首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of phospholipid base exchange enzymes has been evaluated in cardiac sarcolemmal membranes from Syrian Golden hamsters and from a hamster strain (UM-X7.1) characterized by a genetic form of hypertrophic cardiomyopathy. No choline base exchange activity and only a little serine base exchange activity were detected, whereas the ethanolamine base exchange enzyme was found highly active in membranes from both strains. For this reason, the present study is focussed on the ethanolamine base exchange enzyme. The apparent Km for ethanolamine of ethanolamine base exchange enzyme from Syrian Golden membranes and from UM-X7.1 strain membranes are 18 and 32 μM, respectively. The specific activity of the sarcolemmal ethanolamine base exchange enzyme is lower in the UM-X7.1 strain than in Syrian Golden hamsters. The calcium-dependence of the enzyme appears different when the membranes from the two strains are compared. Indeed, after removal of the membrane-bound divalent cations, comparable activities are found in both membrane preparations, whereas, upon addition of Ca2+ to the incubation mixtures, the activity of the enzyme is enhanced in the membranes from Syrian Golden strain more than in those from UM-X7.1 strain. The cholesterol content of sarcolemmal membranes is higher in the cardiomyopathic strain than in the Syrian Golden hamsters. A possible relation between changes of the membrane lipid composition and of the ethanolamine base exchange activity is discussed.  相似文献   

2.
The base exchange enzymes catalyze the incorporation of L-serine, ethanolamine and choline into their corresponding phospholipids. The L-serine base enzyme activity was increased 120% by 0.1 mM sphingosine. There was a modest increase of the ethanolamine base exchange enzyme activity but the choline base exchange enzyme activity was unaffected. Na-arachadonate, Na-oleate and Na-linolenate at 0.2 mM concentration increased the activity of the L-serine and ethanolamine base exchange enzymes but inhibited the choline base exchange enzyme activity. A model is proposed suggesting that modulations of the L-serine base exchange enzyme may participate in the regulation of the calcium phospholipid-dependent protein kinase C.  相似文献   

3.
Abstract— Adult rabbits were injected intraventricularly with [14C]ethanolamine and the incorporation of the base into the phosphatidylethanolamine and ethanolamine plasmalogen (and their water-soluble precursors) of isolated neuronal and glial cells was investigated. All the radioactivity was incorporated into the base moiety of the ethanolamine lipids for the time intervals examined in both types of cells. In neurons, maximum labelling of the two ethanolamine lipids occurred at 7 h after administration, whereas the highest specific radioactivity for glial phosphatidylethanolamine and ethanolamine plasmalogen was reached at 20 and 36 h, respectively. The two lipids had a faster turnover in neurons than in glia, and in both populations incorporated the base at a faster rate than did whole brain tissue. The maximum incorporation rates for phosphorylethanolamine and CDP-ethanolamine were reached in both types of cell at about 6 h after administration but the content of radioactivity per unit protein for phosphorylethanolamine was much higher in glial than in neuronal cells. It is concluded that the site of most active synthesis of ethanolamine phospholipids in vivo is the neuronal cell, with a possible transfer of intact lipid molecule to the glial compartment.  相似文献   

4.
Shin S  Moore TS 《Plant physiology》1990,93(1):148-153
A base exchange reaction for synthesis of phosphatidylethanolamine by the endoplasmic reticulum of castor bean (Ricinus comminus L. var Hale) endosperm has been examined. The calculated Michaelis-Menten constant of the enzyme for ethanolamine was 5 micromolar and the optimal pH was 7.8 in the presence of 2 millimolar CaCl(2). l-Serine, N-methylethanolamine and N,N-dimethylethanolamine all reduced ethanolamine incorporation, while d-serine and myo-inositol had little effect. These inhibitions of ethanolamine incorporation were found to be noncompetitive and ethanolamine also noncompetitively inhibited l-serine incorporation by exchange. The activity of the ethanolamine base exchange enzyme was affected by several detergents, with the best activity being obtained with the zwitterionic defjtergent 3-3-cholamidopropyl) dimethylammonio-2-hydroxyl-1-propanesulfonate.  相似文献   

5.
The activity of an ethanolamine and serine base exchange enzyme of rat brain microsomes was copurified to near homogeneity. The purification sequence involved detergent solubilization, Sepharose 4B column chromatography, phenyl-Sepharose 4B column chromatography, glycerol gradient sedimentation, and agarose-polyacrylamide gel electrophoresis under non-denaturing conditions. The ratio of the ethanolamine and serine base exchange activities remained almost constant during purification, and both enzyme activities were enriched 25-fold over the initial microsomal suspension. The final enzyme preparation which contained both enzyme activities showed a single protein band on sodium dodecyl sulfate-polyacrylamide gel, having an apparent molecular mass of about 100 kDa. Serine inhibited the ethanolamine incorporation by this preparation and ethanolamine inhibited the serine incorporation. The competitive nature of this inhibition was apparent from Lineweaver-Burk plots, suggesting that the enzyme catalyzes the incorporation of both ethanolamine and serine into their corresponding phospholipids. The Km and Ki values for ethanolamine were quite similar, being 0.02 and 0.025 mM, respectively. The Km and Ki values for serine were also quite similar being 0.11 and 0.12 mM, respectively. The pH optimum was the same at 7.0 with both substrates. The optimum Ca2+ concentration was 8 mM for serine incorporation.  相似文献   

6.
The incorporation of serine and ethanolamine into phospholipids in rabbit retinal subcellular fractions and in excised retinas was studied in vitro, and some enzymic properties of the incorporation of phospholipid bases by base exchange were examined in the microsomal fraction. The retina was found to have a higher rate of base exchange for the incorporation of phospholipid bases than other tissues. The retinal microsomal fraction possessed the highest specific activity of base exchange, while the rod outer segment had very little activity. These results suggest that the phospholipids in the rod outer segment may be transferred from the inner segment of the photorecepter cell. The apparent Km values for serine and ethanolamine in the microsomal fraction decreased with decreasing Ca2+ concentration. Although no further increase of incorporation of serine and ethanolamine occurred after 40 min in the microsomal fraction, continuous incorporation of both bases into phospholipids was seen for 3 hr in excised retina. Illumination did not significantly affect the incorporation of serine and ethanolamine in excised retina or in the rod outer segment fraction. Base exchange reaction thus may not play a direct role in the visual process.  相似文献   

7.
Abstract: Enrichment in the base-exchange activities was found in the micro-somal fraction of rat brain, with less activity being associated with nuclei, mitochondria and synaptosomes. The distribution of the choline base exchange in microsomal subfractions differed from that for serine and ethanolamine and these three activities seemed asymmetrically distributed in the microsomes. Choline exchange activity was trypsin-sensitive and presumably was located on the cytoplasmic side of the microsomes, while serine and ethanolamine exchange activities were trypsin-insensitive and were assumed to be located on the luminal side of the microsomes. Treatment of rat brain microsomes with phospholipases A, C and D produced significant losses of membrane-bound base exchange activities. Some activity was restored in phospholipase C-treated microsomes by exogenous phospholipid, but significant restoration was not observed in phospholipase A-treated microsomes by such additions. Exogenous phospholipid stimulated choline and ethanolamine exchange activities, but not serine exchange activity of phospholipase D-treated microsomes. The exchange activities of rat brain microsomes differed in their responses to treatment with phospholipases, choline exchange activity in general being more sensitive than either serine or ethanolamine activities.  相似文献   

8.
The involvement of calmodulin in the choline, ethanolamine, and serine exchange activities of rat brain microsomes was investigated. Calmodulin stimulated choline exchange activity to a greater extent than ethanolamine and serine exchange activities. The three base exchange activities were inhibited by antipsychotic drugs believed to prevent calmodulin interaction, but not by calmodulin-binding protein. The solutions employed for tissue homogenization and subsequent isolation of microsomes greatly influenced the base exchange activities. The process of resuspending isolated microsomes and recentrifugation, or "washing," produced major losses of detectable activity. The base exchange enzyme activities were maximal at 45 degrees, and Arrhenius plots revealed a common transition temperature of 31 degrees. The activation energies for the base exchange reactions decreased at temperatures above the observed transition temperature. Kinetic data, Km and Vmax, for the base exchange activities at 27, 37, and 45 degrees are presented.  相似文献   

9.
The incubation of neurons from chick embryos in primary culture with [3H]ethanolamine revealed the conversion of this base into monomethyl, dimethyl and choline derivatives, including the corresponding free bases. Labelling with [methyl-3H]monomethylethanolamine and [methyl-3H]dimethylethanolamine supported the conclusion that in chick neuron cultures, phosphoethanolamine appears to be the preferential substrate for methylation, rather than ethanolamine or phosphatidylethanolamine. The methylation of the latter two compounds, in particular that of phosphatidylethanolamine, was seemingly stopped at the level of their monomethyl derivatives. Fetal rat neurons in primary culture incubated with [3H]ethanolamine showed similar results to those observed with chick neurones. However, phosphoethanolamine and phosphatidylethanolamine and, to a lesser extent, free ethanolamine, appeared to be possible substrates for methylation reactions. The methylation of water-soluble ethanolamine compounds de novo was further confirmed by experiments performed in vivo by intraventricular injection of [3H]ethanolamine. Phosphocholine and the monomethyl and dimethyl derivatives of ethanolamine were detected in the brain 15 min after injection.  相似文献   

10.
Cultured dissociated cells from rat embryo cerebral hemispheres were incubated with [U-14C]ethanolamine and the resulting cellular labeled products were identified. A highly efficient uptake for ethanolamine with a Km of approximately 8.3 muM was calculated. A rapid labeling of phosphorylethanolamine was observed prior to the appearance of label in lipids. A lag period of 2.5 min for the phosphorylation reaction was observed, followed by an almost linear rate for up to 40 min. After a 1-min incubation, a plateau for free ethanolamine taken up by the cells was established. Respiratory inhibitiors such as cyanide, 2,4-dinitrophenol, and N-ethylmaleimide decreased by the formation of phosphorylethanolamine. However, the amount offree ethanolamine present in the cells increased 1.6-fold after 10 min of incubation with N-ethylmaleimide. 2-Chloroethylamine, a structural analog of ethanolamine, and choline were both competitive inhibitiors with an apparent Ki of 0.1 mM and 0.36 mM, respectively. Incubations of short duration suggest that both compounds affect ethanolamine transport into the cells. Based on these studies it is suggested that ethanolamine transport and the phosphorylation reaction are independent events. Evidence based on studies with hemicholinium-3 and chloroethylamine suggest that ethanolamine uptake may proceed by a pathway independent of either choline or serine uptake.  相似文献   

11.
Shin S  Moore TS 《Plant physiology》1990,93(1):154-159
A base exchange reaction for synthesis of phosphatidylethanolamine by the endoplasmic reticulum of castor bean (Ricinus comminus L. var Hale) endosperm has been examined. The calculated Michaelis-Menten constant of the enzyme for ethanolamine was 5 micromolar and the optimal pH was 7.8 in the presence of 2 millimolar CaCl2. l-Serine, N-methylethanolamine and N,N-dimethylethanolamine all reduced ethanolamine incorporation, while d-serine and myo-inositol had little effect. These inhibitions of ethanolamine incorporation were found to be noncompetitive and ethanolamine also noncompetitively inhibited l-serine incorporation by exchange. The activity of the ethanolamine base exchange enzyme was affected by several detergents, with the best activity being obtained with the zwitterionic defjtergent 3-3-cholamidopropyl) dimethylammonio-2-hydroxyl-1-propanesulfonate.  相似文献   

12.
Abstract: The report concerns mechanisms for the increase of extracellular levels of ethanolamine and phosphoethanolamine in CNS regions, such as the hippocampus, in transient brain ischemia, hypoglycemia, seizures, etc. l -Serine (2.5–10 m M ), d -serine (10 m M ), or ethanolamine (10 m M ) was administered for 20 min via a microdialysis tubing to the hippocampus of unanesthetized rabbits. The concentrations of primary amines were determined in the dialysates. When levels were elevated 10–100 times in the extracellular fluid, l -serine caused a dose-dependent increase of the concentration of extracellular ethanolamine. Ethanolamine caused a corresponding, although somewhat smaller, increase in serine levels. Furthermore, l -serine also induced an increased concentration of phosphoethanolamine that was delayed in time relative to the peak of ethanolamine. d -Serine was as effective as l -serine in raising ethanolamine levels but had no effect on phosphoethanolamine. Ethanolamine, but not l -serine, also increased extracellular glutamate/aspartate levels in an MK-801-dependent fashion. A similar effect, but delayed in time, was observed with d -serine. These effects were inhibited by MK-801. The concentrations of other amino acids were not significantly affected. The characteristics of the effects are suggestive of base exchange reactions between serine and ethanolamine and between ethanolamine and serine glycerophospholipids, respectively, in neuronal plasma membranes.  相似文献   

13.
In the present study pulse-label and pulse-chase experiments with isolated rat hepatocytes in suspension were designed to investigate the effects of the presence of either serine or ethanolamine in the medium on the rate of phosphatidylethanolamine synthesis via the CDPethanolamine pathway and by decarboxylation of phosphatidylserine. Addition of serine to the medium did not affect the incorporation of [1,2-14C]ethanolamine into phosphatidylethanolamine. Pulse-label experiments showed that the incorporation of [3H]serine into phosphatidylserine decreased in the presence of ethanolamine with a corresponding decrease of the incorporation of label into the ethanolamine base moiety of phosphatidylethanolamine. However, the radioactivity in the diacylglycerol part of phosphatidylethanolamine was considerably higher in the presence of ethanolamine than in its absence. Pulse-chase experiments with labelled serine demonstrated that the conversion of phosphatidylserine to phosphatidylethanolamine was not affected by varying concentrations of ethanolamine. Our observations indicate that in the presence of ethanolamine the biosynthesis of phosphatidylethanolamine via the CDPethanolamine pathway is enhanced relative to the synthesis by decarboxylation of phosphatidylserine.  相似文献   

14.
Numerous studies have suggested relationships between myeloperoxidase, inflammation, and atherosclerosis. MPO-derived reactive chlorinating species (RCS) attack membrane plasmalogens releasing alpha-chloro-fatty aldehydes (alpha-Cl-FALDs) including 2-chlorohexadecanal (2-ClHDA). The molecular targets of alpha-Cl-FALDs are not known. The current study demonstrates 2-ClHDA adducts with ethanolamine glycerophospholipids and Fmoc-lysine. Utilizing electrospray ionization mass spectrometry, chlorinated adducts were observed that are apparent Schiff base adducts. Reduction of these Schiff base adducts with sodium cyanoborohydride resulted in a novel, stable adduct produced by the elimination of HCl. NMR further confirmed this structure. 2-ClHDA adducts with ethanolamine glycerophospholipids were also substrates for phospholipase D (PLD). The hydrolysis products were derivatized to pentafluorobenzoyl esters, and further structurally confirmed by GC-MS. Multiple molecular species of 2-ClHDA-N-modified ethanolamine glycerophospholipids were observed in endothelial cells treated with 2-ClHDA. These results show novel Schiff base adducts of alpha-Cl-FALDs with primary amines, which may represent an important fate of alpha-Cl-FALDs.  相似文献   

15.
N-(2-propenal)ethanolamine was isolated from rat and human urine using anion exchange, cation exchange, size exclusion and high performance liquid chromatography. Acid hydrolysis of the isolate yielded malondialdehyde (MDA) and ethanolamine (E) in a 1:1 molar ratio. A 1:1 E-MDA adduct was synthesized and found to be chromatographically inseparable from the urinary metabolite. Its NMR and UV spectra and lack of fluorescence were consistent with those of an enaminal formed by a Schiff's base reaction. The identification in urine of an adduct of MDA with ethanolamine, and the previous identification of an adduct with serine, constitutes direct evidence for the oxidative decomposition in vivo of polyunsaturated fatty acids present in the relevant phospholipids. The absence in urine of MDA adducts with other alpha-amino compounds (at least in comparable amounts) indicates that the ethanolamine and serine derivatives are formed in situ and not as a result of reactions with MDA generated in enzymatic processes.  相似文献   

16.
A phospholipid serine base exchange enzyme   总被引:5,自引:0,他引:5  
A membrane bound L-serine exchange enzyme which catalyzes the exchange reaction between L-serine and phospholipid-base was solubilized and separated from the ethanolamine-exchange enzyme by Sepharose 4B and DEAE-cellulose column chromatography. The separated fraction was purified approximately 37-fold with a yield of 2--5%. This fraction did not possess ethanolamine or choline exchange activity. The optimal pH was approx. 8.0, the incorporation rate of L-serine into phospholipid was linear up to 20 min incubation time and the activity was maximum at 10 mM CaCl2. The calculated Km value for L-serine was 0.4 mM. Ethanolamine phospholipid was the most effective acceptor for L-serine incorporation, particularly ethanolamine plasmalogen. The Km values obtained were: 0.25 mM for ethanolamine plasmalogen, 0.25mM for pig liver phosphatidylethanolamine and 0.66 mM for egg yolk phosphatidylethanolamine. These observations suggest that the hydrophobic moiety in ethanolamine phospholipid, as well as the base moiety, is important for the affinity of the L-serine exchange enzyme. Neither ethanolamine nor choline inhibited the L-serine exchange activity. There was no detectable conversion of phosphatidylcholine or phosphatidylethanolamine to phosphatidic acid by the partially purified enzyme.  相似文献   

17.
1. Ten bacteria utilizing [2-14C]ethanol-2-amine as the sole or major source of nitrogen for growth on glycerol + salts medium incorporated radioactivity into a variety of bacterial substances. A high proportion was commonly found in lipid fractions, particularly in the case of Erwinia carotovora. 2. Detailed studies of [14C]ethanolamine incorporation into lipids by five bacteria, including E. carotovora, showed that all detectable lipids were labelled. Even where phosphatidylethanolamine was the major lipid labelled, radioactivity was predominantly in the fatty acid rather than the base moiety. The labelled fatty acids were identified in each case. 3. The addition of acetate to growth media decreased the incorporation of radioactivity from ethanolamine into both fatty acid and phosphatidyl-base fragments of lipids from all the bacteria except Mycobacterium smegmatis. Experiments with [3H]ethanolamine and [14C]acetate confirmed that unlabelled acetate decreased the incorporation of both radioactive isotopes into lipids, except in the case of M. smegmatis. 4. Enzyme studies suggested one of two metabolic routes between ethanolamine and acetyl-CoA for each of four bacteria. A role for ethanolamine O-phosphate was not obligatory for the incorporation of [14C]ethanolamine into phospholipids, but correlated with CoA-independent aldehyde dehydrogenase activity.  相似文献   

18.
Neuroblastoma cell cultures took up linoleic and linolenic acids at approximately equal rates, and incorporated them into a variety of lipid fractions, principally cellular phospholipids. Linoleic acid was preferentially incorporated into choline phosphoglycerides, while most of the radioactivity derived from linolenic acid entered ethanolamine phosphoglycerides. There was no evidence for direct transfer of fatty acids between these two phosphoglyceride fractions. When, after the addition of cytosine arabinoside, cell division was arrested, the entry of labelled fatty acids into ethanolamine and serine phosphoglycerides was reduced, suggesting that these lipids are involved in the formation of new cell membranes. In the ethanolamine phosphoglyceride fraction, phosphatidal ethanolamine (plasmalogen) was the principal acceptor for the higher polyunsaturated fatty acids of the φ 3 series. The ratio of labelled fatty acids entering ethanolamine plasmalogens to that entering ethanolamine phosphoglycerides increased following the addition of cytosine arabinoside, suggesting plasmalogens to be involved in formation of cell processes. The first step in the metabolism of both linoleic and linolenic acid was the addition of a two-carbon unit. Conversion of linoleic acid to higher polyunsaturated fatty acids was slower than the conversion of linolenic acid to its higher analogues. This contrasted with the behaviour of dissociated cultures of normal brain cells which were able to form higher analogues of linoleic and linolenic acids at nearly equal rates.  相似文献   

19.
[3H]Ethanolamine and [32P]orthophosphate were injected intraventricularly into adult female rats. At varying time intervals after the injection (1–10 min), the animals were killed by means of a microwave apparatus, and phosphorylethanolamine and ethanolamine phosphoglycerides were extracted from the brains and counted after separation. The kinetic constants for phosphorylethanolamine incorporation into ethanolamine lipids were calculated both from3H data and from32P data. From our results, it seems that base exchange reactions for ethanolamine incorporation into ethanolamine lipids are a pathway active in brainin vivo.  相似文献   

20.
Condensation reaction of 2,9-dicarboxaldehyde-1,10-phenanthroline with 2-aminoethanol followed by NaBH4 reduction yielded the polydentate Schiff base ligand 2,9-bis(ethanolamine)-1,10-phenanthroline in its reduced form. This ligand was characterized by elemental analysis, LC-MS, IR, UV-Vis and NMR spectroscopy. Reaction of the reduced Schiff base ligand with aqueous solution of cobalt(II) chloride affords 2,9-bis(ethanolamine)-1,10-phenanthrolinechlorocobalt(II) chloride in high yield. Single crystals of the cobalt(II) complex were obtained from the crystallization in ethanol and its structure was elucidated by X-ray structural analysis. The cobalt(II) complex ion was found to be seven-coordinated in a pentagonal bipyramidal geometry, whereby cobalt(II) ion is surrounded by the six donor atoms in the ligand molecule and a chloride ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号