首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incorporation of DL-3,4-dehydro[14C]proline into collagen and total protein of 3T3 cells occurred at approximately one-fifth the rate observed for L-[14C]proline. Addition of L-3,4-dehydroproline to the culture medium inhibited markedly the incorporation of [14C]glycine and L-[3H]lysine into the collagen of 3T3 cells, but there was only slight inhibition of the incorporation of the radiolabeled amino acids into total cellular proteins, indicating that the action of L-3,4-dehydroproline is specific for collagen. When 1 mM L-3,4-dehydroproline was added to the culture medium the [14C]hydroxyproline content was reduced 40% in the cell layer and 70% in the medium. The D isomer of 3,4-dehydroproline did not inhibit [14C]hydroxyproline formation. These findings indicate that L-3,4-dehydroline reduced the hydroxylation of the susceptible prolyl residues in the collagen molecule and the secretion of collagen from the cell. The reduction in the hydroxyproline content is probably related in part to a reduction in the activity of prolyl hydroxylase; when various mammalian cell cultures were exposed to 0.2 mM L-3,4-dehydroproline, the specific activity of prolyl hydroxylase was reduced markedly, while that of lysyl hydroproline, the specific activity of prolyl hydroxylase was reduced markedly, while that of lysyl hydroxylase was not affected. Under these conditions, cell growth and lactic dehydrogenase required protein synthesis. Removal of L-3,4-dehydroproline from the growth medium resulted in a time-dependent increase in the specific activity of prolyl hydroxylase.  相似文献   

2.
Various proline analogs have been tested in vitro for their ability to inhibit the enzymatic aminoacylation of tRNA by proline. Of these, l-3,4-dehydroproline is the most potent inhibitor. This inhibition is competitive; the Ki is 100 μm. It was shown that l-3,4-dehydroproline can serve as substrate in the aminoacylation reaction. However, the incorporation of radioactivity from l-3,4-[14C]dehydroprolyl-tRNA into protein occurs at one-fifth the rate observed for l-prolyl-tRNA. The addition of l-3,4-dehydroproline in vitro inhibits the synthesis of collagen to a greater extent than non-collagen protein.  相似文献   

3.
When chick frontal bone cells in culture were exposed to d,l-3,4 dehydroproline, the specific activity of prolyl hydroxylase was markedly reduced, but the concentration of the protein antigenically related to prolyl hydroxylase was not decreased. The specific activity of purified prolyl hydroxylase from cells grown in d,l-3,4 dehydroproline was significantly lower than that of control cells. Preincubation of a homogeneous preparation of chick embryo prolyl hydroxylase with collagenous peptides containing [14C]d,l-3,4 dehydroproline resulted in a time-dependent decrease in the enzymatic activity. These observations suggest that the in vivo reduction in prolyl hydroxylase activity by dehydroproline could be either due to an interaction of the enzyme with collagenous peptides containing dehydroproline and/or the synthesis of an aberrant form of prolyl hydroxylase with decreased enzymatic activity.  相似文献   

4.
The activity of collagen proline hydroxylase in the 27,000g supernatant of the uterus was compared in the normal 20-day-old rat and in the adult rat 21 days after ovariectomy. The cofactor requirements of this enzyme were shown to be qualitatively the same as the enzyme from rat liver and skin. The specific activity of collagen proline hydroxylase in the uterus of the immature rat is approximately 250% higher than that of the ovariectomized animal. Although the total protein of the uterus of the ovariectomized rat is much greater, the total activity of this enzyme is 50% higher in the uterus of the immature rat. The daily administration of 5 μg estradiol-17β for 4 consecutive days to either animal results in a significant increase in the activity of collagen proline hydroxylase. Enzyme activity increases significantly 24 hr after the first dose of estradiol-17β and remains elevated in a reproducible pattern throughout the experimental period. Other estrogens including estriol, estrone, diethylstilbestrol, and ethynylestradiol-3-methyl ether also increase significantly the activity of collagen proline hydroxylase in the uterus of the immature rat. The activity of collagen proline hydroxylase was compared in the 27,000g supernatant of uterus of the immature and ovariectomized rat in a dose-response study with estradiol-17β and there appears to be little, if any, difference in total enzyme capacity. These results suggest that the failure of collagen to accumulate in the uterus of the ovariectomized rat administered estradiol-17β is unrelated to a low activity of collagen proline hydroxylase.  相似文献   

5.
Human skin fibroblasts were cultured under conditions optimized for collagen synthesis, and the effects of ascorbic acid on procollagen production, proline hydroxylation and the activity of prolyl hydroxylase were examined in cultures. The results indicated that addition of ascorbic acid to confluent monolayer cultures of adult human skin fibroblasts markedly increased tha amount of [3H]hydroxyproline syntehsized. Ascorbic acid, however, did not increase the synthesis of 3H-labeled collagenous polypeptides assayed independently of hydroxylation of proline residues, nor did it affect the amount of prolyl hydroxylase detectable by an in vitro enzyme assay. Also long-term cultures of the cells or initiation of fibroblast cultures in the presence of ascorbic acid did not lead to an apparent selection of a cell population which might be abnormally responsive to ascorbic acid. Thus, ascorbic acid appears to have one primary action on the synthesis of procollagen by cultured human skin fibroblasts: it is necessary for synthesis of hydroxyproline, and consequently for proper triple helix formation and selection of procollagen.  相似文献   

6.
Cells isolated from embryonic chick aorta were incubated in suspension culture with labeled amino acids and proline analogs. Incorporation of 4-cis-hydroxy-l-proline inhibited the secretion of labeled procollagen but not tropoelastin, while incorporation of dl-3,4-dehydroproline inhibited the secretion of both proteins and caused them to accumulate intracellularly. Protein synthesis did not appear to be significantly diminished during the 2-h incubation period. Incorporation of dl-3,4-dehydroproline may alter the conformation of tropoelastin leading to abnormal intracellular processing and a decreased rate of secretion.  相似文献   

7.
A number of substituted bradykinin analogs were prepared in which the proline in position 3 was replaced by analogs of proline. All of the bradykinin analogs, with the exception of l-azetidine-2-carboxyl3-bradykinin showed significant ability to inhibit prolyl hydroxylase activity. Addition of an l-glutamyl residue to the amino terminus of 3,4-dehydro-l-prolyl3-bradykinin and trans-4-hydroxy-l-prolyl3-bradykinin resulted in competitive inhibitors of increased effectiveness with Ki, values approximately 10?4m. One of the peptides, l-3,4-dehydro-l-prolyl3-bradykinin, appeared to serve as a substrate for prolyl hydroxylase.  相似文献   

8.
Significant levels of prolyl hydroxylase activity (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase; EC 1.14.11.2) have been found in freshly isolated hepatocytes prepared from normal or regenerated adult rat liver and primary non-proliferating monolayer cultures of these cells. Four days after partial hepatectomy, the intact regenerated liver contained two times the normal level of prolyl hydroxylase activity. Freshly isolated hepatocytes contained 24% of the total prolyl hydroxylase activity in normal liver and 47% of that in regenerated liver. Upon incubation of hepatocytes for 24 h in a chemically defined culture medium containing insulin, prolyl hydroxylase activity rose 2- to 3-fold, and gradually declined during the next 48 h. The rise in prolyl hydroxylase activity was blocked by addition of cycloheximide to the culture medium. The presence of prolyl hydroxylase activity in hepatocyte cultures was not likely due to contamination with non-parenchymal liver cells. The latter cells contained less than 20% of the total enzyme activity recovered in all cells isolated from the liver. Furthermore, prolyl hydroxylase was localized by immunofluorescence uniformly to the hepatocytes in culture. Cultured hepatocytes converted [14C]proline to [14C]hydroxyproline at rates comparable to those reported for whole liver. However, only a small portion of the hydroxyproline containing product was present as collagen protein, suggesting its rapid degradation in culture. We conclude that the liver parenchymal cell may actively participate in collagen synthesis and possibly in collagen degradation.  相似文献   

9.
In a previous study where rat skin collagen was labeled with 18O in the hydroxyl group of the collagen hydroxyproline we noticed that the decay rate of this label was much faster than had been observed when the skin collagen hydroxyproline was labeled with 3H in the prolyl ring. In this study a rat was labeled concurrently with [18O2] and [3H] proline and the rate of decline of both labels was determined in rat skin collagen hydroxyproline. After correction for growth dilution of the skin collagen the [18O] hydroxyproline was found to have a half-life of 27 days while the [3H] hydroxyproline had a half-life of 53 days. The decay rate of the [18O] hydroxyproline represents the true turnover rate of collagen since there is no possibility of recycling this label. Hence, the difference between this and the [3H] hydroxyproline decay rate is due to recycling of l-[3H] proline into new collagen. The efficiency of recycling of proline from catabolized collagen into new collagen was about 93%.  相似文献   

10.
Palladium ions, administered as PdSO4, markedly affect the incorporation of L-[3,4-3H2] proline into non-dialyzable fractions in 10-day chick embryo cartilage explants with a 55-65% reduction in the concentration range 0.06-0.6 mM. Under these conditions the synthesis of [3H]hydroxyproline was nearly completely inhibited. Experiments with prolyl hydroxylase (EC 1.14.11.2) indicated a strong irreversible inhibition of the enzyme with a competition between Fe2+ and Pd2+. The Ki for the inhibition was 0.02 mM. Pd2+-treated enzyme remained inactive after extensive dialysis. These studies suggest that Pd2+ may inhibit collagen synthesis by replacing Fe2+ in the active site of prolyl hydroxylase and forming strong complexes with the enzyme. These studies also point to a potential mechanism of Pd2+ toxicity.  相似文献   

11.
The role of collagen or collagen-like protein(s) in the in vitro formation of the sea urchin embryonic skeleton was investigated using isolated micromeres of Strongylocentrotus purpuratus. Micromeres were cultured in sea water containing 4% horse serum on tissue culture plastic or an extracellular matrix of type I collagen. The effect of proline analogs and an inhibitor of collagen hydroxylation on in vitro spicule formation in both culture systems was monitored. When micromeres are cultured in the presence of proline analogs l-azetidine-2-carboxylic acid and l-3,4-dehydroproline which disrupt collagen metabolism, spicule formation is significantly less inhibited on a collagen substratum than on plastic. Culturing micromeres on plastic in the presence of α,α′-dipyridyl, an inhibitor of collagen hydroxylation, resulted in almost complete inhibition of spicule formation. The inhibition by α,α′-dipyridyl can be overcome by culturing micromeres on collagen substratum. These results do not support the idea of collagen being the calcified organic matrix of the spicule. Rather, they suggest that micromeres synthesize a collagen-like extracellular matrix which is necessary for spicule formation. Inhibition of this activity by proline analogs or a collagen processing inhibitor can be overcome by providing the cells with a previously deposited extracellular matrix.  相似文献   

12.
Selective inhibition of proline hydroxylation by 3,4-dehydroproline   总被引:5,自引:4,他引:1       下载免费PDF全文
The effect of proline analogs on peptidyl proline hydroxylation has been studied in vivo using aerated root slices of Daucus carota. One analog, 3,4-dehydroproline, acted at micromolar concentrations to rapidly and selectively inhibit peptidyl proline hydroxylation. A structurally altered hydroxyproline-rich cell wall glycoprotein was synthesized and secreted by dehydroproline-treated tissue. The capacity to hydroxylate proline recovered slowly following a short pulse treatment with the analog, with a halftime for recovery of about 24 hours. Recovery was not altered by supplying exogenous proline. Dehydroproline had little effect on the induction of nitrate reductase by nitrate, nor on wound-induced increases in amino acid uptake and protein synthesis. In contrast, other proline analogs inhibit proline hydroxylation only at millimolar concentrations. It is hypothesized that dehydroproline acts as an enzyme-activated suicide inhibitor of prolyl hydroxylase. This analog should become a useful tool for elucidating the functional significance of hydroxyproline-rich glycoproteins.  相似文献   

13.
A specific and sensitive method is described for the isolation and quantitation of [14C]proline and [14C]hydroxyproline from uterine collagen of the immature rat. Selectivity is achieved in this isolation by using a protease-free bacterial collagenase. There is complete release of hydroxyproline from uterine protein if the latter is suspended by sonication prior to treatment with collagenase. There is a consistent recovery of [14C]proline and [14C]hydroxyproline when they are added to protein hydrolysates of uterus and then subjected to the procedures required for their isolation and quantitation. It is possible using this method to determine the incorporation of [14C]proline into collagen of the rat uterus and to quantitate its conversion to [14C]hydroxyproline. Coupled with the colorimetric methods for proline and hydroxyproline, it is also possible to determine their specific activity.  相似文献   

14.
The crystal structures of L -3,4-dehydroproline, t-butoxycarbonyl-L -3,4-dehydroproline amide, and acetyl-L -3,4-dehydroproline amide have been determined. L -3,4-Dehydroproline is orthorhombic with a = 16.756, b = 5.870, c = 5.275 Å, and Z = 4; t-butoxycarbonyl-L -3,4-dehydroproline amide is orthorhombic with a = 6.448, b = 8.602, c = 21.710 Å, and Z = 4; acetyl-L -3,4-dehydroproline amide is monoclinic with a = 4.788, b = 10.880, c = 7.785 Å, β = 105.25°, and Z = 2. The final R value for the L -3,4-dehydroproline is 0.046 based on 529 reflections; for t-butoxycarbonyl-L -3,4-dehydroproline amide, 0.050 based on 792 reflections; and for acetyl-L -3,4-dehydroproline amide, 0.058 based on 632 reflections. The structures clearly establish that the free amino acid exists in the zwitterionic form in the crystalline state. The molecular conformations of the t-Boc and acetyl derivatives consist of two planes: one involving the primary amide and the other the remaining atoms of the molecule. The acetyl-L -3,4-dehydroproline amide contains a tertiary amide bond in the cis conformation. To the best of our knowledge, this is the first example of a cis bond in an acetyl derivative of an amino acid or peptide. At variance with the previously reported proline amides, which present ? and ψ values corresponding to those of a right-handed α-helical conformation (conformation A), the t-Boc and acetyl derivatives both have ? and ψ values corresponding to a collagenlike conformation (conformation F).  相似文献   

15.
The relative rate of collagen synthesis in the free-living nematode Panagrellus silusiae during postembryonic development was found to be discontinuous by measuring either the incorporation of tritium into material extracted as collagen or the amount of collagen-bound tritiated proline and hydroxyproline after 2-hr incubations of whole worms with [3H]proline. A peak of collagen production preceded each of the three molts that were examined. Moreover, protocollagen prolyl hydroxylase activity during each intermolt period paralleled the pattern of collagen synthesis. On the other hand, a triphasic pattern was not observed when noncollagenous proteins were labeled with either [3H]tryptophan or [3H]leucine. In addition, the level of soluble radioactive proline that accumulates in whole organisms after 2-hr incubation periods did not fluctuate appreciably during postembryonic development. The mean ratio of hydroxy-proline to proline in a number of collagen samples extracted at various times during the maturation phase was 0.113 ± 0.040. Pulse and chase experiments with [3H]proline indicated that most of the collagen synthesized during a peak period is lost after the second ecdysis following the labeling interval. In contrast, a considerable proportion of the collagen synthesized during nonpeak periods is retained throughout the postembryonic period. It is postulated that the modulated pattern of collagen biosynthesis in Panagrellus reflects, for the most part, a quantitative regulation of the production of cuticular collagen during postembryonic development.  相似文献   

16.
An improved procedure was used to assay prolyl hydroxylase activity in both early-log and late-log L-929 fibroblasts grown on plastic surfaces. When 40 μg/ml of ascorbate was added to early-log phase cultures, the rate of hydroxy-[14C] proline synthesis increased 2-fold within 4 h, but there was no change in prolyl hydroxylase activity per cell. The results indicated therefore that ascorbate did not “activate” prolyl hydroxylase in the sense of converting inactive enzyme protein to active enzyme protein. Instead ascorbate appeared to increase hydroxyproline synthesis in early-log L-929 fibroblasts because the prolyl hydroxylase reaction in such cells was limited by the availability of ascorbate or a similar cofactor. When 40 μg/ml of ascorbate was added to late-log phase cultures, there was essentially no effect on the rate of hydroxyl[14C]-proline synthesis or prolyl hydroxylase activity. The late-log phase cells, however, contained three times more enzyme activity and about two times more immuno-reactive enzyme protein than early-log phase cells. In addition, the rate of protein synthesis per cell in late-log phase cells was only one-tenth the rate in early-log phase cells. The results suggested that as the cells grew to confluency, collagen polypeptides were more completely hydroxylated in part because the rate of polypeptide synthesis decreased and at the same time prolyl hydroxylase activity per cell increased. The results appear to provide an alternate explanation for previous observations on the effects of ascorbate and “crowding” on hydroxy[roline synthesis in cultures of L-929 fibroblasts.  相似文献   

17.
Collagen secretion by chick embryo fibroblasts was measured by incorporating [14C]proline into proteins and then analyzing the amount of collagen in the cell and medium separately by using purified bacterial collagenase. In order to produce varying levels of hydroxylation, cells were incubated with varying concentrations of ascorbate or with varying concentrations of α,α′-dipyridyl in the presence of saturating ascorbate. Ascorbate stimulated both the hydroxylation of proline in collagen and the secretion of collagen; the concentration of ascorbate required for half-maximal stimulation of both proesses was approximately 4.5 × 10?7, m. Since the cells could concentrate ascorbate 10-fold, this KM for proline hydroxylation is 100-fold lower than values reported for purified prolyl hydroxylase (Abbot, M. T., and Udenfriend, S. (1974) in Molecular Mechanisms of Oxygen Activation (Hayaishi, O., ed.), p. 173, Academic Press New York; Kivirikko K. I., et al. (1968) Biochim. Biophys. Acta, 151, 558–567). Conversely, α,ga′-dipyridyl inhibited both proline hydroxylation and collagen secretion; half-maximal inhibition of both processes was observed at 7 × 10?5, m. The results of the two types of experiments show that the secretion of collagen becomes directly proportional to proline hydroxylation when approximately 30% of the proline residues in collagen have been hydroxylated compared to maximal hydroxylation of 50%. Since the stability of triple-helical collagen at 37 °C has been shown to be dependent on the hydroxyproline content of the molecule (Rosenbloom, J., et al. (1973) Arch. Biochem. Biophys., 158, 478–484), we suggest that the observed proportionality between secretion and hydroxylation is a reflection of the increased amount of stable triple helical collagen at 37 °C. When the cells were incubated with a concentration of ascorbate that was saturating for secretion and hydroxylation, there was no significant activation of prolyl hydroxylase as measured in a cell-free extract. These experiments suggest that ascorbate effects collagen secretion by acting at the site of proline hydroxylation but not by increasing the activity of prolyl hydroxylase.  相似文献   

18.
Human skin fibroblasts were cultured under conditions optimized for collagen synthesis, and the effects of ascorbic acid on procollagen production, proline hydroxylation and the activity of prolyl hydroxylase were examined in cultures. the results indicated that addition of ascorbic acid to confluent monolayer cultures of adult human skin fibroblasts markedly increased the amount of [3H]hydroxyproline synthesized. Ascorbic acid, however, did not increase the synthesis of 3H-labeled collagenous polypeptides assayed independently of hydroxylation of proline residues, nor did it affect the amount of prolyl hydroxylase detectable by an in vitro enzyme assay. Also long-term cultures of the cells or initiation of fibroblast cultures in the presence of ascorbic acid did not lead to an apparent selection of a cell population which might be abnormally responsive to ascorbic acid. Thus, ascorbic acid appears to have one primary action on the synthesis of procollagen by cultured human skin fibroblasts: it is necessary for synthesis of hydroxyproline, and consequently for proper triple helix formation and secretion of procollagen.  相似文献   

19.
We evaluated the substrate specificities of four proline cis-selective hydroxylases toward the efficient synthesis of proline derivatives. In an initial evaluation, 15 proline-related compounds were investigated as substrates. In addition to l-proline and l-pipecolinic acid, we found that 3,4-dehydro-l-proline, l-azetidine-2-carboxylic acid, cis-3-hydroxy-l-proline, and l-thioproline were also oxygenated. Subsequently, the product structures were determined, revealing cis-3,4-epoxy-l-proline, cis-3-hydroxy-l-azetidine-2-carboxylic acid, and 2,3-cis-3,4-cis-3,4-dihydroxy-l-proline.  相似文献   

20.
The effects of dibutyryl cyclic AMP (DBcAMP) and related compounds on collagen synthesis in a clonal osteoblast-like cell line, MC3T3-E1, were investigated. The addition of DBcAMP to cultures increased the hydroxyproline content of the cells. It also enhanced the incorporation of labeled proline into collagen and elevated the activity of prolyl hydroxylase, an enzyme involved in collagen synthesis. These effects were observed at concentrations of 0.1 to 2 mM DBcAMP. 8-Bromo cyclic AMP also increased the hydroxyproline content of the cells, while sodium butyrate and dibutyryl cyclic GMP had no such effect. These results suggest that the intracellular accumulation of cyclic AMP in osteoblasts leads to their active production of collagen, a major component of the organic matrix of bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号