow in which the intermediate populations undergo localized reorganizational motions in the search for native contacts.  相似文献   

8.
The development of a technique for laser measurement of fPhotosystem II (PS II) photochemical characteristics of phytoplankton and terrestrial vegetation from an airborne platform is described. Results of theoretical analysis and experimental study of pump-and-probe measurement of the PS II functional absorption cross-section and photochemical quantum yield are presented. The use of 10 ns probe pulses of PS II sub-saturating intensity provides a significant, up to 150-fold, increase in the fluorescence signal compared to conventional `weak-probe' protocol. Little effect on the fluorescence yield from the probe-induced closure of PS II reaction centers is expected over the short pulse duration, and thus a relatively intense probe pulse can be used. On the other hand, a correction must be made for the probe-induced carotenoid triplet quenching and singlet-singlet annihilation. A Stern-Volmer model developed for this correction assumes a linear dependence of the quenching rate on the laser pulse fluence, which was experimentally validated. The PS II saturating pump pulse fluence (532 nm excitation) was found to be 10 and 40 μmol quanta m−2 for phytoplankton samples and leaves of higher plants, respectively. Thirty μs was determined as the optimal delay in the pump-probe pair. Our results indicate that the short-pulse pump-and-probe measurement of PS II photochemical characteristics can be implemented from an airborne platform using existing laser and LIDAR technologies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
To determine the speed of communication between protein subunits, time-resolved absorption spectra were measured following partial photodissociation of the carbon monoxide complex of hemoglobin. The experiments were carried out using linearly polarized, 10-ns laser pulses, with the polarization of the excitation pulse both parallel and perpendicular to the polarization of the probe pulse. The substantial contribution to the observed spectra from photoselection effects was eliminated by isotropically averaging the polarized spectra, allowing a detailed comparison of the kinetics as a function of the degree of photolysis. These results show that prior to 1 microsecond both geminate ligand rebinding and conformational relaxation are independent of the number of ligands dissociated from the hemoglobin tetramer, as expected for a two-state allosteric model. After this time the kinetics depend on the ligation state of the tetramer. The conformational relaxation at 10 microseconds can be interpreted in terms of the two-state allosteric model as arising from the R to T quaternary conformational change of both unliganded and singly liganded molecules. These results suggest that communication between subunits requires about 1 microsecond and that the mechanism of the communication which occurs after this time is via the R to T conformational change. The optical anisotropy provides a novel means of accurately determining the extinction coefficients of the transient photoproduct. The decay in the optical anisotropy, moreover, provides an accurate determination of the rotational correlation time of 36 +/- 3 ns.  相似文献   

10.
W. Yu  F. Pellegrino  R.R. Alfano 《BBA》1977,460(1):171-181
Picosecond fluorescent kinetics and time-resolved spectra of spinach chloroplast were measured at room temperature and low temperatures. The measurement is conducted with 530 nm excitation at an average intensity of 2 · 1014 photons/cm2, pulse and at a pulse separation of 6 ns for the 100 pulses used. The 685 nm fluorescent kinetics was found to decay with two components, a fast component with a 56 ps lifetime, and a slow component with a 220 ps lifetime. The 730 nm fluorescent kinetics at room temperature is a single exponential decay with a 100 ps lifetime. The 730 nm fluorescence lifetime was found to increase by a factor of 6 when the temperature was lowered from room temperature to 90 K, while the 685 and 695 nm fluorescent kinetics were unchanged. The time-resolved spectra data obtained within 10 ps after excitation is consistent with the kinetic data reported here. A two-level fluorescence scheme is proposed to explain the kinetics. The effect of excitation with high light intensity and multiple pulses is discussed.  相似文献   

11.
In direct experiments, rate constants of photochemical (kP) and non-photochemical (kP+) fluorescence quenching were determined in membrane fragments of photosystem II (PSII), in oxygen-evolving PSII core particles, as well as in core particles deprived of the oxygen-evolving complex. For this purpose, a new approach to the pulse fluorometry method was implemented. In the “dark” reaction center (RC) state, antenna fluorescence decay kinetics were measured under lowintensity excitation (532 nm, pulse repetition rate 1 Hz), and the emission was registered by a streak camera. To create a “closed” [P680+QA] RC state, a high-intensity pre-excitation pulse (pump pulse, 532 nm) of the sample was used. The time advance of the pump pulse against the measuring pulse was 8 ns. In this experimental configuration, under the pump pulse, the [P680+QA] state was formed in RC, whereupon antenna fluorescence kinetics was measured using a weak testing picosecond pulsed excitation light applied to the sample 8 ns after the pump pulse. The data were fitted by a two-exponential approximation. Efficiency of antenna fluorescence quenching by the photoactive RC pigment in its oxidized (P680+) state was found to be ~1.5 times higher than that of the neutral (P680) RC state. To verify the data obtained with a streak camera, control measurements of PSII complex fluorescence decay kinetics by the single-photon counting technique were carried out. The results support the conclusions drawn from the measurements registered with the streak camera. In this case, the fitting of fluorescence kinetics was performed in three-exponential approximation, using the value of τ1 obtained by analyzing data registered by the streak camera. An additional third component obtained by modeling the data of single photon counting describes the P680+Pheo charge recombination. Thus, for the first time the ratio of kP+/kP = 1.5 was determined in a direct experiment. The mechanisms of higher efficiency for non-photochemical antenna fluorescence quenching by RC cation radical in comparison to that of photochemical quenching are discussed.  相似文献   

12.
E Pérochon  A Lopez  J F Tocanne 《Biochemistry》1992,31(33):7672-7682
Through steady-state and time-resolved fluorescence experiments, the polarity of the bilayers of egg phosphatidylcholine vesicles was studied by means of the solvatochromic 2-anthroyl fluorophore which we have recently introduced for investigating the environmental micropolarity of membranes and which was incorporated synthetically in phosphatidylcholine molecules (anthroyl-PC) in the form of 8-(2-anthroyl)octanoic acid. Fluorescence quenching experiments carried out with N,N-dimethylaniline and 12-doxylstearic acid as quenchers showed that the 2-anthroyl chromophore was located in depth in the hydrophobic region of the lipid bilayer corresponding to the C9-C16 segment of the acyl chains. Steady-state fluorescence spectroscopy revealed a nonstructured and red-shifted (lambda em(max) = 464 nm) spectrum for the probe in egg-PC bilayers, which greatly differed from the structured and blue (lambda em(max) = 404 nm) spectrum the fluorophore was shown to display in n-hexane. While the fluorescence decays of the fluorophore in organic solvents were monoexponential, three exponentials were required to account for the fluorescence decays of anthroyl-PC in egg-PC vesicles, with average characteristic times of 1.5 ns, 5.5 ns, and 20 ns. These lifetime values were independent of the emission wavelength used. Addition of cholesterol to the lipid did not alter these tau values. One just observed an increase in the fractional population of the 1.5-ns short-living species detrimental to the population of the 20-ns long-living ones. These observations enabled time-resolved fluorescence spectroscopy measurements to be achieved in the case of the 1/1 (mol/mol) egg-PC/cholesterol mixture. Three distinct decay associated spectra (DAS) were recorded, with maximum emission wavelengths, respectively, of 410 nm, 440 nm, and 477 nm for the 1.5-ns, 6-ns, and 20-ns lifetimes found in this system. On account of the properties and the polarity scale previously established for the 2-anthroyl chromophore in organic solvents, these data strongly suggest the occurrence of three distinct excited states for anthroyl-PC in egg-PC bilayers, corresponding to three environments for the 2-anthroyl chromophore, differing in polarity. The lifetime of 1.5 ns and the corresponding structured and blue (lambda em(max) = 410 nm) DAS account for a hydrophobic environment, with an apparent dielectric constant of 2, which is that expected for the hydrophobic core of the lipid bilayer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The kinetics of photochemical (qQ) and nonphotochemical (qE) fluorescence quenching during induction was studied in terms of the earlier developed theoretical model of photosynthesis. Photochemical and nonphotochemical quenching was calculated from the parameters of fluorescence induction upon simultaneous excitation with continuous light and by high-intensity light pulses by the method used in a PAM fluorometer. It is shown that the fraction of closed reaction centers during the pulse can change in the course of induction. In consequence, even when none of supposed mechanisms of photochemical quenching is taken into account, the value of qE during induction varies and is not equal to zero.  相似文献   

14.
The fluorescence decay time of spinach chloroplasts at 77 degrees K was determined at 735 nm (corresponding to the photosystem I emission) using a train of 10-ps laser pulses spaced 10 ns apart. The fluorescence lifetime is constant at congruent to 1.5 ns for up to the fourth pulse, but then decreases with increasing pulse number within the pulse train. This quenching is attributed to triplet excited states, and it is concluded that triplet excitons exhibit a time lag of about 50 ns in diffusing from light harvesting antenna pigments to photosystem I pigments. The diffusion coefficient of triplet excitons is a least 300--400 times slower than the diffusion coefficient of singlet excitons in chloroplast membranes.  相似文献   

15.
The determination of the rate of release of Ca2+ by pulsed photolysis of the photolabile chelator DM-nitrophen is important for its use in time-resolved physiological studies: the rate of substrate or effector release should be faster than the processes they initiate. Flash photolysis of DM-nitrophen using a 50-ns pulse from a frequency-doubled ruby laser (with emission at 347 nm having energy of ca. 10-20 mJ) yields short-lived photochromic or aci-nitro intermediates. At pH 6.9, double-exponential decay of a photochromic intermediate was observed for DM-nitrophen itself and its Ca2+ complex (tau 1/2 values of 24 and 570 microseconds, and 32 and 220 microseconds respectively), while only monoexponential decay of the DM-nitrophen-Mg2+ complex was detected (tau 1/2 = 31 microseconds). Only the photochemistry of DM-nitrophen-Ca2+ was found to be pH sensitive (monoexponential decay, tau 1/2 approximately 115 microseconds at pH 7.9 and 8.9). Use of the Ca(2+)-sensitive metallochromic dye antipyrylazo III in conjunction with pulsed photolysis of DM-nitrophen-Ca2+ enabled an upper limit of the half-time of release of Ca2+ to be established of ca. 180 microseconds (the rate of association of Ca2+ with the dye was probably rate determining). The rate of Ca2+ photorelease may, however, be faster than this. Thus, the DM-nitrophen-Ca2+ complex releases Ca2+ on photolysis sufficiently rapidly for the study of many Ca(2+)-dependent physiological processes with improved kinetic resolution over conventional mixing methods.  相似文献   

16.
Binding of Nile Red to tubulin enhances and blue-shifts fluorescence emission to about 623 nm with a "shoulder" around 665 nm. Binding is reversible and saturable with an apparent Kd of approximately 0.6 microM. Nile Red does not alter tubulin polymerization, and polymerization in 2-(N-morpholino)ethanesulfonic acid (Mes) buffer does not alter the spectrum of the Nile Red-tubulin complex. In contrast, polymerization in glutamate buffer results in a red shift, reduction of intensity, and a decrease in lifetime, suggesting an increase in "polarity" of the binding environment. Lifetimes of 4.5 and 0.6 ns fluorescence in Mes buffer are associated with the 623-nm peak and the 665-nm shoulder, respectively. Indirect excitation spectra for these components are distinct and the 4.5-ns component exhibits tryptophan to Nile Red energy transfer. Acrylamide quenching yields linear Stern-Volmer plots with unchanged lifetimes, indicating static quenching. Apparent quenching constants are wavelength-dependent; global analysis reveals a quenchable component corresponding to the 4.5 ns component and an "unquenchable" component superposing the 0.6-ns spectrum. Analysis of anisotropy decay required an "associative" model which yielded rotational correlation times of greater than 50 ns for the 4.5-ns lifetime and 0.3 ns for the 0.6-ns lifetime. Dilution of tubulin in Mes results in an apparent red shift of emission without lifetime changes, due only to loss of the 623-nm component. These data are reconciled in terms of a model with two binding sites on the tubulin dimer. The more "nonpolar" site is located in a region of subunit-subunit contact which accounts for the fluorescence changes upon dilution; this permits estimation of a subunit dissociation constant of 1 microM.  相似文献   

17.
We developed a new fluorescent analog of cytosine, the 4-amino-1H-benzo[g]quinazoline-2-one, which constitute a probe sensitive to pH. The 2′-O-Me ribonucleoside derivative of this heterocycle was synthesized and exhibited a fluorescence emission centered at 456 nm, characterized by four major excitation maxima (250, 300, 320 and 370 nm) and a fluorescence quantum yield of Φ = 0.62 at pH 7.1. The fluorescence emission maximum shifted from 456 to 492 nm when pH was decreased from 7.1 to 2.1. The pKa (4) was close to that of cytosine (4.17). When introduced in triplex forming oligonucleotides this new nucleoside can be used to reveal the protonation state of triplets in triple-stranded structures. Complex formation was detected by a significant quenching of fluorescence emission (~88%) and the N-3 protonation of the quinazoline ring by a shift of the emission maximum from 485 to 465 nm. Using this probe we unambiguously showed that triplex formation of the pyrimidine motif does not require the protonation of all 4-amino-2-one pyrimidine rings.  相似文献   

18.
The dark recovery kinetics of the Chl a fluorescence transient (OJIP) after 15 min light adaptation were studied and interpreted with the help of simultaneously measured 820 nm transmission. The kinetics of the changes in the shape of the OJIP transient were related to the kinetics of the qE and qT components of non-photochemical quenching. The dark-relaxation of the qE coincided with a general increase of the fluorescence yield. Light adaptation caused the disappearance of the IP-phase (20-200 ms) of the OJIP-transient. The qT correlated with the recovery of the IP-phase and with a recovery of the re-reduction of P700(+) and oxidized plastocyanin in the 20-200 ms time-range as derived from 820 nm transmission measurements. On the basis of these observations, the qT is interpreted to represent the inactivation kinetics of ferredoxin-NADP(+)-reductase (FNR). The activation state of FNR affects the fluorescence yield via its effect on the electron flow. The qT therefore represents a form of photochemical quenching. Increasing the light intensity of the probe pulse from 1800 to 15000 mumol photons m(-2) s(-1) did not qualitatively change the results. The presented observations imply that in light-adapted leaves, it is not possible to 'close' all reaction centers with a strong light pulse. This supports the hypothesis that in addition to Q(A) a second modulator of the fluorescence yield located on the acceptor side of photosystem II (e.g., the occupancy of the Q(B)-site) is needed to explain these results. Besides, some of our results indicate that in pea leaves state 2 to 1 transitions may contribute to the qI-phase.  相似文献   

19.
The kinetics of electrically induced fusion of human erythrocyte ghosts were monitored by the Tb/DPA and ANTS/DPX fluorescence fusion assays. Ghosts were aligned by dielectrophoresis using a 3-MHz 350-V/cm alternating field and were fused by single 15- or 50-microseconds electric field pulses of amplitude 2.5-5.0 kV/cm. Fusion was detected immediately after the pulse. The peak fluorescence change due to fusion was always obtained within 7 s of pulse application, and was highest for a 5.0 kV/cm 15-microseconds pulse. Probe leakage was measured separately and became apparent only 2-3 s after the initiation of fusion. Increasing pulse amplitudes produced higher fusion yields but produced more leakage from the fusion products. 50-microseconds pulses produced less fusion, resulting from a disruption of the dielectrophoretic alignment by fluid turbulence immediately after pulse application. Probe leakage was observed only when pulse application was preceded by dielectrophoresis, suggesting that close membrane positioning allows for additional membrane destabilization caused by the high field pulse. The fluorescence kinetics are interpreted using a simplified model depicting three major types of events: (a) fusion without observable leakage, (b) fusion followed by probe leakage, and (c) contact-related leakage from ghosts which do not undergo contents mixing.  相似文献   

20.
The transfer of excitation energy between phycobiliproteins in isolated phycobilisomes has been observed on a picosecond time scale. The photon density of the excitation pulse has been carefully varied so as to control the level of exciton interactions induced in the pigment bed. The 530 nm light pulse is absorbed predominantly by B-phycoerythrin, and the fluorescence of this component rises within the pulse duration and shows a mean 1/e decay time of 70 ps. The main emission band, centred at 672 nm, is due to allophycocyanin and is prominent because of the absence of energy transfer to chlorophyll. Energy transfer to this pigment from B-phycoerythrin via R-phycocyanin produces a risetime of 120 ps to the fluorescence maximum. The lifetime of the allophycocyanin fluorescence is found to be about 4 ns using excitation pulses of low photon densities (10(13) photons.cm-2), but decreases to about 2 ns at higher photon densities. The relative quantum yield of the allophycocyanin fluorescence decreases almost 10 fold over the range of laser pulse intensities, 10(13)--10(16) photons-cm-2. Fluorescence quenching by exciton-exciton annihilation is only observed in allophycocyanin and could be a consequence of the long lifetime of the single exciton in this pigment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号