首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes of red blood in the house sparrow Passer domesticus during hypobaric hypoxia have been established to consist in erythrocytosis and macrocytosis, which provides an increase of blood hemoglobin concentration and of the total respiratory surface area in blood. This reaction is based on erythropoiesis activation in bone marrow and on a decrease of the spleen storing function and inhibition of erythropoiesis in spleen. These processes, unlike those in mammals, are not accompanied by changes of the blood cell hemoglobination degree and of the hemoglobin isoform ratio.  相似文献   

2.
In a microspectrophotometric study, photographic emulsions and a computer are used for measuring the hemoglobin content of a large number (about 50,000) of erythroid cells in fetal mice. Histograms of the hemoglobin content in erythroid cells illustrate the kinetics of erythropoiesis in yolk sac derived nucleated cells in the fetal peripheral blood, in fetal liver, and in fetal spleen. After the occasional extrusion of their nucleus, yolk sac derived erythrocytes remain as “macrocytes” in fetal circulation two or three days longer than the nucleated yolk sac derived erythrocytes do. Erythrocytes in fetal liver have a constant hemoglobin content of 28 pg 2 until day 17 of gestation. During further erythropoiesis in liver and then in the spleen, this amount is gradually adapted to the normal hemoglobin content in red blood cells of 16 pg.  相似文献   

3.
In BALB/c mice immunodeficiency was induced by the transfer of lymphocytes immune to alloantigen. This model is one of experimental models of AIDS. The work was aimed at the study of disturbances in the immuno--and erythropoiesis in immunodeficient mice. The state of erythropoiesis was evaluated by the level of level of hemoglobin, hematocrit and the content of reticulocytes in peripheral blood, by the number of erythroid bursitis-forming units and the percentage of erythrokaryocytes in the marrow, as well as by the number of colony-forming units in the spleen by days 5 and 8. The study revealed that in BALB/c mice hypoplastic anemia, accompanied by the decreased phagocytic activity of macrophages and the reduced production of interleukin 1 and tumor necrosis factor, developed on months 5-6 of the disease. Macrophagal dysfunction was supposed to be one of the causes of hypoplastic anemia in immunodeficient mice.  相似文献   

4.
Psychological stress (PS) could cause decreased iron absorption and iron redistribution in body resulting in low iron concentration in the bone marrow and inhibition of erythropoiesis. In the present study, we investigated the effect of zinc supplementation on the iron metabolism, erythropoiesis, and oxidative stress status in PS-induced rats. Thirty-two rats were divided into two groups randomly: control group and zinc supplementation group. Each group was subdivided into two subgroups: control group and PS group. Rats received zinc supplementation before PS exposure established by a communication box. We investigated the serum corticosterone (CORT) level; iron apparent absorption; iron contents in liver, spleen, cortex, hippocampus, striatum, and serum; hematological parameters; malondialdehyde (MDA); reduced glutathione (GSH); and superoxide dismutase (SOD). Compared to PS-treated rats with normal diet, the PS-treated rats with zinc supplementation showed increased iron apparent absorption, serum iron, hemoglobin, red blood cell, GSH, and SOD activities; while the serum CORT; iron contents in liver, spleen, and regional brain; and MDA decreased. These results indicated that dietary zinc supplementation had preventive effects against PS-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats.  相似文献   

5.
Induced erythropoiesis in the mouse spleen was employed to study chromosomal protein synthesis during erythroid cell development. Splenic erythropoiesis occurring after phenylhydrazine induced hemolysis can be divided into an early phase during which nuclear RNA polymerase activity and RNA production are maximal and a late phase in which hemoglobin synthesis and DNA accumulation are maximal. Chromatin was isolated from splenic tissue during both the early and late phases of erythropoiesis as well as from non-anemic animals. The total protein content of chromatin from the early erythroid phase was greater than that of chromatin from the late erythroid phase or from non-anemic controls. The increase was due to a coordinate increase in the concentration of both histone and nonhistone proteins. During late erythropoiesis, the concentration of each returned to pre-anemic levels. Total histone synthesis increased 2.6-fold during early erythropoiesis as compared with the pre-anemic state and remained elevated in late erythropoiesis. The increase in histone synthesis was due to an increase in the synthesis of all five major histone proteins. Nonhistone protein synthesis was more active than that of histones in the pre-anemic spleen and rose only slightly during early erythropoiesis, returning to preanemic levels during late erythropoiesis. Fractionation of nonhistone proteins on SDS-urea polyacrylamide gels revealed complex patterns with significant differences between the pattern of erythroid spleen non-histone proteins and that of the pre-anemic spleen. Analysis of the incorporation of 3H-valine into the non-histone proteins indicated that during early erythropoiesis there was a generalized increase in nonhistone protein synthesis. During the late erythroid phase, the decline in non-histone protein synthesis was most marked for the higher molecular weight proteins.  相似文献   

6.
Anemia is a common complication of cancer; a role of spleen in tumor-stress erythropoiesis has been suggested. However, the molecular mechanisms involved in the splenic erythropoiesis following tumor maintenance remain poorly understood. Here we show that tumor development blocks medullar erythropoiesis by granulocyte colony-stimulating factor (G-CSF) and then causes anemia in murine 4T1 breast tumor-bearing mice. Meanwhile, tumor-stress promotes splenic erythropoiesis. Splenectomy worsened tumor-induced anemia, and reduced tumor volume and tumor weight, indicating the essential role of spleen in tumor-stress erythropoiesis and tumor growth. Tumor progression of these mice led to increased amounts of bone morphogenetic protein 4 (BMP4) in spleen. The in vivo role of macrophages in splenic erythropoiesis under tumor-stress conditions was investigated. Macrophage depletion by injecting liposomal clodronate decreased the expression of BMP4, inhibited splenic erythropoiesis, aggravated the tumor-induced anemia and suppressed tumor growth. Our results provide insight that macrophages and BMP4 are positive regulators of splenic erythropoiesis in tumor pathological situations. These findings reveal that during the tumor-stress period, the microenvironment of the spleen is undergoing changes, which contributes to adopt a stress erythropoietic fate and supports the expansion and differentiation of stress erythroid progenitors, thereby replenishing red blood cells and promoting tumor growth.  相似文献   

7.
The chalone fraction of erythrocyte extracts is immunologically identical to albumin and not identical to hemoglobin. It differs from albumin and hemoglobin in biological properties and electrophoretic mobility. The immune antichalone serum permits evaluating erythropoiesis in posttransfusion polycythemia and acute blood loss.  相似文献   

8.
The effect of erythropoietin, increased by bleeding, on the erythropoiesis induced by irradiation in the spleen of AKR mice, has been studied. The following parameters were measured to quantify the erythropoietic activity: the number and size of hematopoietic nodules (colonies) and proerythroblasts in the spleen, the spleen, blood and red-cell 59Fe uptake and the hematocrit and reticulocytes in the blood. Under erythropoietic stimulus an increase in the number and size of colonies was observed and these colonies were observed sooner because of their more rapid growth. The proerythroblasts in the spleen appeared earlier, and there were increases in the spleen, blood and red-cell 59Fe uptake and in the hematocrit and reticulocytes in the blood.  相似文献   

9.
This paper deals with the evaluation of histological changes in the bone marrow, spleen and thymus of mice after continuous irradiation with a dose rate of 0.957 Gy/day and a total accumulated dose of 19.14 Gy. Erythropoiesis in the spleen could be recovered quickly, significantly exceeding the spleen erythropoiesis of the controls on the seventh post-irradiation day. Myelopoiesis in the bone marrow could be recovered until the 21st day and erythropoiesis until the 28th day after the end of irradiation. Lymphopoiesis in the thymus could be recovered on the 28th day approximately and in the spleen roughly on the 60th day after the end of irradiation.  相似文献   

10.
In a rat model of chronic mountain sickness, the excessive polycythemic response to hypoxic exposure is associated with profound splenic erythropoiesis. We studied the uptake and distribution of radioactive iron and red blood cell (RBC) morphology in intact and splenectomized rats over a 30-day hypoxic exposure. Retention of (59)Fe in the plasma was correlated with (59)Fe uptake by both spleen and marrow and the appearance of (59)Fe-labeled RBCs in the blood. (59)Fe uptake in both the spleen and the marrow paralleled the production of nucleated RBCs. Splenic (59)Fe uptake was approximately 10% of the total marrow uptake under normoxic conditions but increased to 60% of the total marrow uptake during hypoxic exposure. Peak splenic (59)Fe uptake and splenomegaly occurred at the most intense phase of erythropoiesis and coincided with the rapid appearance of (59)Fe-labeled RBCs in the blood. The bone marrow remains the most important erythropoietic organ under both resting and stimulated states, but inordinate splenic erythropoiesis in this rat strain accounts in large measure for the excessive polycythemia during the development of chronic mountain sickness in chronic hypoxia.  相似文献   

11.
M C Boral 《Endokrinologie》1979,73(2):243-246
Injection of plasma from experimentally induced anemic toad with intact testis increases erythropoiesis in starved toads evidenced by the increase of red blood cell, hemoglobin and hematocrit, whereas the plasma of castrated and phenylhydrazine-HCl treated anemic toad failed to do so. It can be suggested that the erythropoiesis stimulating factor (ESF) is produced from the testis of toad and the production of this factor (ESF) was found to increase during anemia in an attempt to correct the anemic condition.  相似文献   

12.
Summary Erythropoiesis has been studied in the mouse following acute starvation and refeeding. Starvation produced a depression of erythropoiesis in both spleen and bone marrow. Refeeding, however, resulted in marked erythropoiesis in the spleen and relatively little erythropoiesis in the marrow. It is suggested that the spleen may be the primary organ in the mouse for the reestablishment of erythropoietic homeostasis.Dedicated to Professor B erta Scharrer with best personal wishes on the occasion of her 60th birthday.This study was supported by United States Public Health Service Grant No Ca-03071 Hem. from the National Cancer Institute.I wish to express my thanks to Mr. A. Scorza, Dept. of Pathology, for his excellent technical assistance in the preparation of the histological material.  相似文献   

13.
Psychological stress affects different physiological processes including haematopoiesis. However, erythropoietic effects of chronic psychological stress remain largely unknown. The adult spleen contains a distinct microenvironment favourable for rapid expansion of erythroid progenitors in response to stressful stimuli, and emerging evidence suggests that inappropriate activation of stress erythropoiesis may predispose to leukaemic transformation. We used a mouse model to study the influence of chronic psychological stress on erythropoiesis in the spleen and to investigate potential mediators of observed effects. Adult mice were subjected to 2 hrs daily restraint stress for 7 or 14 consecutive days. Our results showed that chronic exposure to restraint stress decreased the concentration of haemoglobin in the blood, elevated circulating levels of erythropoietin and corticosterone, and resulted in markedly increased number of erythroid progenitors and precursors in the spleen. Western blot analysis revealed significantly decreased expression of both erythropoietin receptor and glucocorticoid receptor in the spleen of restrained mice. Furthermore, chronic stress enhanced the expression of stem cell factor receptor in the red pulp. Moreover, chronically stressed animals exhibited significantly increased expression of bone morphogenetic protein 4 (BMP4) in the red pulp as well as substantially enhanced mRNA expression levels of its receptors in the spleen. These findings demonstrate for the first time that chronic psychological stress activates BMP4‐dependent extramedullary erythropoiesis and leads to the prolonged activation of stress erythropoiesis pathways. Prolonged activation of these pathways along with an excessive production of immature erythroid cells may predispose chronically stressed subjects to a higher risk of leukaemic transformation.  相似文献   

14.
15.
Recovery of erythropoiesis was fast in Balb/c mice irradiated 700 R 5 days after initiation of phenylhydrazine treatment and took place predominantly in the spleen, which showed numerous large frequently confluent endogenous colonies. Post irradiation phenylhydrazine induced anaemia did not accelerate recovery of erythropoiesis; it did, however, produce a slight but significant rise in endogenous colony formation.
Radiosensitivity of spleen CFU-S from phenylhydrazine treated mice was similar to that of CFU-S in normal mouse spleen.
Spleen CFU-S in mice 5 days after initiation of phenylhydrazine treatment were sensitive to the lethal action of Hydroxyurea, while bone marrow CFU-S were not.
The self-renewal capacity of CFU-S in the endogenously repopulated spleen of phenylhydrazine pretreated 700 R X-irradiated mice was low when compared to that of spleen exogenously repopulated by cells from normal mouse bone marrow, normal and phenylhydrazine treated mouse spleen. CFU circulating in blood of phenylhydrazine treated mice had a low self-renewal capacity.
The marked strain differences in self-renewal capacity of spleen CFU-S, and of the capacity of spleen CFU-S to increase by proliferation are discussed.  相似文献   

16.
We investigated the effect of dietary magnesium (Mg) deficiency on the nutritive utilization and tissue distribution of iron (Fe). Wistar rats were fed an Mg-deficient diet (56 mg/kg) for 70 days. Absorbed Fe, Fe balance, number of the erythrocytes [red blood cells (RBC)] and leukocytes white blood cells (WBC)], hemoglobin (Hb), and Fe content were determined in samples of plasma, whole blood, skeletal muscle, heart, kidney, liver, spleen, femoral bone, and sternum obtained on experimental days 21, 35, and 70. The Mg-deficient diet significantly increased Fe absorption and Fe balance from week 5 until the end of the experimental period. This effect was accompanied by a significant decrease in the concentration of RBC and Hb from day 35, which caused the decrease in whole blood Fe seen on day 70. However, WBC were significantly increased from day 21 until the end of the experimental period. Mg deficiency significantly increased plasma and liver Fe at all three time points investigated. Spleen, heart, and kidney Fe were significantly increased only at the end of the study. However, on day 70, Fe concentration in the sternum had decreased significantly. No changes were found in skeletal muscle or femur Fe content. Mg deficiency led to increased intestinal absorption of Fe and decreased RBC counts, possibly as a result of increased fragility of the erythrocytes. Intestinal interactions between Fe and Mg, together with activation of erythropoiesis as a result of hemolysis, favored intestinal absorption of Fe. This situation gave rise to an increase in plasma Fe levels, which in turn favored Fe uptake and storage by different organs, especially the liver and spleen. However, despite the increased Fe content seen in the tissues of rats fed the Mg-deficient diet, these animals were unable to compensate for the hemolysis caused by this nutritional deficiency.  相似文献   

17.
In the blood of normal subjects, the volumes of single erythrocytes are distributed with a coefficient of variation (CV) of 10.8 +/- 1.8%; while in hemoglobinopathies, CV increases proportionately to the degree of anemia produced. Using single cell Soret-band hemoglobinometry and focused-aperture impedance counting, we compared the distribution of red cell volume, area, hemoglobin content, and hemoglobin concentration in normals and subjects with anemic disorders. The CV, nondiscrete heterogeneity, is first, a general characteristic of biologic measurement, second, a sensitive indicator of abnormality of erythropoiesis, and third, consistently less for hemoglobin concentration than for volume, area, or hemoglobin content of the same cells.  相似文献   

18.
Summary Red blood cells of certain species of animals, such as dogs and cats, contain low potassium and high sodium, whereas the erythropoietic stem cells giving rise to these cells are of high potassium type. This paper examines the sequence of membrane transport changes during erythropoiesis by analyzing the K, Na and Fe in single bone marrow cells, reticulocytes and mature red blood cells with X-ray microanalysis. The relationship between K/Na ratios and Fe/(K+Na) ratios were examined by X-ray microanalysis. The K/Na ratios give a measure of the membrane cation transport function. The Fe/(K+Na), which is analogous to hemoglobin concentration, gives an index of maturation stage. The relationships between K/Na and Fe/(K+Na) in the marrow cells of normal adult dog and those of a phenylhydrazine-injected dog with accelerated erythropoiesis show that the modification of cation composition occurs after the initiation of hemoglobin synthesis but before its completion. Similar relationships in the reticulocytes obtained from phenylhydrazine-injected dogs as well as from newborn dogs show a consistent decrease in K/Na with increased Hb, indicating a drastic change in cation composition during the maturation of the reticulocytes. Therefore the modification in membrane transport function must have occurred before or during the formation of reticulocytes.  相似文献   

19.
The change from high potassium dog erythroid cells to low potassium red blood cells during erythropoiesis was investigated by X-ray microanalysis of single cells. A correlation of morphology and composition, using freeze-dried cryosectioned preparations, showed that during normal erythropoiesis in dog bone marrow the switch from high potassium to low potassium occurs during the change from early to late nucleated erythroid cells, and in synchrony with the beginning of iron accumulation. In contrast, during rapid erythropoiesis in dogs with phenylhydrazine-induced anemia, the most prominent change in cation composition as well as the accumulation of iron occurs during the reticulocyte stage in the peripheral blood. The determination of the absolute amounts of sodium and potassium per cell in stress reticulocytes of peripheral blood indicated that the changeover from high potassium to low potassium actually occurs by the loss of cellular potassium during volume reduction, with little change in the amount of cellular sodium. This suggests that maturation may involve a selective change in potassium permeability. Lastly, it was observed that not all cells followed the predominant pathway with respect to change in morphology, membrane permeability and hemoglobin synthesis. One particular subpopulation appeared to follow a sequence which expressed the complete HK to LK transition before the accumulation of any iron; this implies the possibility of completing protein synthesis in a low potassium intracellular milieu.  相似文献   

20.
Erythropoiesis, which is primarily hepatic in the rat during fetal and early neonatal life, shifts almost entirely to the bone marrow in the neonatal-adolescent stage of development. In the adult, extramedullary erythropoiesis has been demonstrated in the liver and spleen under certain pathological conditions when bone marrow red cell production is insufficient. In the present study, erythropoietic foci have been found in young-adult rat liver regenerating 24-72 hr after subtotal hepatectomy. This erythropoiesis is both extravascular and sinusoidal, with some erythroblastic islands noted. The centrolobular hepatic area contains the highest concentration of erythroblasts. Peripheral blood reticulocytosis coincides with the appearance of these cells and this is considered as an indicator of effective erythropoiesis. Liver regenerating after partial hepatectomy produces significant quantities of erythropoietin (Ep) in response to hypoxia. Subtotal hepatectomy may confer upon the adult liver the ability to revert to a fetal-like condition both in its ability to produce Ep and to function as a hematopoietic inductive microenvironment for erythropoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号