首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate constants for the processes that lead to local opening and closing of the structures around hydrogen bonds in native proteins have been determined for most of the secondary structure hydrogen bonds in the four-helix protein acyl coenzyme A binding protein. In an analysis that combines these results with the energies of activation of the opening processes and the stability of the local structures, three groups of residues in the protein structure have been identified. In one group, the structures around the hydrogen bonds have frequent openings, every 600 to 1,500 s, and long lifetimes in the open state, around 1 s. In another group of local structures, the local opening is a very rare event that takes place only every 15 to 60 h. For these the lifetime in the open state is also around 1 s. The majority of local structures have lifetimes between 2,000 and 20,000 s and relatively short lifetimes of the open state in the range between 30 and 400 ms. Mapping of these groups of amides to the tertiary structure shows that the openings of the local structures are not cooperative at native conditions, and they rarely if ever lead to global unfolding. The results suggest a mechanism of hydrogen exchange by progressive local openings.  相似文献   

2.
Structural rationalizations for differences in catalytic efficiency and stability between mesophilic and cold-adapted trypsins have been suggested from a detailed comparison of eight trypsin structures. Two trypsins, from Antarctic fish and Atlantic cod, have been constructed by homology modeling techniques and compared with six existing X-ray structures of both cold-adapted and mesophilic trypsins. The structural analysis focuses on the cold trypsin residue determinants found in a more extensive comparison of 27 trypsin sequences, and reveals a number of structural features unique to the cold-adapted trypsins. The increased substrate affinity of the psychrophilic trypsins is probably achieved by a lower electrostatic potential of the S1 binding pocket particularly arising from Glu221B, and from the lack of five hydrogen bonds adjacent to the catalytic triad. The reduced stability of the cold trypsins is expected to arise from reduced packing in two distinct core regions, fewer interdomain hydrogen bonds and from a destabilized C-terminal alpha-helix. The helices of the cold trypsins lack four hydrogen bonds and two salt-bridges, and they have poorer van der Waals packing interactions to the body of the molecule, compared to the mesophilic counterparts.  相似文献   

3.
The hydrogen-bonded structures of Ac-Gly-L -Ala-Gly-NHMe have been studied by theoretical conformational analysis. The geometric parameters and energies of stable forms with various combinations of 3 → 1 and 4 → 1 type hydrogen bonds have been calculated. The stable conformations found can be used as canonical forms in the investigation of linear and cyclic peptide compounds with intramolecular hydrogen bonds.  相似文献   

4.
The role of 2'-hydroxyl groups in stabilizing the tightly kinked geometry of the kink-turn (K-turn) has been investigated. Individual 2'-OH groups have been removed by chemical synthesis, and the kinking of the RNA has been studied by gel electrophoresis and fluorescence resonance energy transfer. The results have been analyzed by reference to a database of 11 different crystallographic structures of K-turns. The potential hydrogen bonds fall into several classes. The most important are those in the core of the turn and ribose-phosphate interactions around the bulge. Of these the single most important hydrogen bond is one donated from the 2'-OH of the 5' nucleotide of the bulge to the N1 of the adenine of the kink-proximal A*G pair. This is present in all known K-turn structures, and removal of the 2'-OH completely prevents metal ion-induced folding. Hydrogen bonds formed in the minor grooves of the helical stems are less important, and removal of the participating 2'-OH groups leads to reduced impairment of folding. These interactions are generally more polymorphic, and hydrogen bonds probably form where possible, as permitted by the global structure.  相似文献   

5.
The probable number of hydrogen bonds has been calculated as a function of the imino acid content for water-bridged collagen structures. With increasing imino acid content in collagen, the number of hydrogen bonds stabilizing triple-helical structures become saturation. This might explain the asymptotic character of the empirical relation between thermostability and hydroxyproline content for collagen.  相似文献   

6.
Loganathan D  Aich U 《Glycobiology》2006,16(4):343-348
Elucidation of the intra- and intermolecular carbohydrate-protein interactions would greatly contribute toward obtaining a better understanding of the structure-function correlations of the protein-linked glycans. The weak interactions involving C-H...O have recently been attracting immense attention in the domain of biomolecular recognition. However, there has been no report so far on the occurrence of C-H...O hydrogen bonds in the crystal structures of models and analogs of N-glycoproteins. We present herein an analysis of C-H...O interactions in the crystal structures of all N-glycoprotein linkage region models and analogs. The study reveals a cooperative network of bifurcated hydrogen bonds consisting of N-H...O and C-H...O interactions seen uniquely for the models. The cooperative network consists of two antiparallel chains of bifurcated hydrogen bonds, one involving N1-H, C2'-H and O1' of the aglycon moiety and the other involving N2-H, C1-H and O1' of the sugar. Such bifurcated hydrogen bonds between the core glycan and protein are likely to play an important role in the folding and stabilization of proteins.  相似文献   

7.
An automated method for the optimal placement of polar hydrogens in a protein structure is described. This method treats the polar, side chain hydrogens of lysine, serine, threonine, and tyrosine and the amino terminus of a protein. The program, called NETWORK, divides the potential hydrogen-bonding pairs of a protein into groups of interacting donors and acceptors. A search is conducted on each of the local groups to find an arrangement which forms the most hydrogen bonds. If two or more arrangements have the same number of hydrogen bonds, the arrangement with the shortest set of hydrogen bonds is selected. The polar hydrogens of the histidyl side chain are specifically treated, and the ionization state of this residue is allowed to change, if this change results in additional hydrogen bonds for the local group. The program will accept Protein Data Bank as well as Biosym-format coordinate files. Input and output routines can be easily modified to accept other coordinate file formats. The predictions from this method are compared to known hydrogen positions for bovine pancreatic trypsin inhibitor, insulin, RNase-A, and trypsin for which the neutron diffraction structures have been determined. The usefulness of this program is further demonstrated by a comparison of molecular dynamics simulations for the enzyme cytochrome P-450cam with and without using NETWORK.  相似文献   

8.
The three-dimensional structures of Delta5-3-ketosteroid isomerases from two different bacterial species have been determined. The structures reveal an unusually apolar active site, in which each of several competitive inhibitors of the enzyme are held by two hydrogen bonds with the general acids Tyr14 and Asp99, and by hydrophobic interactions. The hydrogen bond between the Tyr14 hydroxyl and the C3 oxyanion of a transition-state analog is a low-barrier hydrogen bond, as indicated by a highly deshielded nuclear magnetic resonance. Structural and other biochemical studies have enabled the proposal of a detailed catalytic mechanism for Delta5-3-ketosteroid isomerase and provided a major thrust towards understanding the mechanism not only in chemical terms but also in energetics terms.  相似文献   

9.
Atomic resolution RNA structures are being published at an increasing rate. It is common to find a modest number of non-canonical base pairs in these structures in addition to the usual Watson-Crick pairs. This database summarizes the occurrence of these rare base pairs in accordance with standard nomenclature. The database, http://prion.bchs.uh.edu/, contains information such as sequence context, sugar pucker conformation, anti / syn base conformations, chemical shift, p K (a)values, melting temperature and free energy. Of the 29 anticipated pairs with two or more hydrogen bonds, 20 have been encountered to date. In addition, four unexpected pairs with two hydrogen bonds have been reported bringing the total to 24. Single hydrogen bond versions of five of the expected geometries have been encountered among the single hydrogen bond interactions. In addition, 18 different types of base triplets have been encountered, each of which involves three to six hydrogen bonds. The vast majority of the rare base pairs are antiparallel with the bases in the anti configuration relative to the ribose. The most common are the GU wobble, the Sheared GA pair, the Reverse Hoogsteen pair and the GA imino pair.  相似文献   

10.
Endothiapepsin is derived from the fungus Endothia parasitica and is a member of the aspartic proteinase class of enzymes. This class of enzyme is comprised of two structurally similar lobes, each lobe contributing an aspartic acid residue to form a catalytic dyad that acts to cleave the substrate peptide bond. The three-dimensional structures of endothiapepsin bound to five transition state analogue inhibitors (H189, H256, CP-80,794, PD-129,541 and PD-130,328) have been solved at atomic resolution allowing full anisotropic modelling of each complex. The active sites of the five structures have been studied with a view to studying the catalytic mechanism of the aspartic proteinases by locating the active site protons by carboxyl bond length differences and electron density analysis. In the CP-80,794 structure there is excellent electron density for the hydrogen on the inhibitory statine hydroxyl group which forms a hydrogen bond with the inner oxygen of Asp32. The location of this proton has implications for the catalytic mechanism of the aspartic proteinases as it is consistent with the proposed mechanism in which Asp32 is the negatively charged aspartate. A number of short hydrogen bonds (approximately 2.6 A) with ESD values of around 0.01 A that may have a role in catalysis have been identified within the active site of each structure; the lengths of these bonds have been confirmed using NMR techniques. The possibility and implications of low barrier hydrogen bonds in the active site are considered.  相似文献   

11.
Cao ZW  Chen YZ 《Biopolymers》2001,58(3):319-328
Modified self-consistent harmonic approach was employed to calculate the probability for the disruption of each individual hydrogen bonds (H bonds) in x-ray crystal structure of several proteins. The computed probability for 82% of intraprotein and water-protein H bonds studied were found to be roughly consistent with estimated free energies from protein engineering and hydrogen exchange experiments. Hydrogen bonds have been proposed as part of a stereochemical code for protein folding. Proteins fold into unique three-dimensional structures; therefore those bonds involved in the folding code are expected to be stable. We have applied this method to tens of hydrogen bonds in a protein assumed to be involved in the folding code of a protein. 58% of these H bonds were found to have a lower disruption probability (-1.8 kcal/mol). Our results showed that modified self-consistent harmonic approach might be explored as a method supplement to existing methods in analysis of hydrogen bonds in proteins.  相似文献   

12.
The IR spectra of crystalline cytidine (Cyd), ethenocytidine (epsilon Cyd), and their hydrochlorides (Cyd-Hcl and epsilon CyD-HCl) have been analyzed to determine the spectroscopic manifestations of the structural differences that were previously established for these nucleosides from X-ray studies. O,N-Deuteration of the samples turned out to be a successful approach to obtaining interpretable spectra. The analysis was carried out in three frequency ranges: (i) The 2600-1900 cm-1 range originating from the vO-D and VN-D vibrations. All intermolecular hydrogen bonds could be recognized here. The positions of the individual vO-D (vN-D) bands were correlated with the geometrical delta HB parameters presenting the strengths of hydrogen bonds in which these groups act as donors (ii) The 1750-1500 cm-1 region originating from the stretching vibrations of double bonds. All absorption bands in this region were interpreted in terms of electronic structures of the base fragments. (iii) The region of the C-H stretching vibrations of the base fragments (3200-3000 cm-1) and sugar moieties (3000-2800 cm-1). The Csp2-H vibrations also reflect the electronic structures of the base fragments, whereas the vCsp-H frequencies seem to be sensitive to etheno-bridging and to the presence of an intramolecular C6-H...05' hydrogen bond.  相似文献   

13.
The short-chain oxidoreductase (SCOR) family of enzymes includes over 2000 members identified in sequenced genomes. Of these enzymes, approximately 200 have been characterized functionally, and the three-dimensional crystal structures of approximately 40 have been reported. Since some SCOR enzymes are involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently unknown. Although the SCOR family appears to have only a single fully conserved residue, it was possible, using bioinformatics methods, to determine characteristic fingerprints composed of 30-40 residues that are conserved at the 70% or greater level in SCOR subgroups. These fingerprints permit reliable prediction of several important structure-function features including NAD/NADP cofactor preference. For example, the correlation of aspartate or arginine residues with NAD or NADP binding, respectively, predicts the cofactor preference of more than 70% of the SCOR proteins with unknown function. The analysis of conserved residues surrounding the cofactor has revealed the presence of previously undetected CH em leader O hydrogen bonds in the majority of the SCOR crystal structures, predicts the presence of similar hydrogen bonds in 90% of the SCOR proteins of unknown function, and suggests that these hydrogen bonds may play a critical role in the catalytic functions of these enzymes.  相似文献   

14.
Stable tRNA precursors in HeLa cells.   总被引:2,自引:1,他引:2       下载免费PDF全文
F Harada  M Matsubara    N Kato 《Nucleic acids research》1984,12(24):9263-9269
Two tRNA precursors were isolated from 32P-labeled or unlabeled HeLa cells by two dimensional polyacrylamide gel electrophoresis, and were sequenced. These were the precursors of tRNAMet and tRNALeu, and both contained four extra nucleotides including 5'-triphosphates at their 5'-end and nine extra nucleotides including oligo U at their 3'-end. These RNAs are the first naturally occurring tRNA precursors from higher eukaryotes whose sequences have been determined. In these molecules, several modified nucleosides such as m2G, t6A and ac4C in mature tRNAs were undermodified. Two additional hydrogen bonds were formed in the clover leaf structures of these tRNA precursors. These extra hydrogen bonds may be responsible for the stabilities of these tRNA precursors.  相似文献   

15.
Non-traditional C-H cdots, three dots, centered Y hydrogen bonds, in which a carbon atom acts as the hydrogen donor and an electronegative atom Y (Y=N, O or S) acts as the acceptor, have been reported in proteins, but their importance in protein structures is not well established. Here, we present the results of three computational tests that examine the significance of C-H cdots, three dots, centered Y bonds involving the C(alpha) in proteins. First, we compared the number of C(alpha)-H cdots, three dots, centered Y bonds in native structures with two sets of compact, energy-minimized decoy structures. The decoy structures contain about as many C(alpha)-H cdots, three dots, centered Y bonds as the native structures, indicating that the constraints of chain connectivity and compactness can lead to incidental formation of C(alpha)-H cdots, three dots, centered Y bonds. Secondly, we examined whether short C(alpha)-H cdots, three dots, centered Y bonds have a tendency to be linear, as is expected for a cohesive hydrogen-bonding interaction. The native structures do show this trend, but so does one of the decoy sets, suggesting that this criterion is also not sufficient to indicate a stabilizing interaction. Finally, we examined the preference for C(alpha)-H cdots, three dots, centered Y bond donors to be near to strong hydrogen bond acceptors. In the native proteins, the alpha protons attract strong acceptors like oxygen atoms more than weak acceptors. In contrast, hydrogen bond donors in the decoy structures do not distinguish between strong and weak acceptors. Thus, any individual C(alpha)-H cdots, three dots, centered Y bond may be fortuitous and occur due to the polypeptide connectivity and compactness. Taken collectively, however, C(alpha)-H cdots, three dots, centered Y bonds provide a weakly cohesive force that stabilizes proteins.  相似文献   

16.
This year marks the 50th anniversary of the coiled-coil triple helical structure of collagen, first proposed by Ramachandran's group from Madras. The structure is unique among the protein secondary structures in that it requires a very specific tripeptide sequence repeat, with glycine being mandatory at every third position and readily accommodates the imino acids proline/hydroxyproline, at the other two positions. The original structure was postulated to be stabilized by two interchain hydrogen bonds, per tripeptide. Subsequent modeling studies suggested that the triple helix is stabilized by one direct inter chain hydrogen bond as well as water mediated hydrogen bonds. The hydroxyproline residues were also implicated to play an important role in stabilizing the collagen fibres. Several high resolution crystal structures of oligopeptides related to collagen have been determined in the last ten years. Stability of synthetic mimics of collagen has also been extensively studied. These have confirmed the essential correctness of the coiled-coil triple helical structure of collagen, as well as the role of water and hydroxyproline residues, but also indicated additional sequence-dependent features. This review discusses some of these recent results and their implications for collagen fiber formation.  相似文献   

17.
Defining the strength and geometry of hydrogen bonds in protein structures has been a challenging task since early days of structural biology. In this article, we apply a novel statistical machine learning technique, known as contrastive divergence, to efficiently estimate both the hydrogen bond strength and the geometric characteristics of strong interpeptide backbone hydrogen bonds, from a dataset of structures representing a variety of different protein folds. Despite the simplifying assumptions of the interatomic energy terms used, we determine the strength of these hydrogen bonds to be between 1.1 and 1.5 kcal/mol, in good agreement with earlier experimental estimates. The geometry of these strong backbone hydrogen bonds features an almost linear arrangement of all four atoms involved in hydrogen bond formation. We estimate that about a quarter of all hydrogen bond donors and acceptors participate in these strong interpeptide hydrogen bonds.  相似文献   

18.
Energetics of hydrogen bonding in proteins: a model compound study.   总被引:9,自引:6,他引:3       下载免费PDF全文
Differences in the energetics of amide-amide and amide-hydroxyl hydrogen bonds in proteins have been explored from the effect of hydroxyl groups on the structure and dissolution energetics of a series of crystalline cyclic dipeptides. The calorimetrically determined energetics are interpreted in light of the crystal structures of the studied compounds. Our results indicate that the amide-amide and amide-hydroxyl hydrogen bonds both provide considerable enthalpic stability, but that the amide-amide hydrogen bond is about twice that of the amide-hydroxyl. Additionally, the interaction of the hydroxyl group with water is seen most readily in its contributions to entropy and heat capacity changes. Surprisingly, the hydroxyl group shows weakly hydrophobic behavior in terms of these contributions. These results can be used to understand the effects of mutations on the stability of globular proteins.  相似文献   

19.
The crystal structures of three pentapeptide fragments of suzukacillin-A have been determined. Boc-Aib-Pro-Val-Aib-Val-OMe (peptide 1–5) adopts a distorted helical conformation, stabilized by three intramolecular hydrogen bonds (two 5→1, one 4→1). Boc-Ala-Aib-Ala-Aib-Aib-OMe (peptide 6–10) and Boc-Leu-Aib-Pro-Val-Aib-OMe (peptide 16–20) adopt 310 helical structures stabilized by three and two 4→1 intramolecular hydrogen bonds, respectively. These structures provide substantial support for a largely helical conformation for the suzukacillin membrane channel.  相似文献   

20.
Unfolding of an alpha-helix in water.   总被引:8,自引:0,他引:8  
K V Soman  A Karimi  D A Case 《Biopolymers》1991,31(12):1351-1361
We describe a 1 ns molecular dynamics simulation of an 18-residue peptide (corresponding to a portion of the H helix of myoglobin) in water. The initial helical conformation progressively frays to a more disordered structure, with the loss of internal secondary structure generally proceeding from the C-terminus toward the N-terminus. Although a variety of mechanisms are involved in the breaking of helical hydrogen bonds, the formation of transient turn structures, with i----i + 3 hydrogen bonds, and bifurcated hydrogen-bond structures intermediate between alpha and turn or 3(10) structures is a common motif. In some cases a single water molecule is inserted into an internal hydrogen bond, but it is also common to have several water molecules involved in transient intermediates. Overall, the results provide new information about the detailed mechanisms by which helices are made and broken in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号