首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although glucocorticoids are well known for their capacity to suppress the immune response, glucocorticoids can also promote immune responsiveness. It was the purpose of this investigation to evaluate the molecular basis for this apparent dichotomous immunologic effect. Glucocorticoid treatment of natural killer cells (NK) was shown to reduce NK cell cytolytic activity by reduction of histone promoter acetylation for perforin and granzyme B, which corresponded with reduced mRNA and protein for each. In contrast, glucocorticoid treatment increased histone acetylation at regulatory regions for interferon gamma and IL-6, as well as chromatin accessibility for each. This increase in histone acetylation was associated with increased proinflammatory cytokine mRNA and protein production upon cellular stimulation. These immunologic effects were evident at the level of the individual cell and demonstrate glucocorticoids to epigenetically reduce NK cell cytolytic activity while at the same time to prime NK cells for proinflammatory cytokine production.  相似文献   

2.
The present study examines in vivo the interaction between glucocorticoids and prolactin, and immunomodulating activity of prolactin, including prolactin-induced changes in production of lymphocyte-activating factors and alteration in humoral immune response. It was shown that prolactin application increased the level of corticosterone in the rat blood. Administration of prolactin prior to hydrocortisone administration induced alteration in the level of corticosterone that depended on the dose of hydrocortisone. Application of hydrocortisone reduced humoral immune response and lymphocyte-activating factors production by peritoneal macrophages. Administration of prolactin prior to hydrocortisone administration prevents inhibitory action of glucocorticoids/on humoral immune response and lymphocyte-activating factors production by macrophages.  相似文献   

3.
Despite the importance of glucocorticoids in suppressing immune and inflammatory responses, their role in enhancing host immune and defense response against invading bacteria is poorly understood. We have demonstrated recently that glucocorticoids synergistically enhance nontypeable Haemophilus influenzae (NTHi)-induced expression of Toll-like receptor 2 (TLR2), an important TLR family member that has been shown to play a critical role in host immune and defense response. However, the molecular mechanisms underlying the glucocorticoid-mediated enhancement of TLR2 induction still remain unknown. Here we show that glucocorticoids synergistically enhance NTHi-induced TLR2 expression via specific up-regulation of the MAPK phosphatase-1 (MKP-1) that, in turn, leads to dephosphorylation and inactivation of p38 MAPK, the negative regulator for TLR2 expression. Moreover, increased expression of TLR2 in epithelial cells greatly enhances the NTHi-induced expression of several key cytokines, including tumor necrosis factor-alpha and interleukins 1beta and 8, thereby contributing significantly to host immune and defense response. These studies may bring new insights into the novel role of glucocorticoids in orchestrating and optimizing host immune and defense responses during bacterial infections and enhance our understanding of the signaling mechanisms underlying the glucocorticoid-mediated attenuation of MAPKs.  相似文献   

4.
The thymus is a primary lymphoid organ with both endocrine and immune functions. There is a large body of evidence indicating the existence of a complex neuroendocrine control of the thymus physiology. This is supported by the historic observation that the thymus becomes involuted during the response to stress. The thymus is dramatically affected by the acute phase response (APR), a systemic reaction to tissue injury and/or infection accompanied by profound neuroendocrine and metabolic changes. The APR comprises alterations in behavior, body temperature, and production and release of cytokines, particularly interleukin (IL)-1, IL-6 and TNFalpha, and glucocorticoids (GCs) and is characterized by suddenly increased production of so-called acute phase proteins (APPs). The stimulation of APR activates the hypothalamic-pituitary-adrenal (HPA) axis, resulting in the suppression of specific immunity, which might serve to protect the organism from adverse immune reactions; the immunostimulatory hormones (e.g., PRL, GH, IGF-1) are suppressed, whereas the production of APPs in the liver is stimulated by IL-6, catecholamines and GCs. The most striking effect of the latter on the immune system is the induction of apoptosis in the thymus. In concert with GCs, elevated levels of catecholamines also selectively suppress immune response mechanisms. APR may be regarded as an emergency response that represents a switch of the host defense from the adaptive immune response which is slow to develop and is commanded by the thymus and T-lymphocytes to a less specific, but more rapid and intense reaction. Here we discuss the immunoregulatory changes during the APR with a special emphasis on the role of thymus in this process.  相似文献   

5.
Genetic differences between various inbred strains of mice in the levels of glucocorticoid receptors embryonic in maxillary mesenchyme cells appear to be reflected in the magnitude of the responses to steroids in these cells. High levels of glucocorticoids cause significant growth inhibition in maxillary mesenchyme cells with subsequent alterations in the production of extracellular matrix components. The presence of higher levels of cytoplasmic glucocorticoid receptor proteins may be one factor which could predispose those strains such as A/J to a greater inhibition of craniofacial growth in vivo by glucocorticoids and therefore increase the frequency of cleft palate production. Furthermore, women with infertility treated with glucocorticoids to support pregnancy give birth to infants with a marked decrease in birth weight [98]. Pharmacologic doses of glucocorticoids can also cause a dramatic reduction in the growth of a number of fetal tissues in mice and humans. In fact, there is evidence that glucocorticoids may be a causative factor in the production of cleft palate in primates [52]. The nature of the molecular elements which determine the biochemical and physiologic responses to glucocorticoids in the palate still remains largely unknown. Although in the mouse there is some evidence to suggest that the major histocompatibility locus (H-2) might be involved, the level(s) at which this control is exerted is unknown. It is possible that this locus may regulate in some manner the level of glucocorticoid receptors and the response to glucocorticoids in the secondary palate. Moreover, there is evidence to suggest that other genes distinct from, but closely linked to the H-2 locus may be important in determining both the strain-dependent differences in susceptibility to glucocorticoid-induced cleft palate and the intracellular levels of cyclic AMP in the secondary palate. It is also apparent that glucocorticoids in conjunction with other hormones or growth factors such as epidermal growth factor and agents which regulate cyclic nucleotide metabolism are essential for the normal development of the secondary palate. Excesses or deficiencies in either the level of these growth regulators and/or in their receptors in specific fetal tissues at defined periods in development are likely to lead to certain fetal malformations. Definition and integration of the genetic, biochemical, and endocrine factors which are involved in the control of cellular growth as influenced by alterations in the composition of cell surface and extracellular matrix components should provide some insights into the events associated with normal palatogenesis.  相似文献   

6.
7.
Anterior pituitary hormones, stress, and immune system homeostasis   总被引:5,自引:0,他引:5  
An extensive, and controversial, literature concluding that prolactin (PRL), growth hormone (GH), insulin-like growth factor-I (IGF-I), and thyroid hormones are critical immunoregulatory factors has accumulated. However, recent studies of mice deficient in the production of these hormones or expression of their receptors indicate that there are only a few instances in which these hormones are required for lymphocyte development or antigen responsiveness. Instead, a case is made that their primary role is to counteract the effects of negative immunoregulatory factors, such as glucocorticoids, which are produced when the organism is subjected to major stressors. The immunoprotective actions of PRL, GH, IGF-I, and/or thyroid hormones in these instances may ensure immune system homeostasis and reduce the susceptibility to stress-induced disease. These immuno-enhancing effects could be exploited clinically in instances where the immune system is depressed due to illness or various treatment regimens.  相似文献   

8.
It is well established that T cell maturation and activation are negatively regulated by a mechanism termed apoptosis. We now present evidence that glucocorticoids, known to possess immunosuppressive properties, cause apoptosis in mature Th cells, similarly to what has been reported for thymocytes. Th cells treated with the synthetic glucocorticoid dexamethasone show genome fragmentation into oligonucleosomal fragments, and proliferation of growth factor stimulated Th cells is inhibited by glucocorticoids. We show that IL-4 specifically rescues Th2 cells from dexamethasone-mediated apoptosis, whereas IL-2 and IL-1 are ineffective in these cells. However, IL-2 is the relevant rescue-factor of glucocorticoid-treated Th1 cells. The rescue induced by IL-4 and IL-2 is thought to be mediated by protein kinases (possibly protein kinase C), as evidenced by the fact that the protein kinase inhibitor H7 blocks the action of IL-4 and IL-2 in glucocorticoid-treated cells. Our in vitro data show that mature T cells can be protected by their own growth factors from the deleterious effects of the synthetic glucocorticoid dexamethasone, and suggest that specific interactions occur between lymphokines and naturally produced glucocorticoids in vivo, which may play a role in the regulation of the immune response.  相似文献   

9.
The endocrine and immune systems are interrelated via a bidirectional network in which hormones affect immune function and, in turn, immune responses are reflected in neuroendocrine changes. This bidirectional communication is possible because both systems share a common "chemical language" that results from a sharing of common ligands (hormones and cytokines) and their specific receptors. Cytokines are important partners in this crosstalk. They play a role in modulating the hypothalamo-pituitary-adrenal (HPA) axis responses at all three levels: the hypothalamus, the pituitary gland and the adrenals. Acute effects of cytokines are produced at the central nervous system level, particularly the hypothalamus, whereas pituitary and adrenal actions are slower and are probably involved during prolonged exposure to cytokines such as during chronic inflammation or infection. Several mechanisms have been proposed by which peripheral cytokines may gain access to the brain. They include an active transport through the blood-brain barrier, a passage at the circumventricular organ level, as well as a neuronal pathway through the vagal nerve. The immune-neuroendocrine interactions are involved in numerous physiological and pathophysiological conditions and the interactions with the HPA axis may represent a mechanism through which the immune system, by stimulating the production of glucocorticoids, avoids an overshoot of inflammatory response. They may also be involved in the state of hypogonadism, of hypothyroidism and growth inhibition which can occur during inflammatory and infectious diseases. The crosstalk between the immune and endocrine systems is important to homeostasis, since the interactions can produce various appropriate adaptative responses when homeostasis is threatened.  相似文献   

10.
In vivo and in vitro inhibition of JE gene expression by glucocorticoids   总被引:3,自引:0,他引:3  
Glucocorticoids are potent anti-inflammatory agents which affect cell growth and migration in a wide variety of systems and have profound effects on monocytes, decreasing their circulating number as well as inhibiting their accumulation at sites of inflammation and injury. Although the mechanisms by which glucocorticoids regulate gene induction have been established, the mechanisms by which they inhibit inflammation or cell growth and migration have yet to been determined. JE is one of the most abundant genes induced by platelet-derived growth factor (PDGF) in vitro and is also induced in vivo in response to ischemia or injury. JE encodes a low molecular weight glycoprotein that functions in part as a monocyte chemotactic factor and thus may be important in recruiting monocytes to sites of tissue injury and/or inflammation. We report that glucocorticoids block the induction of JE mRNA by serum or PDGF in cultured vascular smooth muscle cells. The effect of glucocorticoids appears largely due to destabilization of JE mRNA and has specificity for JE, in that other "early" PDGF-inducible genes are not inhibited by glucocorticoids. The effect of glucocorticoids also occurs in vivo: methyl prednisolone blocks the constitutive expression and inhibits the ischemia-induced elevation of JE mRNA levels in rat kidneys. The inhibition of JE mRNA accumulation by glucocorticoids may be related to the anti-inflammatory effects of these agents and defines JE as a member of what may be a group of PDGF-inducible genes that are responsive to corticosteroids.  相似文献   

11.
12.
The profound anti-inflammatory effects of glucocorticoids in drug therapy are reflected in the effects in vivo of endogenous glucocorticoids produced by the adrenals. The production of adrenal glucocorticoids is driven by the hypothalamus and pituitary, which in turn are responsive to circulating products of the inflammatory response, especially cytokines. That inflammation can drive the production of anti-inflammatory glucocorticoids denotes the hypothalamic-pituitary-adrenal (HPA)-immune axis as a classic negative feedback control loop. Defects in HPA axis function are implicated in susceptibility to, and severity of, animal models of rheumatoid arthritis (RA), and are hypothesized to contribute to the human disease. In this paper, data supporting the concept of the HPA axis as a regulator of the inflammatory response in animal models of arthritis are reviewed, along with data from studies in humans. Taken together, these data support the hypothesis that the HPA axis provides one of the key mechanisms for inhibitory regulation of the inflammatory response. Manipulation of HPA axis-driven endogenous anti-inflammatory responses may provide new methods for the therapeutic control of inflammatory diseases.  相似文献   

13.
Changes in blood hormone levels during the immune response.   总被引:9,自引:0,他引:9  
Injection of three different antigens into rats or mice led in the course of several days to about a threefold increase in serum corticosterone levels and concommitantly to a decrease in thyroxine (rats). In view of the known immuno-suppressive effect of the glucocorticoids the possibility is considered that the endocrine changes induced during the immune response could significantly modulate the subsequent character of the immune response, e.i. magnitude, duration and lymphoid cell proliferation, however, a more complete pattern of hormonal variations and their cause needs to be established. These findings while admittedly preliminary, suffice to provide an indication of a temporal pattern of hormonal change during the immune response which could be important in immunoregulation.  相似文献   

14.
On the premise that the differential effects of glucocorticoids on various aspects of the immune response may be mediated by differences in the glucocorticoid receptors in the effector cells, subpopulations of human peripheral blood lymphocytes were examined for these receptors as well as for glucocorticoid responsiveness. Purified T and non-T lymphocytes, when studied by a sensitive whole cell assay technique, contained equivalent amounts of specific glucocorticoid receptor, which, by binding affinity and specificity measurements, were indistinguishable from each other. Furthermore, under in vitro incubation conditions, macromolecular synthesis in both of these cell populations was inhibited by glucocorticoid at concentrations which saturated the receptor sites. It is concluded that the putative differential effects of glucocorticoids on T and non-T lymphocyte-associated functions are probably not mediated by differences in the glucocorticoid receptors in these cell populations.  相似文献   

15.
Glucocorticoids have long been recognized as powerful anti-inflammatory compounds that are one of the most widely prescribed classes of drugs in the world. However, their role in the regulation of innate immunity is not well understood. We sought to examine the effects of glucocorticoids on the NOD-like receptors (NLRs), a central component of the inflammasome and innate immunity. Surprisingly, we show that glucocorticoids induce both NLRP3 messenger RNA and protein, which is a critical component of the inflammasome. The glucocorticoid-dependent induction of NLRP3 sensitizes the cells to extracellular ATP and significantly enhances the ATP-mediated release of proinflammatory molecules, including mature IL-1β, TNF-α, and IL-6. This effect was specific for glucocorticoids and dependent on the glucocorticoid receptor. These studies demonstrate a novel role for glucocorticoids in sensitizing the initial inflammatory response by the innate immune system.  相似文献   

16.
Stress is an ever-present part of modern life. The "stress response" constitutes an organism's mechanism for coping with a given stress and is mediated via the release of glucocorticoids and catecholamines. Patients often complain of stress-related worsening of their liver disease; however, the interrelationship between stress and hepatic inflammation is incompletely understood and has received little scientific attention. Considering the broad impact glucocorticoids and catecholamines have on immune cell function, it is very likely that stress has a significant impact on the hepatic inflammatory response. This themes article discusses studies of the stress response and its peripheral effectors (glucocorticoids and catecholamines) in liver disease and their impact on hepatic inflammation and outlines potential areas for future scientific investigation.  相似文献   

17.

Background  

Despite the importance of glucocorticoids in suppressing immune and inflammatory responses, their role in enhancing host immune and defense response against invading bacteria is poorly understood. Toll-like receptor 2 (TLR2) has recently gained importance as one of the major host defense receptors. The increased expression of TLR2 in response to bacteria-induced cytokines has been thought to be crucial for the accelerated immune response and resensitization of epithelial cells to invading pathogens.  相似文献   

18.
Most individuals latently infected with Mycobacterium tuberculosis (M.tb) contain the infection by a balance of effector and regulatory immune responses. This balance can be influenced by steroid hormones such as glucocorticoids. The widely used contraceptive medroxyprogesterone acetate (MPA) possesses glucocorticoid activity. We investigated the effect of this hormone on immune responses to BCG in household contacts of active TB patients. Multiplex bead array analysis revealed that MPA demonstrated both glucocorticoid and progestogenic properties at saturating and pharmacological concentrations in peripheral blood mononuclear cells (PBMCs) and suppressed antigen specific cytokine production. Furthermore we showed that PBMCs from women using MPA produced significantly lower levels of IL-1α, IL-12p40, IL-10, IL-13 and G-CSF in response to BCG which corresponded with lower numbers of circulating monocytes observed in these women. Our research study is the first to show that MPA impacts on infections outside the genital tract due to a systemic effect on immune function. Therefore MPA use could alter susceptibility to TB, TB disease severity as well as change the efficacy of new BCG-based vaccines, especially prime-boost vaccine strategies which may be administered to adult or adolescent women in the future.  相似文献   

19.
The review is focused on the action of glucocorticoids released during activation of hypothalamic-pituitary-adrenocortical axis, on the susceptibility of gastric mucosa to injury. The data support the idea that glucocorticoids produced in response to acute stress or other ulcerogenic stimuli have a gastroprotective action but not ulcerogenic one as it has generally been considered for some decades. It has been shown that gastroprotective action of glucocorticoids may be mediated by multiple actions, including maintenance of glucose homeostasis, gastric mucosal blood flow, mucus production and attenuation of enhanced gastric motility and microvascular permeability. For maintenance of gastric mucosal integrity glucocorticoids may cooperate with other gastroprotective factors. Glucocorticoid hormones exert a pivotal role in the maintenance of gastric mucosal integrity in the case of impaired gastroprotective mechanisms provided by prostaglandins, nitric oxide and capsaicin-sensitive sensory neurons. These findings indicate that activation of hypothalamic-pituitary-adrenocortical system could be considered as a significant hormonal gastroprotective component of stress reaction and therefore glucocorticoid hormones are natural gastroprotective factors.  相似文献   

20.
Glucocorticoids, administered in pharmacological doses, potently modulate immune system function and are a mainstay therapy for many common human diseases. Physiologic production of glucocorticoids may play a role in optimization of the immune repertoire both centrally and peripherally. Possible effects include alteration of lymphocyte development and down-regulation of cytokine responses, but essential roles remain unclear. To determine the part that endogenous glucocorticoids play in thymocyte development, we used fetal liver from mice lacking the glucocorticoid receptor GRko for immunological reconstitution of lethally irradiated wild-type (WT) mice. We find normal numbers and subset distribution of GRko thymocytes. GRko thymocytes also exhibit similar sensitivity to apoptosis induced by activating anti-CD3epsilon Ab as WT thymocytes in vitro. Surprisingly, GRko thymocytes are significantly more resistant than WT thymocytes to anti-CD3epsilon-mediated thymocyte apoptosis in vivo. Consistent with this finding, in vivo TCR complex activation induces sustained high levels of glucocorticoids that correlate strongly with thymocyte apoptosis in WT mice. We find that while direct engagement of the TCR complex may cause death of a subset of thymocytes, glucocorticoids are required for deletion of the majority of thymocytes. Thus, TCR stimulation by Ab administration may more accurately reflect polyclonal T cell activation than negative selection in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号