首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) and the related 2,4-dinitrotoluene (DNT) are toxic environmental pollutants. The biotransformation and detoxication of these persistent compounds in higher organisms are of great significance from a health perspective as well as for the biotechnological challenge of bioremediation of contaminated soil. We demonstrate that different human glutathione transferases (GSTs) and GSTs from the fruit fly Drosophila melanogaster are catalysts of the biotransformation of TNT and DNT. The human GSTs had significant but modest catalytic activities with both DNT and TNT. However, D. melanogaster GSTE6 and GSTE7 displayed outstanding high activities with both substrates.  相似文献   

2.
Purified CO dehydrogenase (CODH) from Clostridium thermoaceticum catalyzed the transformation of 2,4,6-trinitrotoluene (TNT). The intermediates and reduced products of TNT transformation were separated and appear to be identical to the compounds formed by C. acetobutylicum, namely, 2-hydroxylamino-4,6-dinitrotoluene (2HA46DNT), 4-hydroxylamino-2,6-dinitrotoluene (4HA26DNT), 2, 4-dihydroxylamino-6-nitrotoluene (24DHANT), and the Bamberger rearrangement product of 2,4-dihydroxylamino-6-nitrotoluene. In the presence of saturating CO, CODH catalyzed the conversion of TNT to two monohydroxylamino derivatives (2HA46DNT and 4HA26DNT), with 4HA26DNT as the dominant isomer. These derivatives were then converted to 24DHANT, which slowly converted to the Bamberger rearrangement product. Apparent K(m) and k(cat) values of TNT reduction were 165 +/- 43 microM for TNT and 400 +/- 94 s(-1), respectively. Cyanide, an inhibitor for the CO/CO(2) oxidation/reduction activity of CODH, inhibited the TNT degradation activity of CODH.  相似文献   

3.
Purified CO dehydrogenase (CODH) from Clostridium thermoaceticum catalyzed the transformation of 2,4,6-trinitrotoluene (TNT). The intermediates and reduced products of TNT transformation were separated and appear to be identical to the compounds formed by C. acetobutylicum, namely, 2-hydroxylamino-4,6-dinitrotoluene (2HA46DNT), 4-hydroxylamino-2,6-dinitrotoluene (4HA26DNT), 2,4-dihydroxylamino-6-nitrotoluene (24DHANT), and the Bamberger rearrangement product of 2,4-dihydroxylamino-6-nitrotoluene. In the presence of saturating CO, CODH catalyzed the conversion of TNT to two monohydroxylamino derivatives (2HA46DNT and 4HA26DNT), with 4HA26DNT as the dominant isomer. These derivatives were then converted to 24DHANT, which slowly converted to the Bamberger rearrangement product. Apparent Km and kcat values of TNT reduction were 165 ± 43 μM for TNT and 400 ± 94 s−1, respectively. Cyanide, an inhibitor for the CO/CO2 oxidation/reduction activity of CODH, inhibited the TNT degradation activity of CODH.  相似文献   

4.
Successful microbial-mediated remediation requires transformationpathways that maximize metabolism and minimize the accumulation of toxic products. Pseudomonas aeruginosa strain MX, isolated from munitions-contaminated soil, degraded 100 mg TNT L-1 in culture medium within 10 h under aerobic conditions. The major TNT products were 2-amino-4,6-dinitrotoluene (2ADNT, primarily in the supernatant) and 2,2'-azoxytoluene (2,2'AZT, primarily in the cell fraction), which accumulated as major products via the intermediate2-hydroxylamino-4,6-dinitrotoluene (2HADNT). The 2HADNT and2,2'AZT were relatively less toxic to the strain than TNT and 2ADNT. Aminodinitrotoluene (ADNT) production increased when yeast extract was added to the medium. While TNT transformation rate was not affected by pH, more HADNTs accumulated at pH 5.0 than at pH 8.0 and AZTs did not accumulate at the lower pH. The appearance of 2,6-diamino-4-nitrotoluene (2,6DANT) and 2,4-diamino-6-nitrotoluene (2,4DANT); dinitrotoluene (DNT) and nitrotoluene (NT); and 3,5-dinitroaniline (3,5DNA) indicated various routes of TNT metabolism and detoxification by P. aeruginosa strain MX.  相似文献   

5.
Using Bacillus subtilis SK1 as an example, it was demonstrated for the first time that 2,4,6-trinitrotoluene (TNT) transformation pathways change with TNT concentration. The growth of cultured B. subtilis SK1, delayed at 20 mg/l TNT (minimum toxic concentration), was resumed following TNT transformation. Aromatic amines were predominant metabolites detected in the culture medium at early stages of TNT transformation. The culture growth was completely inhibited by 200 mg/l TNT. As this took place, nitrites accumulated in the culture medium.  相似文献   

6.
An efficient method to produce water-soluble polysaccharides from Lentinus lepideus is described. The productivity of both endopolysaccharides (PPS) and exopolysaccharides (EPS) was compared under various culture conditions. The effect of treating their own PPS and EPS on immune cytokine production was also studied in relation to culture factors. High yield production of EPS required moderate culture temperature (25 degrees ) as well as long culture period (16-20 days). In contrast, PPS production required high culture temperature (30 degrees ) and short culture period ( days). Most of the carbon sources did not affect polysaccharides and mycelial production except for sucrose. Immune cytokine levels in the EPS treatment varied among carbon sources or culture periods. PPS did not appear to affect much on the production of cytokines, regardless of the culturing factors, except for the culture period. These results suggest that the optimal culture conditions for L. lepideus vary according to culture purposes, and different culture conditions should be used for different targets including mycelial biomass, EPS, and PPS. Whereas the immunomodulating activity of EPS appeared to be affected by culture conditions in L. lepideus, that of PPS did not.  相似文献   

7.
The soilborne rhizosphere-competent fungal biocontrol agent Trichoderma harzianum isolate Th008 secreted trichodermin (MW = 292) and a small peptide (MW = 876) in culture. These compounds were antagonistic in culture to the mycelial growth of the soilborne fungal pathogen Rhizoctonia solani isolate 2B-12, which is highly virulent to soybean ( Glycine max )seedlings. When 100mg of dried autoclaved mycelial mat of R. solani was added to 200 ml liquid cultures of T. harzianum , the quantity of antimycotic compounds secreted by the latter was 3.5 times greater than that of the antagonist alone. R. solani secreted a coumarin derivative (MW = 313) in liquid culture, which inhibited the mycelial growth of T. harzianum ; however, inhibition of the growth of the antagonist required a greater concentration than that for the antimycotic compounds produced by the antagonist against the pathogen. The inclusion of 100 mg of dried autoclaved mycelial mat of T. harzianum in a 200 ml liquid culture of R. solani did not affect the quantity of the antimycotic compound produced by the pathogen.  相似文献   

8.
Using Bacillus subtilis SK1 as an example, it was demonstrated for the first time that 2,4,6-trinitrotoluene (TNT) transformation pathways change with TNT concentration. The growth of cultured B. subtilis SK1, delayed at 20 mg/l TNT (minimum toxic concentration), was resumed following TNT transformation. Aromatic amines were predominant metabolites detected in the culture medium at early stages of TNT transformation. The culture growth was completely inhibited by 200 mg/l TNT. As this took place, nitrites accumulated in the culture medium.  相似文献   

9.
Nitroaromatic compounds are toxic and potential carcinogens. In this study, a drop assay was used to detect chemotaxis toward nitroaromatic compounds for wild-type Burkholderia cepacia R34, wild-type Burkholderia sp. strain DNT, and a 2,4-dinitrotoluene (2,4-DNT) dioxygenase mutant strain (S5). The three strains are chemotactic toward 2,4,6-trinitrotoluene (TNT), 2,3-DNT, 2,4-DNT, 2,5-DNT, 2-nitrotoluene (NT), 4NT, and 4-methyl-5-nitrocatechol (4M5NC), but not toward 2,6-DNT. Of these, only 2,4-DNT is a carbon and energy source for B. cepacia R34 and Burkholderia sp. strain DNT, and 4M5NC is an intermediate in the 2,4-DNT degradation pathway. It was determined that the 2,4-DNT dioxygenase genes are not required for the chemotaxis for these nitroaromatic compounds because the DNT DDO mutant S5 has a chemotactic response toward 2,4-DNT although 2,4-DNT is not metabolized by S5; hence, 2,4-DNT itself is the chemoattractant. This is the first report of chemotaxis toward TNT, 2,3-DNT, 2,4-DNT, 2,5-DNT, 2NT, 4NT, and 4M5NC.  相似文献   

10.
在弗氏柠檬酸细菌(Citrobacter freusdii)TNT降解酶中,同时检出需NAD(P)H的TNT还原酶和需NAP(P)+的TNT脱氢酶。研究了酶形成的时闻过程和辅酶在TNT酶促降解反应中的行为。  相似文献   

11.
Unlike other 2,4,6-trinitrotoluene (TNT)-degrading white rot fungi, including Phanerochaete chrysoporium, initial metabolism of TNT by Irpex lacteus was found to occur through two different transformation pathways. Metabolites of the nitro group reduction pathway were confirmed with the standard compounds, and the formation of hydride-Meisenheimer complex of TNT (H(-)-TNT) formed in the denitration pathway was identified with LC/MS and by LC/photodiode array (PDA) detection. The molecular weight of the H(-)-TNT complex was identified as 228 m/z, and the UV-visible absorption spectrum, recorded with a PDA detector, proved the identity of this metabolite (RT, 18.7 min; lambda(max) 254, 474, 557 nm) by comparison with the authentic synthetic H(-)-TNT (RT 18.7 min; lambda(max) 261, 474, 563 nm). Mineralization of [U-(14)C]TNT by I. lacteus was also measured in static and shaken cultures. The mineralization rate of TNT in the static culture was higher than that in the shaken culture, and addition of Tween 80 (final concentration 1%) enhanced the mineralization of TNT in the static culture, resulting in 30.57% of CO(2) evolution from the radiolabeled TNT added. The high TNT mineralization capability of I. lacteus seemed to be the result of simultaneous utilization of the denitration pathway, which is more favorable for the ring cleavage and mineralization of TNT, together with the nitro group reduction pathway.  相似文献   

12.
13.
The fungal ligninolytic enzyme manganese peroxidase (MnP) is known to function by oxidizing Mn(II) to Mn(III), a powerful oxidant. In this work, an abiotic system consisting of Mn(III) in oxalate buffer under aerobic conditions (Mn(III)/oxalate/O2 system) was shown to be capable of extensively transforming 2-amino-4,6-dinitrotoluene (2A46DNT)--one of the main reduction products of 2,4,6-trinitrotoluene (TNT). No significant transformation occurred in the presence of other organic acids or under anaerobic conditions. The Mn(III)/oxalate/O2 system was also able to transform other nitroaromatic compounds such as 2-nitrotoluene, 4-nitrotoluene, 2,4-dinitrotoluene, TNT - the latter to a lesser extent -, and their reduction derivatives. The Mn(III)/oxalate/O2 system mineralized 14C-U-ring labeled 2A46DNT slightly, while no significant mineralization of 14C-U-ring labeled TNT was observed. Unidentified 14C-transformation products were highly polar. Electron spin resonance experiments performed on the Mn(III)/oxalate/O2 system revealed the generation of formyl free radicals (*COO-). The oxygen requirement for the transformation of nitroaromatic compounds suggests the involvement of superoxide free radicals (O2-*). produced through autoxidation of *COO- by molecular oxygen. The implication of such a Mn(III)/oxalate/O2 system in the MnP-catalyzed degradation of nitroaromatic pollutants by white-rot fungi is further discussed.  相似文献   

14.
Ligninolytic activities in strains of Lentinula edodes were related to pentachlorophenol biotransformation in sterile soil and activities in L. lepideus. Strains of L. edodes secreting laccase and manganese peroxidase activities also metabolized pentachlorophenol (PCP) significantly ( P < 0.05). Strains of L. lepideus showed neither enzymic activities nor xenobiotic breakdown. Lentinula edodes strains inhibited by PCP at 5 mg 1-1 in agar, tolerated 200 mg kg-1 in soil. Strain LE2 metabolized more PCP in nitrogen-sufficient than nitrogen-limited culture: the reverse was observed with Phanerochaete chrysosporium BKM 1767. Relationships between ligninolytic activities and pentachlorophenol breakdown in L. edodes indicated a suitability for soil bioremediation treatments.  相似文献   

15.
Anaerobic bacteria have been used to produce 2,4-dihydroxylamino-nitrotoluene (2,4DHANT), a reductive metabolite of 2,4,6-trinitrotoluene (TNT). Here, an aerobic TNT biodegrader Pseudomonas sp. strain TM15 produced 2,4DHANT as evidenced by the molecular ion with m/z of 199 identified from LC-TOFMS analyses. TNT biodegradation with a high cell concentration (109 cells/ml) led to a significant accumulation of 2,4DHANT in the culture medium, as well as hydroxylamino-dinitrotoluenes (HADNTs), although these products were not accumulated when a low cell concentration was used; also, the accumulation of diamino-nitrotoluene and of an unidentified metabolite were observed in the culture medium with the high cell concentration (1010 cells/ml). 2,4DHANT overproduction was a function of the aeration speed since cultures with low aeration speeds (30 rpm) had a 19-fold higher DHANT productivity than those aerated with high speeds (180 rpm); this indicates that molecular oxygen was related to the formation of 2,4DHANT. The quantification of dissolved oxygen (DO) in the media demonstrated that the productivity of 2,4DHANT was increased at low DO values. Moreover, supplying oxygen to the culture media produced a remarkable decrease of 2,4DHANT accumulation; these results clearly indicate that high 2,4DHANT production was a consequence of the oxygen deficit in the culture medium. This finding is useful for understanding the TNT biodegradation (bioremediation technology) in an anoxic environment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The degradation of TNT was tested in suspension cultures (Rheum palmatum and Solanum aviculare) and was followed by the identification of degradation products and the determination of the phytotoxicity of TNT to both cultures. The concentration of TNT inhibited the growth of cell cultures by 50 %, i.e., 37.8 mg/ and 38.1 mg/L for Rheum palmatum and Solanum aviculare, respectively. The TNT uptake was studied by determining the concentration of TNT and its degradation products, such as aminodinitrotoluenes and diaminonitrotoluenes, in the cultivation medium as well as in plant cells. The kinetics of the degradation showed that TNT was mostly taken up within 10 hours and 6 hours for S. aviculare and R. palmatum, respectively. Aminodinitrotoluenes were preferentially produced by cultures of S. aviculare, whereas diaminonitrotoluenes and aminodinitrotoluenes were revealed in cultures of R. palmatum. The final concentrations of identified degradation products did not stoichiometrically correspond to the decreased concentration of TNT in the medium. The different concentrations of degradation products in each culture were an indication that the metabolism of TNT is controlled by different enzymatic systems. Therefore, it was concluded that studying different species for TNT degradation is necessary for the search of most suitable candidates for TNT phytoremediation.  相似文献   

17.
Image analysis was used to measure the effect of Tween 40 on the morphology of Trichoderma harzianum. The percentage of pellets was maximal (93%) with Tween at 0.2 ml l(-1), whereas the maximal proportion of dispersed mycelia (40%) was with Tween at 1.6 ml l(-1). The particle median diameter decreased from 2 to 0.5 mm as Tween concentration was increased and was inversely correlated to the biomass dry weight. Adding pre-determined aliquots of Tween 40 to the culture medium can be used to define the morphological characteristics of Trichoderma harzianum in submerged shake-flask culture.  相似文献   

18.
Continuous flow sand column bioreactor experiments were conducted to investigate the effect of 2,4-dinitrotoluene (DNT) concentration (i.e. DNT loading rate) and influent dissolved oxygen (DO) concentration on aerobic biodegradation of DNT by wild type (DNT) and recombinant (YV1) Burkholderia sp., the latter containing plasmid pSC160 which carries the gene (vgb) encoding the hemoglobin (VHb) from the bacterium Vitreoscilla. The experiments were conducted in two continuous flow packed bed sand column bioreactors, one growing the wild type strain and the other growing YV1. Under oxygen-rich feed conditions (6.8 mg DO/L in the feed) with an influent DNT concentration of 99.6 mg/L (DNT loading rate approximately = 9.2 mg/m2/day), the effluent DNT concentration from the wild type bioreactor reached 0.7 mg DNT/L in 40 days whereas it was less than 0.2 mg DNT/L for the YV1 bioreactor in about 25 days. When influent DNT concentration was increased to 214 mg/L (DNT loading rate approximately = 20.3 mg/m2/day) while maintaining the same influent DO level of 6.8 mg/L, the effluent DNT concentration increased to about 5 mg/L for the wild type bioreactor whereas it was maintained at less than 0.2 mg/L for the YV1 bioreactor. Additionally, when influent DO was reduced from 6.8 mg/L to 3.1 mg/L while the influent DNT concentration remained at 214 mg/L, the effluent DNT concentration increased to more than 20 mg/L for the wild type bioreactor but up to only 1.7 mg/L for the YV1 bioreactor. A subsequent increase of influent DO back to 6.6 mg/L reduced the effluent DNT concentration to about 5 mg/L for the wild type bioreactor and to 0.10-0.19 mg/L for the YV1 bioreactor. These results confirm the utility of vgb technology to enhance biodegradation of aromatic compounds under hypoxic conditions and also that this enhancement can be maintained over extended periods of time as evidenced by plasmid stability in Burkholderia YV1.  相似文献   

19.
在大鼠晶状体器官培养的条件下,运用单细胞电泳法(SCG),对远在晶状体混浊之前的晶状体上皮细胞进行了有关TNT致其DNA损伤(SSB)与修复的初步观察,提示DNA损伤也是体外TNT性白内障中的早期变化.  相似文献   

20.
Denitration of 2,4,6-trinitrotoluene (TNT) was evaluated in oxygen-depleted enrichment cultures. These cultures were established starting with an uncontaminated or a TNT-contaminated soil inoculum and contained TNT as sole nitrogen source. Incubations were carried out in the presence or absence of ferrihydrite. A significant release of nitrite was observed in the liquid culture containing TNT, ferrihydrite, and inoculum from a TNT-contaminated soil. Under these conditions, Pseudomonas aeruginosa was the predominant bacterium in the enrichment, leading to the isolation of P. aeruginosa ESA-5 as a pure strain. The isolate had TNT denitration capabilities as confirmed by nitrite release in oxygen-depleted cultures containing TNT and ferrihydrite. In addition to reduced derivatives of TNT, several unidentified metabolites were detected. Concomitant to a decrease of TNT concentration, a release of nitrite was observed. The concentration of nitrite peaked and then it slowly decreased. In the absence of TNT, the drop in the concentration of nitrite in oxygen-depleted cultures was lower when ferrihydrite was provided, suggesting that ferrihydrite inhibited the utilization of nitrite by P. aeruginosa ESA-5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号