首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-6 (IL-6) activates cells by binding to the membrane-bound IL-6 receptor (IL-6R) and subsequent formation of a glycoprotein 130 homodimer. Cells that express glycoprotein 130, but not the IL-6R, can be activated by IL-6 and the soluble IL-6R which is generated by shedding from the cell surface or by alternative splicing. Here we show that cholesterol depletion of cells with methyl-beta-cyclodextrin increases IL-6R shedding independent of protein kinase C activation and thus differs from phorbol ester-induced shedding. Contrary to cholesterol depletion, cholesterol enrichment did not increase IL-6R shedding. Shedding of the IL-6R because of cholesterol depletion is highly dependent on the metalloproteinase ADAM17 (tumor necrosis factor-alpha-converting enzyme), and the related ADAM10, which is identified here for the first time as an enzyme involved in constitutive and induced shedding of the human IL-6R. When combined with protein kinase C inhibition by staurosporine or rottlerin, breakdown of plasma membrane sphingomyelin or enrichment of the plasma membrane with ceramide also increased IL-6R shedding. The effect of cholesterol depletion was confirmed in human THP-1 and Hep3B cells and in primary human peripheral blood monocytes, which naturally express the IL-6R. For decades, high cholesterol levels have been considered harmful. This study indicates that low cholesterol levels may play a role in shedding of the membrane-bound IL-6R and thereby in the immunopathogenesis of human diseases.  相似文献   

2.
AIM:To determine if the cytotail of the principal sheddase tumor necrosis factor-α converting enzyme (TACE;ADAM17) controls protein ectodomain shedding.METHODS:Site-directed mutagenesis was performed to derive TACE variants. The resulting TACE expression plasmids with amino acid substitutions in the extracel-lular,cysteine-rich disintegrin domain (CRD) and/or deleted cytotail,along with an expression vector for the enhanced green fluorescence protein were transfected into shedding-defective M1 mutants stably expressing transmembrane L-selectin or transforming growth factor (TGF)-α. The expression levels of the TACE substrates at the cell surface were determined by flow cytometry. RESULTS:Consistent with published data,a single point mutation (C600Y) in the CRD led to shedding defi-ciency. However,removal of the cytotail from the C600Y TACE variant partially restored ectodomain cleavage of TGF-α and L-selectin. Cytotail-deleted mutants with any other substituting amino acid residues in place of Cys600 displayed similar function compared with tail-less C600Y TACE.CONCLUSION:The cytotail plays an inhibitory role,which becomes evident when it is removed from an enzyme with another mutation that affects the enzyme function.  相似文献   

3.
Glycoprotein V (GPV) is a subunit of the GPIb-IX-V receptor for von Willebrand factor and thrombin and has been shown to modulate platelet responses to the two strongest physiological agonists, thrombin and collagen. Thrombin directly cleaves GPV from the platelet surface, yielding a 69-kDa fragment GPV f1 of unknown function. We show here that a approximately 82-kDa fragment of GPV is shed from the platelet surface upon cellular activation with phorbol 12-myristate 13-acetate or the collagen-related peptide. This shedding was inhibited by the broad range metalloproteinase inhibitor GM6001, the two potent ADAM17 inhibitors GW280264X and TAPI-2, and was absent in mice lacking functional ADAM17 (ADAM17 lacking Zn-binding domain; ADAM17(DeltaZn/DeltaZn)). Furthermore, we show that recombinant ADAM17 ectodomain efficiently releases GPV from the platelet surface. GPV is known to be associated with the intracellular regulatory protein calmodulin, which has previously been shown to be involved in ADAM17-mediated shedding of l-selectin from the surface of leukocytes. As in these reports, inhibition of calmodulin led to rapid GPV shedding from the platelet surface, a process that was again blocked by GM6001 or ADAM17 inhibitors and that was absent in ADAM17(DeltaZn/DeltaZn) mice. Inhibition of outside-in signaling through GPIIb/IIIa did not significantly affect GPV shedding, excluding an essential role of this pathway for the regulation of ADAM17 activity. These results demonstrate that GPV is cleaved upon agonist-induced platelet activation and show that ADAM17 is the major enzyme mediating this process.  相似文献   

4.
The tumor necrosis factor-alpha (TNF) converting enzyme (ADAM17) is a metalloprotease that cleaves several transmembrane proteins, including TNF and its receptors (TNFR1 and TNFR2). We recently showed that the shedding activity of ADAM17 is sequestered in lipid rafts and that cholesterol depletion increased the shedding of ADAM17 substrates. These data suggested that ADAM17 activity could be regulated by cholesterol movements in the cell membrane. We investigated if the membrane cholesterol efflux induced by high-density lipoproteins (HDLs) was able to modify the shedding of ADAM17 substrates. HDLs added to different cell types, increased the ectodomain shedding of TNFR2, TNFR1, and TNF, an effect reduced by inhibitors active on ADAM17. The HDLs-stimulated TNF release occurred also on cell-free isolated plasma membranes. Purified apoA1 increased the shedding of TNF in an ABCA1-dependent manner, suggesting a role for the cholesterol efflux in this phenomenon. HDLs reduced the cholesterol and proteins (including ADAM17) content of lipid rafts and triggered the ADAM17-dependent cleavage of TNF in the non-raft region of the membrane. In conclusion, these data demonstrate that HDLs alter the lipid raft structure, which in turn activates the ADAM17-dependent processing of transmembrane substrates.  相似文献   

5.
The sigma-1 receptor is a molecular chaperone protein highly enriched in the brain. Recent studies linked it to many diseases, such as drug addition, Alzheimer’s disease, stroke, depression, and even cancer. Sigma-1 receptor is enriched in lipid rafts, which are membrane microdomains essential in signaling processes. One of those signaling processes is ADAM17- and ADAM10-dependent ectodomain shedding. By using an alkaline phosphatase tagged substrate reporter system, we have shown that ADAM10-dependent BTC shedding was very sensitive to both membrane lipid component change and sigma-1 receptor agonist DHEAS treatment while ADAM17-dependent HB-EGF shedding was not; and overexpression of sigma-1 receptor diminished ADAM17- and ADAM10-dependent shedding. Our results indicate that sigma-1 receptor plays an important role in modifying the function of transmembrane proteases.  相似文献   

6.
7.
Previous findings indicated that the activated leukocyte cell adhesion molecule (ALCAM) is expressed by tumors and plays a role in tumor biology. In this study, we show that ALCAM is shed from epithelial ovarian cancer (EOC) cells in vitro, leading to the generation of a soluble ALCAM (sALCAM), consisting of most of the extracellular domain. A similar sALCAM molecule was also found in the ascitic fluids and sera from EOC patients, suggesting that this process also occurs in vivo. sALCAM is constitutively produced by EOC cells, and this process can be enhanced by cell treatment with pervanadate, phorbol 12-myristate 13-acetate (PMA), or epidermal growth factor (EGF), a known growth factor for EOC. Pharmacologic inhibitors of matrix metalloproteinases (MMP) and of a disintegrin and metalloproteases (ADAM), and the tissue inhibitor of metalloproteinase-3, significantly inhibited sALCAM release by EOC cells. The ADAM17/TACE molecule was expressed in EOC cell lines and ADAM17/TACE silencing by specific small interfering RNA-reduced ALCAM shedding. In addition, inhibitors of ADAM function blocked EOC cell motility in a wound-healing assay. Conversely, a recombinant antibody blocking ALCAM adhesive functions and inducing ALCAM internalization enhanced EOC cell motility. Altogether, our data suggest that the disruption of ALCAM-mediated adhesion is a relevant step in EOC motility, and ADAM17/TACE takes part in this process, which may be relevant to EOC invasive potential.  相似文献   

8.
Hypomorphic ADAM17(ex/ex) mice showed defects in mucosal regeneration due to inefficient enhanced GFR shedding. ADAM17 is the main sheddase of interleukin-6 receptor (IL-6R) to induce IL-6 trans-signaling. However, serum levels of soluble murine IL-6R were not reduced in ADAM17(ex/ex) mice, and murine ADAM17 was not the major sheddase of murine IL-6R. Shedding of murine IL-6R by murine ADAM17 was rescued in chimeric murine IL-6R proteins containing any extracellular domain but not the transmembrane and intracellular domain of human IL-6R. Apoptosis is a physiological stimulus of ADAM17-mediated shedding of human IL-6R. Even though apoptosis induced IL-6R shedding in mice, the responsible protease was identified as ADAM10. ADAM10 also was identified as protease responsible for ionomycin-induced shedding of murine and human IL-6R. However, in ADAM10-deficient murine embryonic fibroblasts, compensatory shedding of human IL-6R was mediated by ADAM17, but loss of ADAM10-mediated shedding of murine IL-6R was compensated by an as-yet-unidentified protease. Finally, we identified physiological purinergic P2X7 receptor stimulation as a novel inducer of murine and human IL-6R shedding solely mediated by ADAM10. In conclusion, we describe an unexpected species specificity of ADAM10 and ADAM17 and identified ADAM10 as novel inducible sheddase of IL-6R in mice and humans, which might have consequences for the interpretation of phenotypes from ADAM17- and ADAM10-deficient mice.  相似文献   

9.
Very low-density lipoprotein receptor (VLDLR) is a multifunctional transmembrane protein. Beyond the function of the full-length VLDLR in lipid transport, the soluble ectodomain of VLDLR (sVLDLR) confers anti-inflammatory and antiangiogenic roles in ocular tissues through inhibition of canonical Wnt signaling. However, it remains unknown how sVLDLR is shed into the extracellular space. In this study, we present the first evidence that a disintegrin and metalloprotease 17 (ADAM17) is responsible for sVLDLR shedding in human retinal pigment epithelium cells using pharmacological and genetic approaches. Among selected proteinase inhibitors, an ADAM17 inhibitor demonstrated the most potent inhibitory effect on sVLDLR shedding. siRNA-mediated knockdown or CRISPR/Cas9-mediated KO of ADAM17 diminished, whereas plasmid-mediated overexpression of ADAM17 promoted sVLDLR shedding. The amount of shed sVLDLR correlated with an inhibitory effect on the Wnt signaling pathway. Consistent with these in vitro findings, intravitreal injection of an ADAM17 inhibitor reduced sVLDLR levels in the extracellular matrix in the mouse retina. In addition, our results demonstrated that ADAM17 cleaved VLDLR only in cells coexpressing these proteins, suggesting that shedding occurs in a cis manner. Moreover, our study demonstrated that aberrant activation of Wnt signaling was associated with decreased sVLDLR levels, along with downregulation of ADAM17 in ocular tissues of an age-related macular degeneration model. Taken together, our observations reveal the mechanism underlying VLDLR cleavage and identify a potential therapeutic target for the treatment of disorders associated with dysregulation of Wnt signaling.  相似文献   

10.
A disintegrin and metalloproteinase (ADAM) 10 is a type I transmembrane glycoprotein responsible for the ectodomain shedding of a range of proteins including the amyloid precursor protein implicated in Alzheimer's disease. In this study we demonstrate that ADAM10 itself is subject to shedding by one or more ADAMs. Expression of epitope-tagged wild-type ADAM10 in SH-SY5Y cells enabled the detection of a soluble ectodomain in conditioned medium. Shedding of the ADAM10 ectodomain was inhibited by a known ADAM inhibitor with a reciprocal accumulation of the full-length mature protein in both cell lysates and extracellular membrane vesicles. Shedding was also stimulated by phorbol ester treatment of cells. A glycosylphosphatidylinositol-anchored form of ADAM10 lacking the cytosolic, transmembrane and α-helical juxtamembrane regions of the wild-type protein was shed in a similar manner. Furthermore, a truncated soluble ADAM10 construct, although correctly post-translationally processed and catalytically active against a synthetic peptide substrate, was incapable of shedding cell-associated amyloid precursor protein. Finally, we show that ADAM9 is, at least in part, responsible for the ectodomain shedding of ADAM10. In conclusion, this is a new mechanism by which levels of ADAM10 are regulated and may have implications in a range of human diseases including Alzheimer's disease.  相似文献   

11.
All ligands of the epidermal growth factor receptor (EGFR), which has important roles in development and disease, are released from the membrane by proteases. In several instances, ectodomain release is critical for activation of EGFR ligands, highlighting the importance of identifying EGFR ligand sheddases. Here, we uncovered the sheddases for six EGFR ligands using mouse embryonic cells lacking candidate-releasing enzymes (a disintegrin and metalloprotease [ADAM] 9, 10, 12, 15, 17, and 19). ADAM10 emerged as the main sheddase of EGF and betacellulin, and ADAM17 as the major convertase of epiregulin, transforming growth factor alpha, amphiregulin, and heparin-binding EGF-like growth factor in these cells. Analysis of adam9/12/15/17-/- knockout mice corroborated the essential role of adam17-/- in activating the EGFR in vivo. This comprehensive evaluation of EGFR ligand shedding in a defined experimental system demonstrates that ADAMs have critical roles in releasing all EGFR ligands tested here. Identification of EGFR ligand sheddases is a crucial step toward understanding the mechanism underlying ectodomain release, and has implications for designing novel inhibitors of EGFR-dependent tumors.  相似文献   

12.
Etoposide is a widely used anticancer drug in the treatment of different tumors. Etoposide is known to activate a wide range of intracellular signals, which may in turn induce cellular responses other than apoptosis. ADAM10 and TACE/ADAM17 belong to a family of transmembrane extracellular metalloproteinases involved in paracrine/juxtacrine regulation of many signaling pathways. The aim of this work was to evaluate if etoposide induces upregulation of ADAM10 or TACE/ADAM17 in two cell lines (GC-1 and GC-2) derived from male germ cells. Results showed that etoposide induced apoptosis in a dose-response manner in both GC-1 and GC-2 cells. Apoptosis started to increase 6 h after etoposide addition in GC-2 cells, whereas the same was observed 18 h after addition to the GC-1 cells. Protein and mRNA levels of ADAM10 and TACE/ADAM17 increased 18 h after etoposide was removed from the GC-1 cells. In GC-2 cells, the protein levels of both proteins increased 12 h after etoposide was removed. ADAM10 mRNA increased after 3 h and then steadily decreased up to 12 h after removal, whereas TACE/ADAM17 mRNA decreased after etoposide removal. Finally, apoptosis was prevented in GC-1 and GC-2 cells by the addition of pharmacological inhibitors of ADAM10 and TACE/ADAM17 to the culture medium of etoposide-treated cells. Our results show for the first time that etoposide upregulates ADAM10 and TACE/ADAM17 mRNA and protein levels. In addition, we also show that ADAM10 and TACE/ADAM17 have a role in etoposide-induced apoptosis.  相似文献   

13.
Epithelial-mesenchymal crosstalk is essential for tissue morphogenesis, but incompletely understood. Postnatal mammary gland development requires epidermal growth factor receptor (EGFR) and its ligand amphiregulin (AREG), which generally must be cleaved from its transmembrane form in order to function. As the transmembrane metalloproteinase ADAM17 can process AREG in culture and Adam17(-/-) mice tend to phenocopy Egfr(-/-) mice, we examined the role of each of these molecules in mammary development. Tissue recombination and transplantation studies revealed that EGFR phosphorylation and ductal development occur only when ADAM17 and AREG are expressed on mammary epithelial cells, whereas EGFR is required stromally, and that local AREG administration can rescue Adam17(-/-) transplants. Several EGFR agonists also stimulated Adam17(-/-) mammary organoid growth in culture, but only AREG was expressed abundantly in the developing ductal system in vivo. Thus, ADAM17 plays a crucial role in mammary morphogenesis by releasing AREG from mammary epithelial cells, thereby eliciting paracrine activation of stromal EGFR and reciprocal responses that regulate mammary epithelial development.  相似文献   

14.
Angiotensin-converting enzyme-2 (ACE2) is a critical regulator of heart function and a cellular receptor for the causative agent of severe-acute respiratory syndrome (SARS), SARS-CoV (coronavirus). ACE2 is a type I transmembrane protein, with an extracellular N-terminal domain containing the active site and a short intracellular C-terminal tail. A soluble form of ACE2, lacking its cytosolic and transmembrane domains, has been shown to block binding of the SARS-CoV spike protein to its receptor. In this study, we examined the ability of ACE2 to undergo proteolytic shedding and investigated the mechanisms responsible for this shedding event. We demonstrated that ACE2, heterologously expressed in HEK293 cells and endogenously expressed in Huh7 cells, undergoes metalloproteinase-mediated, phorbol ester-inducible ectodomain shedding. By using inhibitors with differing potency toward different members of the ADAM (a disintegrin and metalloproteinase) family of proteases, we identified ADAM17 as a candidate mediator of stimulated ACE2 shedding. Furthermore, ablation of ADAM17 expression using specific small interfering RNA duplexes reduced regulated ACE2 shedding, whereas overexpression of ADAM17 significantly increased shedding. Taken together, these data provided direct evidence for the involvement of ADAM17 in the regulated ectodomain shedding of ACE2. The identification of ADAM17 as the protease responsible for ACE2 shedding may provide new insight into the physiological roles of ACE2.  相似文献   

15.
Tumor necrosis factor-alpha (TNFalpha), a potent pro-inflammatory cytokine, is released from cells by proteolytic cleavage of a membrane-anchored precursor. The TNF-alpha converting enzyme (TACE; a disintegrin and metalloprotease17; ADAM17) is known to have a key role in the ectodomain shedding of TNFalpha in several cell types. However, because purified ADAMs 9, 10, and 19 can also cleave a peptide corresponding to the TNFalpha cleavage site in vitro, these enzymes are considered to be candidate TNFalpha sheddases as well. In this study we used cells lacking ADAMs 9, 10, 17 (TACE), or 19 to address the relative contribution of these ADAMs to TNFalpha shedding in cell-based assays. Our results corroborate that ADAM17, but not ADAM9, -10, or -19, is critical for phorbol ester- and pervanadate-stimulated release of TNFalpha in mouse embryonic fibroblasts. However, overexpression of ADAM19 increased the constitutive release of TNFalpha, whereas overexpression of ADAM9 or ADAM10 did not. This suggests that ADAM19 may contribute to TNFalpha shedding, especially in cells or tissues where it is highly expressed. Furthermore, we used mutagenesis of TNFalpha to explore which domains are important for its stimulated processing by ADAM17. We found that the cleavage site of TNFalpha is necessary and sufficient for cleavage by ADAM17. In addition, the ectodomain of TNFalpha makes an unexpected contribution to the selective cleavage of TNFalpha by ADAM17: it prevents one or more other enzymes from cleaving TNFalpha following PMA stimulation. Thus, selective stimulated processing of TNFalpha by ADAM17 in cells depends on the presence of an appropriate cleavage site as well as the inhibitory role of the TNF ectodomain toward other enzymes that can process this site.  相似文献   

16.
In this study, we present multiple lines of evidence to support a critical role for heparin-bound EGF (epidermal growth factor)-like growth factor (HB-EGF) and tumor necrosis factor-alpha-converting enzyme (TACE) (ADAM17) in the transactivation of EGF receptor (EGFR), ERK phosphorylation, and cellular proliferation induced by the 5-HT(2A) receptor in renal mesangial cells. 5-hydroxy-tryptamine (5-HT) resulted in rapid activation of TACE, HB-EGF shedding, EGFR activation, ERK phosphorylation, and longer term increases in DNA content in mesangial cells. ERK phosphorylation was attenuated by 1) neutralizing EGFR antibodies and the EGFR kinase inhibitor, AG1478, 2) neutralizing HB-EGF, but not amphiregulin, antibodies, heparin, or CM197, and 3) pharmacological inhibitors of matrix-degrading metalloproteinases or TACE small interfering RNA. Exogenously administered HB-EGF stimulated ERK phosphorylation. Additionally, TACE was co-immunoprecipitated with HB-EGF. Small interfering RNA against TACE also blocked 5-HT-induced increases in ERK phosphorylation, HB-EGF shedding, and DNA content. In aggregate, this work supports a pathway map that can be depicted as follows: 5-HT --> 5-HT(2A) receptor --> TACE --> HB-EGF shedding --> EGFR --> ERK --> increased DNA content. To our knowledge, this is the first time that TACE has been implicated in 5-HT-induced EGFR transactivation or in proliferation induced by a G protein-coupled receptor in native cells in culture.  相似文献   

17.
The tumor necrosis factor-alpha (TNF) converting enzyme (ADAM17) is a metalloprotease-disintegrin responsible for the cleavage of several biologically active transmembrane proteins. However, the substrate specificity of ADAM17 and the regulation of its shedding activity are still poorly understood. Here, we report that during its transport through the Golgi apparatus, ADAM17 is included in cholesterol-rich membrane microdomains (lipid rafts) where its prodomain is cleaved by furin. Consequently, ADAM17 shedding activity is sequestered in lipid rafts, which is confirmed by the fact that metalloproteinase inhibition increases the proportion of ADAM17 substrates (TNF and its receptors TNFR1 and TNFR2) in lipid rafts. Membrane cholesterol depletion increases the ADAM17-dependent shedding of these substrates demonstrating the importance of lipid rafts in the control of this process. Furthermore, ADAM17 substrates are present in different proportions in lipid rafts, suggesting that the entry of each of these substrates in these particular membrane microdomains is specifically regulated. Our data support the idea that one of the mechanisms regulating ADAM17 substrate cleavage involves protein partitioning in lipid rafts.  相似文献   

18.
Fractalkine (CX3CL1) is an unusual member of the chemokine family that is synthesized with its chemokine domain at the end of a mucin-rich, transmembrane stalk. This membrane-bound localization allows fractalkine to function as an adhesion molecule for cells bearing its receptor, CX3CR1. In addition, fractalkine can be proteolytically released from the cell surface, generating a soluble molecule that functions as a chemoattractant similar to the other members of the chemokine family. In this study, we have examined the mechanisms that regulate the conversion between these two functionally distinct forms of fractalkine. We demonstrate that under normal conditions fractalkine is synthesized as an intracellular precursor that is rapidly transported to the cell surface where it becomes a target for metalloproteinase-dependent cleavage that causes the release of a fragment containing the majority of the fractalkine extracellular domain. We show that the cleavage of fractalkine can be markedly enhanced by stimulating cells with phorbol 12-myristate 13-acetate (PMA), and we identify tumor necrosis factor-alpha converting enzyme (TACE; ADAM17) as the protease responsible for this PMA-induced fractalkine release. In addition, we provide data showing that TACE-mediated fractalkine cleavage occurs at a site distinct from the dibasic juxtamembrane motif that had been suggested previously based on protein sequence homologies. The identification of TACE as a major protease responsible for the conversion of fractalkine from a membrane-bound adhesion molecule to a soluble chemoattractant will provide new information for understanding the physiological function of this chemokine.  相似文献   

19.
The release of tumor necrosis factor-alpha (TNF-alpha) from cellular membranes has been shown by different laboratories to be controlled by a disintegrin and metalloprotease, ADAM10 or ADAM17. In contrast, only ADAM17 has shown to be involved in L-selectin shedding. To determine the specific roles of ADAM10 and ADAM17 in the processing of TNF-alpha and L-selectin shedding, antisense oligonucleotides (ASO) targeting both ADAM10 and ADAM17 were identified. We show that ISIS 16337 reduces ADAM17 mRNA and ISIS 100750 reduces ADAM10 mRNA in a sequence-specific and dose-dependent manner in both Jurkat and THP-1 cells. The ADAM17 ASO (ISIS 16337) inhibited both TNF-alpha secretion in THP-1 cells and L-selectin shedding in Jurkat cells, whereas the ADAM10 ASO (ISIS 100750) did not significantly inhibit release of either protein. These results suggest that ADAM17 is one of the major metalloproteases involved in L-selectin shedding as well as TNF-alpha processing. The biologic substrates for ADAM10 in Jurkat and THP-1 cells remain to be elucidated.  相似文献   

20.
MUC1 clearance from the uterine epithelial cell surface is a prerequisite for the creation of an environment conducive to embryo implantation. In some species, reduced mRNA levels along with metabolic turnover account for loss of MUC1 during the receptive phase throughout the uterine epithelium. In other species, MUC1 is rapidly lost solely at the site of blastocyst attachment, suggesting the action of a protease. Correlative studies also indicate the presence of soluble forms of MUC1 in cell culture supernatants in vitro and in bodily fluids in vivo. To characterize the proteolytic activity mediating MUC1 release, shedding of MUC1 was analyzed in a human uterine epithelial cell line (HES) that abundantly expresses and readily sheds MUC1. MUC1 release was stimulated by phorbol 12-myristate 13-acetate and was markedly inhibited by the synthetic peptide hydroxamate metalloprotease inhibitor, tumor necrosis factor-alpha protease inhibitor (TAPI), as well as by an endogenous inhibitor of matrix metalloproteases, tissue inhibitor of metalloproteases (TIMP)-3. These characteristics along with studies conducted with cell lines genetically deficient in various ADAMs (for a disintegrin and metalloprotease) identified tumor necrosis factor-alpha converting enzyme (TACE)/ADAM 17 as a MUC1 sheddase. Furthermore, both TACE and MUC1 were expressed in human uterine epithelia during the receptive phase, and co-immunoprecipitation experiments revealed a physical interaction between TACE and MUC1 in HES cells. These studies establish a proteolytic mechanism for MUC1 clearance from a human uterine epithelial cell line and identify TACE as a MUC1 sheddase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号