首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Alzheimer’s disease (AD) and age-related macular degeneration (AMD) are complex and progressive inflammatory degenerations of the human neocortex and retina. Recent molecular, genetic and epigenetic evidence indicate that at least 4 micro RNAs (miRNAs) - including the NF-кB-regulated miRNA-9, miRNA-125b, miRNA-146a and miRNA-155 - are progressively up-regulated in both AD and AMD. This quartet of up-regulated miRNAs in turn down-regulate a small brain- and retinal-cell-relevant family of target mRNAs, including that encoding complement factor H (CFH), a major negative regulator of the innate immune and inflammatory response. Together miRNA-146a and miRNA-155 recognize an overlapping miRNA regulatory control (MiRC) region in the CFH 3’-untranslated region (3’- UTR; 5’-TTTAGTATTAA-3’) to which either of these miRNAs may interact. Progressive, pathogenic increases in specific miRNA binding to the entire 232 nucleotide CFH 3’-UTR appears to be a major regulator of CFH expression down-regulation, and the inflammatory pathology that characterizes both AMD and AD. The data presented in this report provides evidence that up-regulation of brain- and retinal- abundant miRNAs, including miRNA-9, miRNA-125b, miRNA-146a and miRNA-155, are common to the pathogenetic mechanism of CFH deficiency that drives inflammatory neurodegeneration, and for the first time indicates multiple, independent miRNA-mediated regulation of the CFH mRNA 3’-UTR.  相似文献   

3.
4.
5.
6.
7.
8.
Dendritic cells (DCs) play critical roles in cross-priming to induce the CTL response against infection; however, the molecular mechanisms for the regulation of DC cross-priming need to be investigated further, which may help to improve the potency of DC vaccines through engineering modifications. Our previous studies showed that β2 integrin CD11b could control TLR-triggered NK cell cytotoxicity and macrophage inflammatory responses. CD11b is also abundantly expressed in DCs, but it is unknown whether CD11b participates in the regulation of DC cross-priming for the CTL response. Also, because microRNAs (miRNAs) are important regulators of the immune response, it remains unclear whether miRNAs are regulated by CD11b in DCs. In this study, we showed that CD11b deficiency upregulated TLR9-triggered, but not TLR4-triggered, IL-12p70 production in DCs, subsequently promoting DC cross-priming of the CTL response. Further experiments showed that CD11b selectively promoted TLR9-triggered miR-146a upregulation in DCs by sustaining late-phase NF-κB activation. Additionally, Notch1, a known positive regulator of IL-12p70 production in DCs, was confirmed to be directly targeted by miR-146a. miR-146a upregulation and Notch1 repression were determined to be responsible for the reduced IL-12p70 production in TLR9-triggered wild-type DCs compared with that in CD11b-deficient DCs. Therefore, CD11b and downstream miR-146a may be new negative regulators for DC cross-priming by suppressing Notch1 expression and IL-12p70 production. Our data indicate a new mechanism for the regulation of DC cross-priming through integrins and miRNAs.  相似文献   

9.
Human cerebrospinal fluid (CSF), produced by the choroid plexus and secreted into the brain ventricles and subarachnoid space, plays critical roles in intra-cerebral transport and the biophysical and immune protection of the brain. CSF composition provides valuable insight into soluble pathogenic bio-markers that may be diagnostic for brain disease. In these experiments we analyzed amyloid beta (Aβ) peptide and micro RNA (miRNA) abundance in CSF and in short post-mortem interval (PMI <2.1 hr) brain tissue-derived extracellular fluid (ECF) from Alzheimer’s disease (AD) and age-matched control neocortex. There was a trend for decreased abundance of Aβ42 in the CSF and ECF in AD but it did not reach statistical significance (mean age ~72 yr; N=12; p~0.06, ANOVA). The most abundant nucleic acids in AD CSF and ECF were miRNAs, and their speciation and inducibility were studied further. Fluorescent miRNA-array-based analysis indicated significant increases in miRNA-9, miRNA-125b, miRNA-146a, miRNA-155 in AD CSF and ECF (N=12; p<0.01, ANOVA). Primary human neuronal-glial (HNG) cell co-cultures stressed with AD-derived ECF also displayed an up-regulation of these miRNAs, an effect that was quenched using the anti-NF-кB agents caffeic acid phenethyl ester (CAPE) or 1-fluoro-2-[2-(4-methoxy-phenyl)-ethenyl]-benzene (CAY10512). Increases in miRNAs were confirmed independently using a highly sensitive LED-Northern dot-blot assay. Several of these NF-кB-sensitive miRNAs are known to be up-regulated in AD brain, and associate with the progressive spreading of inflammatory neurodegeneration. The results indicate that miRNA-9, miRNA-125b, miRNA-146a and miRNA-155 are CSF- and ECF-abundant, NF-кB-sensitive pro-inflammatory miRNAs, and their enrichment in circulating CSF and ECF suggest that they may be involved in the modulation or proliferation of miRNA-triggered pathogenic signaling throughout the brain and central nervous system (CNS).  相似文献   

10.
11.
目的:建立稳定的幽门螺杆菌(H.pylori)感染人胃上皮细胞模型;筛选并鉴定H.pylori感染相关microRNAs(miRNAs)的表达,为深入研究感染相关miRNAs的调控作用机制奠定基础。方法:将H.pylori标准株按MOI=100:1感染人胃上皮细胞,通过检测炎性细胞因子及炎症反应关键酶的表达综合评价感染模型;采用博奥公司miRNAs V3.0芯片分析细胞感染前后miRNAs表达谱变化,运用实时定量PCR技术和Northern杂交对表达显著差异的miRNAs进行分析鉴定。结果:H.pylori感染细胞24 h后,细胞分泌促炎细胞因子IL-8显著升高(P〈0.01);启动炎症反应的关键酶COX-2的表达明显增加。芯片数据显示:H.pylori感染引起超过2倍显著差异表达的miRNAs包括:表达上调的PREDICTED-MIR191、miR-155、miR-92b、miR-30b、miR-146a、miR-16等,和表达降低的miR-181b、miR-324。实时定量PCR和Northern杂交结果显示感染相关miR-155和miR-146a在H.pylori感染细胞模型中表达均显著增加(P〈0.01)。结论:miR-155和miR-146a在感染细胞模型中的表达增加提示二者可能参与H.pylori感染的免疫调控过程。  相似文献   

12.
Lipopolysaccharide (LPS) from Porphyromonas gingivalis, an oral Gram-negative bacterium, acts as a virulence factor for periodontal disease. Although P. gingivalis LPS does not induce proinflammatory cytokines as strongly as Escherichia coli LPS, it is still able to exploit negative Toll-like receptor (TLR) regulatory pathways and facilitate pathogen persistence. Recent reports suggest that microRNAs (miRNAs) are also involved in the regulation of TLR signaling. Here, we demonstrate that P. gingivalis LPS strongly induces miRNA-146a expression in THP-1 cells and THP-1-derived macrophages. However, the inhibition or overexpression of miR-146a, through the transfection of a specific inhibitor or precursor, respectively, had little effect on cytokine production in macrophages stimulated with P. gingivalis LPS. Moreover, the expression of interleukin-1 associated-kinase-1 (IRAK-1) and tumor-necrosis factor (TNF) receptor-associated factor-6 (TRAF6), potential target molecules of miR-146a, were not affected by the stimulation with P. gingivalis LPS. Because TLR signaling induces various negative regulators, these results call into question the role of miR-146a in cells stimulated with TLR ligands.  相似文献   

13.
Chen T  Li Z  Jing T  Zhu W  Ge J  Zheng X  Pan X  Yan H  Zhu J 《FEBS letters》2011,(3):2975-573
There is increasing evidence that microRNAs (miRNAs) play important roles in cell proliferation, apoptosis and differentiation that accompany inflammatory responses. However, whether miRNAs are associated with dendritic cell (DC) immuno-inflammatory responses to oxidized low density lipoprotein (oxLDL) stimulation is yet unknown. Our study aims to explore the link of miRNA to lipid-overload and the immuno-inflammatory mechanism for atherosclerosis. Human primary monocyte-derived DCs were transfected with miR-146a mimics and inhibitor, and then stimulated by oxLDL. For the flow cytometric analysis of the DC immunophenotype, supernatants were collected to determine inflammatory chemokine markers. Our study clearly revealed that miRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion in DCs by targeting CD40L in ox-LDL-stimulated DCs.  相似文献   

14.
Transforming growth factor (TGF-β) plays a pivotal role in angiogenesis. The purpose of this study was to explore the microRNA-mediated regulation of TGF-β receptor-II (TGFBR2) expression during rapid antler growth and proliferation of antler cells in sika deer. Deep sequencing–based expression analysis of miRNAs on the antler tip tissue was performed. Then, two bioinformatics software were used to analyze TGFBR2 3′-UTR sequence for predicting the matched and differentially expressed miRNAs in different tissues of the antler. The results indicated that miRNA-19a and miRNA-19b exhibited the highest upregulation among differentially expressed miRNAs. We also found that the TGFBR2 3′-UTR contains a binding site for miRNA-19a and miRNA-19b by transfection of wild-type and mutant dual-luciferase reporter vectors into antler cartilage cells. Meanwhile, overexpression of miRNA-19a and miRNA-19b significantly inhibited the proliferation of cartilage cells in vitro, and decreased the expression level of TGFBR2 protein. Furthermore, the expression levels of insulin-like growth factor 1 (IGF-1) and TGF-β2, which were associated with TGFBR2, reduced after transfection of cartilage cells with miRNA-19a and miRNA-19b. Our results indicate the significant roles of miRNA-19a and miRNA-19b in proliferation of antler cells and its potential application.  相似文献   

15.
16.
Regulatory T cells (Tregs) are critical regulators of autoimmune diseases, including type 1 diabetes mellitus. It is hypothesised that Tregs’ function can be influenced by changes in the expression of specific microRNAs (miRNAs). Thus, we performed miRNAs profiling in a population of Tregs separated from peripheral blood of five type 1 diabetic patients and six healthy donors. For more detailed molecular characterisation of Tregs, we additionally compared miRNAs expression profiles of Tregs and conventional T cells. Tregs were isolated according to CD3+, CD4+, CD25hi+ and CD127− by flow cytometry, and miRNA expression profiling was performed using TaqMan Array Human MicroRNA Panel-1 (384-well low density array). In Tregs of diabetic patients we found significantly increased expression of miRNA-510 (p = 0.05) and decreased expression of both miRNA-342 (p < 0.0001) and miRNA-191 (p = 0.0079). When comparing Tregs and T cells, we revealed that Tregs had significant higher expression of miRNA-146a and lower expression of eight specific miRNAs (20b, 31, 99a, 100, 125b, 151, 335, and 365). To our knowledge, this is the first study demonstrating changes in miRNA expression profiles occurring in Tregs of T1D patients and a miRNAs signature of adult Tregs.  相似文献   

17.
18.
MicroRNAs as a therapeutic target for cardiovascular diseases   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are tiny, endogenous, conserved, non-coding RNAs that negatively modulate gene expression by either promoting the degradation of mRNA or down-regulating the protein production by translational repression. They maintain optimal dose of cellular proteins and thus play a crucial role in the regulation of biological functions. Recent discovery of miRNAs in the heart and their differential expressions in pathological conditions provide glimpses of undiscovered regulatory mechanisms underlying cardiovascular diseases. Nearly 50 miRNAs are overexpressed in mouse heart. The implication of several miRNAs in cardiovascular diseases has been well documented such as miRNA-1 in arrhythmia, miRNA-29 in cardiac fibrosis, miRNA-126 in angiogenesis and miRNA-133 in cardiac hypertrophy. Aberrant expression of Dicer (an enzyme required for maturation of all miRNAs) during heart failure indicates its direct involvement in the regulation of cardiac diseases. MiRNAs and Dicer provide a particular layer of network of precise gene regulation in heart and vascular tissues in a spatiotemporal manner suggesting their implications as a powerful intervention tool for therapy. The combined strategy of manipulating miRNAs in stem cells for their target directed differentiation and optimizing the mode of delivery of miRNAs to the desired cells would determine the future potential of miRNAs to treat a disease. This review embodies the recent progress made in microRNomics of cardiovascular diseases and the future of miRNAs as a potential therapeutic target - the putative challenges and the approaches to deal with it.  相似文献   

19.
Acute lymphoblastic leukemia (ALL) is a heterogeneous cancer commonly affecting children due to dysregulation of miRNA expression. In the current study, authors investigated the expression profile for miRNA-125b-1 and miRNA-203 among childhood ALL. Blood samples were collected from newly diagnosed childhood ALL and healthy control children. The expression profile for candidate miRNAs was detected using quantitative RT-PCR analysis. Statistical analysis were performed using receiver operating characteristic curve (ROC) to examine the diagnostic efficacy of the two miRNA and their levels among ALL clinicopathological factors and phenotypes. The median expression level for miRNA-125b-1 was significantly high in childhood ALL; while miRNA-203 level was significantly low in childhood ALL as compared to control ones. MiRNA-125-1 reported significant increase in T-ALL as compared to other ALL phenotypes. Median miRNA-203 level was high in T-ALL followed by pre-B-ALL although no significant difference was reported. Clinicopathological factors did not emphasize significance with either detected miRNAs. Using ROC curve the diagnostic efficacy was significant with an area under the curve 0.858 for miRNA-125b-1 (83.72, 100%) and 0.878 for miRNA-203 (97.67, 86.96%). The combination of the two key miRNAs revealed absolute sensitivity (100%). MiRNA-125b-1 and miRNA-203 can be useful molecular markers for diagnosis of ALL. Further studies with large cohort are warranted to validate these results.  相似文献   

20.
microRNAs (miRNAs) are crucial for cellular development and homeostasis. In order to better understand regulation of miRNA biosynthesis, we studied cleavage of primary miRNAs by Drosha. While Drosha knockdown triggers an expected decrease of many mature miRNAs in human embryonic stem cells (hESC), a subset of miRNAs are not reduced. Statistical analysis of miRNA secondary structure and fold change of expression in response to Drosha knockdown showed that absence of mismatches in the central region of the hairpin, 5 and 9–12 nt from the Drosha cutting site conferred decreased sensitivity to Drosha knockdown. This suggests that, when limiting, Drosha processes miRNAs without mismatches more efficiently than mismatched miRNAs. This is important because Drosha expression changes over cellular development and the fold change of expression for miRNAs with mismatches in the central region correlates with Drosha levels. To examine the biochemical relationship directly, we overexpressed structural variants of miRNA-145, miRNA-137, miRNA-9, and miRNA-200b in HeLa cells with and without Drosha knockdown; for these miRNAs, elimination of mismatches in the central region increased, and addition of mismatches decreased their expression in an in vitro assay and in cells with low Drosha expression. Change in Drosha expression can be a biologically relevant mechanism by which eukaryotic cells control miRNA profiles. This phenomenon may explain the impact of point mutations outside the seed region of certain miRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号