首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Peripheral neuropathy is one of the common complications of diabetes mellitus. It is frequently associated with debilitating pain. The present study was designed to investigate effect of Lycopene, a carotenoid found in tomatoes, on hyperalgesia and cold allodynia in streptozotocin (STZ) induced diabetic rats. After 4-weeks of STZ injection, diabetic mice exhibited a significant thermal hyperalgesia cold allodynia, hyperglycemia and loss of body weights as compared with control rats. Chronic treatment of lycopene for 4 weeks significantly attenuated the cold allodynia and thermal hyperalgesia. The results emphasize the role of antioxidant such as lycopene as an adjuvant therapy in the treatment of diabetic neuropathy.  相似文献   

2.
The effects of resveratrol, a polyphenolic phytoalexin present in red wine have been investigated on hyperalgesia and cold allodynia in streptozotocin (STZ) induced diabetic rats. Diabetes was induced by a single intraperitoneal injection of streptozotocin (65mg/kg). After 4-weeks of STZ injection, diabetic rats exhibited a significant thermal hyperalgesia and cold allodynia along with increased plasma glucose and decreased body weights as compared with controls rats. Chronic treatment with resveratrol (10mg/kg orally) from week 4 to week 6 significantly attenuated the cold allodynia and thermal hyperalgesia. The results emphasize the role of oxidative stress in development of hyperalgesia and cold allodynia in diabetic animals and point towards the potential of resveratrol as an adjuvant therapy for the prevention and treatment of diabetic neuropathy.  相似文献   

3.
In the clinic, although several pharmacological agents or surgical procedures are used to treat diabetes and diabetes‐induced neuropathic pain, their success has been limited. Therefore, development of different alternatives in treatments is very important. The purpose of this study was to determine the efficacy of pulsed magnetic field (PMF) in improving signs and symptoms of diabetic neuropathy. In this study, the effects of PMF treatment were investigated in Streptozotocin (STZ)‐induced acute and chronic diabetic rats by measuring the thermal latencies, mechanical thresholds, whole blood glucose levels and body weights. After STZ administration to rats, blood glucose level elevated and body weight decreased. Although PMF treatment did not affect changes in body weight, the blood glucose levels of PMF‐treated diabetic rats exhibited a decrease during the treatments. Diabetic animals displayed marked decrease in mechanical thresholds and thermal latencies. While treatment of PMF partially restored the mechanical thresholds and thermal latency in acute diabetic rats, PMF caused a corrective effect on only mechanical threshold of chronic diabetic rats. These results suggested that treatment of PMF can potentially ameliorate the painful symptoms of diabetes, such as hyperalgesia and allodynia, by partially preventing the hyperglycemia. Bioelectromagnetics 31:39–47, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Onosma echioides Linn (Boraginaceae) is the most frequently used curative herb widely used for kidney obstruction, sciatic pain, and gout. The present study was designed to investigate the therapeutic effects of n-hexane bark extract of O. echioides (OE) L. root in vivo against Streptozotocin-induced diabetic neuropathy in SD rats. For in vivo activity, the experiment was categorized into five different groups (n = 5). Group-I was considered as nondiabetic/normal control (NC) treated with 0.5% carboxymethyl cellulose (CMC), Group II as diabetic control, Group-III, IV, and V served as diabetic treated with OE 50, OE 100, and pregabalin at a dose of 50, 100, and 10 mg/kg body weight, orally, respectively. Body weight, blood glucose, oral glucose tolerance test, behavioral studies (motor coordination test, thermal hyperalgesia, cold allodynia, locomotor activity, oxidative biomarkers (thio barbituric acid reactive substances [TBARS], superoxide dismutase [SOD], glutathione [GSH], and catalase), and histopathology of the sciatic nerve were performed. Treatment with OE showed a dose-dependent increase in neuroprotective activity by improving the myelination and decreasing the axonal swelling of nerve fibers. The verdicts of behavioral activities showed a remarkable effect on animals after the treatment of extract and standard drug pregabalin. In conclusion, our findings supported the traditional application of OE and explored its importance in the management of diabetic neuropathy. Additional clinical experiments may provide novel therapeutic drugs for diabetes and its complications.  相似文献   

5.
Oxidative stress has been implicated to play an important role in the pathogenesis of diabetic neuropathy, which is the most common complication of diabetes mellitus affecting more than 50% of diabetic patients. In the present study, we have investigated the effect of U83836E [(-)-2-((4-(2,6-Di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl)methyl)-3,4-dihydro-2,3,7,8-tetramethyl-2H-1-benzopyran-6-ol, 2HCl], a potent free radical scavenger in streptozotocin (STZ)-induced diabetic neuropathy in rats. STZ-induced diabetic rats showed significant deficit in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and thermal hyperalgesia after 8 weeks of diabetes induction, indicating development of diabetic neuropathy. Antioxidant enzyme (superoxide dismutase and catalase) levels were reduced and malondialdehyde (MDA) levels were significantly increased in diabetic rats as compared to the age-matched control rats, this indicates the involvement of oxidative stress in diabetic neuropathy. The 2-week treatment with U83836E (3 and 9 mg/kg, i.p.) started 6 weeks after diabetes induction significantly ameliorated the alterations in MNCV, NBF, hyperalgesia, MDA levels and antioxidant enzymes in diabetic rats. Results of the present study suggest the potential of U83836E in treatment of diabetic neuropathy.  相似文献   

6.
In recent years, the role of free radical damage consequent to oxidative stress is widely discussed in diabetic complications. In this aspect, the protection of cell integrity by trace elements is a topic to be investigated. Vanadium is a trace element believed to be important for normal cell function and development. The aim of the present study was to investigate the effect of vanadyl sulfate supplementation on the antioxidant system in the muscle tissue of diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) to male Swiss albino rats. The rats were randomly divided into 4 groups: Group I, control; Group II, vanadyl sulfate control; Group III, STZ-diabetic untreated; Group IV, STZ-diabetic treated with vanadyl sulfate. Vanadyl sulfate (100 mg/kg) was given daily by gavage for 60 days. At the last day of the experiment, rats were killed, muscle tissues were taken, homogenized in cold saline to make a 10% (w/v) homogenate. Body weights and blood glucose levels were estimated at 0, 30 and 60th days. Antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), as well as carbonic anhydrase (CA), myeloperoxidase (MPO) activities and protein carbonyl content (PCC) were determined in muscle tissue. Vanadyl sulfate administration improved the loss in body weight due to STZ-induced diabetes and decreased the rise in blood glucose levels. It was shown that vanadium supplementation to diabetic rats significantly decrease serum antioxidant enzyme levels, which were significantly raised by diabetes in muscle tissue showing that this trace element could be used as preventive for diabetic complications.  相似文献   

7.
Developing a successful treatment strategy for neuropathic pain has remained a challenge among researcher and clinicians. Various animal models have been employed to understand the pathogenic mechanism of neuropathic pain in experimental animals. The present study was designed to explore the possible nitric oxide mechanism in the protective effect of melatonin against chronic constriction injury (CCI) of sciatic nerve in rats. Following chronic constriction injury, various behavioral tests (thermal hyperalgesia, cold allodynia) and biochemical parameters (lipid peroxidation, reduced glutathione, catalase, and nitrite) were assessed in sciatic nerves. Drugs were administered for 21 consecutive days from the day of surgery. CCI significantly caused thermal hyperalgesia, cold allodynia and oxidative damage. Chronic administration of melatonin (2.5 or 5 mg/kg, ip) significantly attenuated hyperalgesia, cold allodynia and oxidative damage in sciatic nerves as compared to CCI group. Further, L-NAME (5 mg/kg) pretreatment with sub-effective dose of melatonin (2.5 mg/kg, ip) significantly potentiated melatonin's protective effect which was significant as compared to their individual effect per se. However, L-arginine (100 mg/kg) pretreatment with melatonin (2.5 mg/kg, ip) significantly reversed its protective effects. Results of the present study suggest the involvement of nitric oxide pathway in the protective effect of melatonin against CCI-induced behavioral and biochemical alterations in rats.  相似文献   

8.
A number of experimental and clinical findings have consistently demonstrated the protective effects of Pycnogenol® (PYC) in the management of diabetes. However, the protective mechanism by which PYC provides protection in a model type I diabetes has not been studied. This study examines the beneficial effect of PYC on hyperglycemia, inflammatory markers, and oxidative damage in diabetic rats. We also evaluated the possible mechanism of action of PYC which might be that it stimulates beta islet expression, which has been implicated in the process of insulin secretion and diabetes management. Diabetes was induced in rats by an intraperitoneal injection of streptozotocin (STZ; 60 mg/kg body weight) followed by free access to 5 % glucose for the next 24 h. Four days after STZ injection, rats were supplemented with PYC (10 mg/kg body weight) for 4 weeks. At the end of the experiment, blood was drawn, and rats were then sacrificed, and their livers and pancreases were dissected for biochemical and histological assays. The level of fasting blood glucose and glycosylated hemoglobin significantly increased but amylase, insulin, and hepatic glycogen level decreased in the STZ group. PYC significantly augmented these effects in STZ?+?PYC group. The STZ group showed elevated level of nitric oxide, tumor necrosis factor-α, and interleukin-1beta in serum which were decreased by PYC treatment. Moreover, PYC significantly ameliorated increased thiobarbituric reactive substances, protein carbonyl, and decreased levels of glutathione, glutathione-s-transferase, and catalase activity in the liver and pancreas of the STZ rats. Histopathological and immunohistochemical examination also revealed a remarkable protective effect of PYC. The study suggests that PYC is effective in reducing diabetic-related complications in a type I model of diabetes and might be beneficial for the treatment of diabetic patients.  相似文献   

9.
Epidemiological studies have demonstrated that diabetes mellitus is a serious health burden for both governments and healthcare providers. This study was hypothesized to evaluate the antihyperglycemic potential of eugenol by determine the activities of key enzymes of glucose metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into male albino Wistar rats by intraperitoneal administration of STZ (40 mg/kg body weight (b.w.)). Eugenol was administered to diabetic rats intragastrically at 2.5, 5, and 10 mg/kg b.w. for 30 days. The dose 10 mg/kg b.w. significantly reduced the levels of blood glucose and glycosylated hemoglobin (HbA1c) and increased plasma insulin level. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and liver marker enzymes (AST, ALT, and ALP), creatine kinase and blood urea nitrogen in serum and blood of diabetic rats were significantly reverted to near normal levels by the administration of eugenol. Further, eugenol administration to diabetic rats improved body weight and hepatic glycogen content demonstrated the antihyperglycemic potential of eugenol in diabetic rats. The present findings suggest that eugenol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes, and it is sensible to broaden the scale of use of eugenol in a trial to alleviate the adverse effects of diabetes.  相似文献   

10.
Administration of ethanol (95%) extract (45 mg/kg body wt/day for 28 days) of garlic (A. sativum) to alloxan induced diabetic (ALX-D) mice significantly lowered the serum glucose levels, nociceptive response in tail-flick, hotplate, allodynia, formalin test and relative thickness, weight of hind paw in formalin induced Paw oedema test, over 28 days, thus, showing the reversal trend in hyperglycemia and hyperalgesia compared to ALX-D mice. The reversal of hyperglycemia and hyperalgesia was progressive and more effective as duration of extract administration increased. The results suggest therapeutic potential of ethanol extract of garlic for anti-hyperglycemic and anti-nociceptive effects in diabetes.  相似文献   

11.
The effect of exogenous thyroid hormones on blood insulin and metabolic parameters in diabetic rats was investigated. Three groups of rats were treated with streptozotocin (STZ; 50 mg/kg b.w., intravenously) and one group receiving only saline served as control. Beginning with the third day after STZ treatment, until the last day before decapitation, i.e. for 11 days, two groups of diabetic rats were treated with T3 (50 microg/kg b.w., i.p.) or T4 (250 microg/kg b.w., i.p.). After two weeks, STZ injected rats had lower body weight, hyperglycemia with a simultaneous drop in blood insulin and decrease of T3 and T4 concentrations in comparison to control animals. Liver glycogen content was also reduced, whereas serum lactate, free fatty acids, triglycerides and cholesterol were elevated. Exogenous thyroid hormones given to diabetic rats substantially attenuated hyperglycemia without any significant changes in blood insulin concentration. An additional reduction of body weight gain and depletion in liver glycogen stores were also observed. Thyroid hormones augmented serum lactate and cholesterol and had no beneficial effect on elevated free fatty acids and triglycerides. It can be concluded that in spite of partial restriction of hyperglycemia, thyroid hormones evoked several unfavourable changes strongly limiting their potential use in diabetes.  相似文献   

12.
The aim of this study was designed to investigate the possible beneficial effects of the thymoquinone (TQ) in streptozotocine (STZ)-induced diabetes in rats. The rats were randomly allotted into one of three experimental groups: A (control), B (diabetic untreated), and C (diabetic treated with TQ); each group contain ten animals. B and C groups received STZ. Diabetes was induced in two groups by a single intra-peritoneal (i.p) injection of STZ (50 mg/kg, freshly dissolved in 5 mmol/l citrate buffer, pH 4.5). Two days after STZ treatment, development of diabetes in two experimental groups was confirmed by measuring blood glucose levels in a tail vein blood samples. Rats with blood glucose levels of 250 mg/dl or higher were considered to be diabetic. The rats in TQ treated groups were given TQ (50 mg/kg body weight) once a day orally by using intra gastric intubation for 12 weeks starting 2 days after STZ injection. Treatment of TQ reduced the glomerular size, thickening of capsular, glomerular and tubular basement membranes, increased amounts of mesangial matrix and tubular dilatation and renal function as compared with diabetics untreated. We conclude that TQ therapy causes renal morphologic and functional improvement after STZ-induced diabetes in rats. We believe that further preclinical research into the utility of TQ treatment may indicate its usefulness as a potential treatment in diabetic nephropathy.  相似文献   

13.
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease that is characterized by selective destruction of insulin secreting pancreatic islets beta-cells. The formation of cytokines (IL-1beta, IL-6, TNF-alpha, etc.) leads to extensive morphological damage of beta-cells, DNA fragmentation, decrease of glucose oxidation, impaired glucose-insulin secretion and decreased insulin action and proinsulin biosynthesis. We examined the protective effect of a 1,4-dihydropyridine (DHP) derivative cerebrocrast (synthesized in the Latvian Institute of Organic Synthesis) on pancreatic beta-cells in rats possessing diabetes induced with the autoimmunogenic compound streptozotocin (STZ). Cerebrocrast administration at doses of 0.05 and 0.5 mg/kg body weight (p.o.) 1 h or 3 days prior to STZ as well as at 24 and 48 h after STZ administration partially prevented pancreatic beta-cells from the toxic effects of STZ, and delayed the development of hyperglycaemia. Administration of cerebrocrast starting 48 h after STZ-induced diabetes in rats for 3 consecutive days at doses of 0.05 and 0.5 mg/kg body weight (p.o.) significantly decreased blood glucose level, and the effect remained 10 days after the last administration. Moreover, in these rats, cerebrocrast evoked an increase of serum immunoreactive insulin (IRI) level during 7 diabetic days as compared to both the control normal rats and the STZ-induced diabetic control rats. The STZ-induced diabetic rats that received cerebrocrast had a significantly high serum IRI level from the 14th to 21st diabetic days in comparison with the STZ-induced diabetic control.The IRI level in serum as well as the glucose disposal rate were significantly increased after stimulation of pancreatic beta-cells with glucose in normal rats that received cerebrocrast, administered 60 min before glucose. Glucose disposal rate in STZ-induced diabetic rats as a result of cerebrocrast administration was also increased in comparison with STZ-diabetic control rats. Administration of cerebrocrast in combination with insulin intensified the effect of insulin. The hypoglycaemic effect of cerebrocrast primarily can be explained by its immunomodulative properties. Moreover, cerebrocrast can act through extrapancreatic mechanisms that favour the expression of glucose transporters, de novo insulin receptors formation in several cell membranes as well as glucose uptake.  相似文献   

14.
The present study is aimed to explore the impact of experimental diabetes and insulin replacement on epididymal secretory products, sperm count, motility, and fertilizing ability in albino rats. Prepubertal and adult male Wistar strain rats were made diabetic with a single intraperitoneal injection of streptozotocin (STZ), at 120 and 65 mg/kg body weight for prepubertal and adult rats, respectively. After 3 days of STZ administration, insulin was given to a group of diabetic rats at a dose of 3 U/100 g body weight, subcutaneously and killed after 20 days of treatment. STZ‐diabetes significantly reduced the epididymal tissue concentrations of testosterone, androgen‐binding protein, sialic acid, glycerylphosphoryl choline, and carnitine, suggesting its adverse effects on the secretory activity and concentrating capacity of epididymal epithelium. Impaired cauda epididymidal sperm motility and fertility (in vivo) of STZ‐diabetic rats imply the defective sperm maturation. Insulin replacement prevented these changes either partially or completely. From the above findings, it is evident that STZ‐diabetes has an adverse effect on sperm maturation, which may be due to the decrease in the bioavailability of testosterone and epididymal secretory products. J. Cell. Biochem. 108: 1094–1101, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Recent clinical reports have suggested that hypertension accelerates the progress of diabetic nephropathy and retinopathy, whereas antihypertensive treatments may retard them. Thus, the effect of antihypertensive treatment in diabetes mellitus with hypertension was evaluated in rats. A model of diabetes mellitus with hypertension has been developed in spontaneously hypertensive (SHR) rats by unilateral nephrectomy and streptozotocin (STZ, 30 mg/kg, i.v. treatment). The rats were treated with four antihypertensive drugs orally for 12 weeks thereafter. STZ treatment induced chronic hypeglycaemia (300-400 mg/dl), decreased body weight and heart rate, and caused vascular changes of ophthalmic fundi and cataracta. The kidney of these rats showed proliferative changes such as periarteritis nodosa, hyperplasia, or fibronecrosis of the arterioles, exudative changes, mesangial proliferation, or thickening of the basement membrane of the glomeruli. Enalapril (10 mg/kg per day) and remipril (Hoe 498) (1 mg/kg per day), converting enzyme inhibitors, or arotinolol (20 mg/kg per day), a beta-adrenoceptor blocking drug, decreased blood pressure, prevented the development of renal and ocular lesions, and tended to increase creatinine clearance. Nisoldipine (3 mg/kg per day), a calcium-entry blocking drug, tended to decrease blood glucose, and prevented the decrease of body weight and development of ocular lesions. In conclusion, antihypertensive treatments were effective in preventing the progress of diabetic retinopathy and nephropathy, and renal insufficiency in this animal model.  相似文献   

16.
Sarpogrelate, a specific 5-HT2A receptor antagonist is reported to produce a number of beneficial cardiovascular effects in diabetes mellitus. In the present investigation we have studied the effects of sarpogrelate on 5-HT receptors in heart and platelets in streptozotocin (STZ)-diabetic rats. Diabetes was induced by a single tail vein injection of STZ (45 mg/kg) and sarpogrelate (1 mg/kg, i.p.) was administered daily for 6 weeks. Injection of STZ produced significant loss of body weight, polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hypertension and bradycardia. Treatment with sarpogrelate significantly lowered fasting glucose levels with corresponding increase in insulin levels. It also significantly prevented STZ-induced polydypsia, hyperphagia, hypertension, and bradycardia but not the loss of body weight. 5-HT produced dose-dependent positive inotropic effect that was found to be decreased significantly in STZ-diabetic rats. Hearts obtained from sarpogrelate treated diabetic rats did not show any decrease in responsiveness to 5-HT. Relative platelet aggregation per se was found to be higher in STZ-diabetic rats as compared to control and this was significantly prevented by sarpogrelate treatment. 5-HT produced a dose-dependent increase in platelet aggregation in non-diabetic and sarpogrelate treated diabetic rats. However, 5-HT failed to produce any increase in platelet aggregation in untreated diabetic rats. Our data suggest that STZ-induced diabetes may produce down-regulation of cardiac 5-HT2A receptors and increased platelet aggregation. Treatment with sarpogrelate seems to prevent STZ-induced down-regulation of 5-HT receptors and increase in platelet activity in diabetic rats.  相似文献   

17.
Diabetes mellitus is a serious worldwide metabolic disease, which is accompanied by hyperglycaemia and affects all organs and body system. Zinc (Zn) is a basic cofactor for many enzymes, which also plays an important role in stabilising the structure of insulin. Liver is the most important target organ after pancreas in diabetic complications. In this study, we aimed to investigate the protective role of Zn in liver damage in streptozotocin (STZ)‐induced diabetes mellitus. There are four experimental groups of female Swiss albino rats: group I: control; group II: control + ZnSO4; group III: STZ‐induced diabetic animals and group IV: STZ‐diabetic + ZnSO4. To induce diabetes, STZ was injected intraperitoneally (65 mg/kg). ZnSO4 (100 mg/kg) was given daily to groups II and IV by gavage for 60 days. At the end of the experiment, rats were killed under anaesthesia and liver tissues were collected. In the diabetic group, hexose, hexosamine, fucose, sialic acid levels, arginase, adenosine deaminase, tissue factor activities and protein carbonyl levels increased, whereas catalase, superoxide dismutase, glutathione‐S‐transferase, glutathione peroxidase, glutathione reductase and Na+/K+‐ATPase activities decreased. The administration of Zn to the diabetic group reversed all the negative effects/activities. According to these results, we can suggest that Zn has a protective role against STZ‐induced diabetic liver damage.  相似文献   

18.
HY Xue  YN Lu  XM Fang  YP Xu  GZ Gao  LJ Jin 《Molecular biology reports》2012,39(10):9311-9318
In this study, we determined the neuroprotective effect of aucubin on diabetes and diabetic encephalopathy. With the exception of the control group, all rats received intraperitoneal injections of streptozotocin (STZ; 60?mg/kg) to induce type 1 diabetes mellitus (DM). Aucubin (1, 5, 10?mg/kg ip) was used after induction of DM (immediately) and diabetic encephalopathy (65?days after the induction of diabetes). The diabetic encephalopathy treatment groups were divided into short-term and long-term treatment groups. Treatment responses to all parameters were examined (body weight, plasma glucose, Y-maze error rates and proportion of apoptotic cells). In diabetic rats, aucubin controlled blood glucose levels effectively, prevented complications, and improved the quality of life of diabetic rats. In diabetic encephalopathy, aucubin significantly rescued neurons in the hippocampal CA1 subfield and reduced working errors during behavioral testing. The significant neuroprotective effect of aucubin could be seen not only in the short term (15?days) but also in the long term (45?days), which was a highly encouraging finding. These data suggest that aucubin may be a potential neuroprotective agent.  相似文献   

19.
To develop a rat model of type 2 diabetic mellitus that simulated the common manifestation of the metabolic abnormalities and resembled the natural history of a certain type 2 diabetes in human population, male Sprague-Dawley rats (4 months old) were injected with low-dose (15 mg/kg) STZ after high fat diet (30% of calories as fat) for two months (L-STZ/2HF). The functional and histochemical changes in the pancreatic islets were examined. Insulin-glucose tolerance test, islet immunohistochemistry and other corresponding tests were performed and the data in L-STZ/2HF group were compared with that of other groups, such as the model of type 1 diabetes (given 50 mg/kg STZ) and the model of obesity (high fat diet). The body weight of rats in the group of rats given 15 mg/kg STZ after high fat diet for two months increased significantly more than that of rats in the group of rats given 50 mg/kg STZ (the model of type 1 diabetes) (595 +/- 33 g vs. 352 +/- 32 g, p<0.05). Fast blood glucose levels for L-STZ/2HF group were 16.92 +/- 1.68 mmol/l, versus 5.17 +/- 0.55 mmol/l in normal control and 5.59 +/- 0.61 mmol/l in rats given high fat diet only. Corresponding values for fast serum insulin were 0.66 +/- 0.15 ng/ml, 0.52 +/- 0.13 ng/ml, 0.29 +/- 0.11 ng/ml, respectively. Rats of type 2 diabetes (L-STZ/2HF) had elevated levels of triglyceride (TG, 3.82 +/- 0.88 mmol/l), and cholesterol(Ch, 2.38 +/- 0.55 mmol/l) compared with control (0.95 +/- 0.15 mmol/l and 1.31 +/- 0.3 mmol/l, respectively) (p<0.05). The islet morphology as examined by immunocytochemistry using insulin antibodies in the L-STZ/2HF group was affected and quantitative analysis showed the islet insulin content was higher than that of rats with type 1 diabetes (P<0.05). We concluded that the new rat model of type 2 diabetes established with conjunctive treatment of low dose of STZ and high fat diet was characterized by hyperglycemia and light impaired insulin secretion function accompanied by insulin resistance, which resembles the clinical manifestation of type 2 diabetes. Such a model, easily attainable and inexpensive, would help further elucidation of the underlying mechanisms of diabetes and its complications.  相似文献   

20.
Kataoka S  Yasui H  Hiromura M  Sakurai H 《Life sciences》2005,77(22):2814-2829
CYP2E1 is known to be induced in streptozotocin (STZ)-treated diabetic rats (STZ rats), and its induction is improved by insulin. We have examined the age-dependent changes of CYP2E1 in the liver microsomes of type 1 diabetic STZ rats, the effects of VOSO4 on the contents of total P450 and CYP2E1, and the activities of CYP2E1 in terms of p-nitrophenol hydroxylation. The contents of P450 and CYP2E1 and CYP2E1 activity were enhanced with the development of diabetes. When the hyperglycemia of STZ rats was improved by daily intraperitoneal injections of VOSO4 for 10 days at the doses of 7 mg/kg body weight for 5 days, 5 mg/kg for the following 3 days, and then 2.5 mg/kg for 2 days, the P450 and CYP2E1 levels and CYP2E1 activity were lowered than those in the untreated STZ rats. To understand the mechanism underlying CYP2E1-dependent hydroxylation activity, the production of reactive oxygen species was examined in the NADPH-liver microsomal systems by ESR spin-trapping. Singlet oxygen (1O2) was detected in all microsomal systems, while superoxide anion radical(*O2-) and hydroxyl radical (*OH) were not. On the basis of these results, we conclude that (1) CYP2E1 level and activity are enhanced in the diabetic state, however, they are improved by VOSO4 treatment, and (2) 1O2 is generated during CYP2E1-dependent substrate oxygenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号