首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of lysolecithin (lysophosphatidylcholine) on the relaxation of rabbit aortic strip closely resembled that produced by acetylcholine (ACh) which releases the endothelium-derived relaxing factor (EDRF). Relaxation induced by lysolecithin depended on the presence of endothelium and was inhibited by hemoglobin and methylene blue. It appeared to be mediated by the second messenger, c-GMP. Lysolecithin induced relaxation was slower but more persistent than that resulting from the endothelium-derived relaxing factor (EDRF) produced by acetylcholine (ACh). Like lysolecithin, Triton X-100, a non-ionic detergent, also preferentially relaxed aortic strips with intact endothelium. The results demonstrate the importance of phospholipids derived from cell membranes in vascular smooth muscle relaxation. Endothelium-derived relaxing factors appear as a group of heterogeneous substances.  相似文献   

2.
Summary Cultured endothelial cells have been used in the past as a source of endothelium-derived relaxing factor (EDRF) and of prostacyclin (PGI2). Although cell cultures are essential for observation of prolonged exposure to media or when there is delayed response, they are time consuming and sterile conditions are essential. In the present study, we report that endothelial cells, freshly harvested from bovine aortas, readily attached themselves to cytodex-3 microcarrier beads and released an endothelium-derived relaxing factor (EDRF), prostacyclin (PGI2) and increased the amount of cyclic GMP in vascular smooth muscle. Attachment to microcarrier beads was essential since it increased the surface area and the number of attached cells and permited collection of cell free filtrates because of the formation of dense networks of cells and beads. As a result superfusion of cells and beads on the filter did not dislodge bound cells which remain on the filter. Conditioned filtrates from freshly harvested endothelial cells attached to microcarrier beads caused marked relaxation of endothelium-deprived bovine pulmonary artery strips. The degree of relaxation depended on the number of cells; maximal relaxation occurred with 50 million cells at ED50 of 14 million. High values of cyclic GMP were found in vascular smooth muscle exposed to conditioned filtrate. The calcium ionophore A23187 further increased the amount of cyclic GMP. Large amounts of PGI2 were released by freshly harvested endothelial cells particularly after stimulation with the calcium ionophore. In contrast, endothelin production by freshly harvested cells attached to microcarrier beads was barely detectable after 30 min incubation and was beyond the limit of detection by bioassay procedures. Freshly harvested endothelial cells attached to microcarrier beads appear to be a useful adjunct to tissue cultures under specific experimental conditions.Abbreviations EDRF Endothelium-Derived Relaxing Factor - PGI2 Prostacyclin - K-H Krebs-Henseleit solution - cyclic GMP cyclic Guanosine Monophosphate - fmoles femtomoles - IB Ibuprofen  相似文献   

3.
1. Norepinephrine (NE) (10−5M) in rabbit aorta relaxed ring segments with endothelium precontracted with 10−6M NE, but not segments without endothelium.2. The relaxation was inhibited with metoprolol and methylene blue, but not inhibited with yohimbine and indomethacin.3. NE (10−5 M) significantly elevated tissue c-GMP levels in segments with endothelium.4. These studies suggest that the vascular relaxation by high doses of NE is mediated by the release of endothelium-derived relaxing factor (EDRF) induced by the stimulation of β1-adrenoceptor.  相似文献   

4.
The concept of endothelium-derived relaxing factor (EDRF) implies that nitric oxide (NO) produced by NO synthase (NOS) in the endothelium in response to vasorelaxants such as acetylcholine (ACh) acts on the underlying vascular smooth muscle cells (VSMC) inducing vascular relaxation. The EDRF concept was derived from experiments on denuded blood vessel strips and, in frames of this concept, VSMC were regarded as passive recipients of NO from endothelial cells. However, it was later found that VSMC express NOS by themselves, but the principal question remained unanswered, is the NO generation by VSMC physiologically relevant? We hypothesized that the destruction of the vascular wall anatomical integrity by rubbing off the endothelial layer might increase vascular superoxides that, in turn, reduced the NO bioactivity as a relaxing factor. To test our hypothesis, we examined ACh-induced vasorelaxation under protection against oxidative stress and found that superoxide scavengers restored vasodilatory responses to ACh in endothelium-deprived blood vessels. These findings imply that VSMC can release NO in amounts sufficient to account for the vasorelaxatory response and challenge the concept of the obligatory role of endothelial cells in the relaxation of arterial smooth muscle.  相似文献   

5.
We have compared several known releasers of endothelium-derived relaxing factor (EDRF)(13) in respect to their potencies to generate EDRF by endothelium of rabbit aortic strips (RbA) superfused with Krebs' buffer. The vasorelaxation by EDRF which is equivalent to 10 pmoles of GTN was evoked by 0.7 pmoles of substance P(SP), 50 pmoles of acetylcholine (Ach), 521 pmoles of calcium ionophore A 23187, 2720 pmoles of ADP. Threshold potencies of these agonists are inversely proportional to the maximum amount of EDRF released. Phospholipase C (PLC) from Clostridium perfringens at a dose of 0.1 U caused the relaxation of a similar magnitude. Phospholipase A2 (1 U), thrombin (1 U), bradykinin (30 nmoles) and serotonin (10 pmoles) did not release EDRF. It is concluded that endothelial cells of RbA differ from endothelial cells of other species in their susceptibility to release EDRF in response to various agonists.  相似文献   

6.
We investigated the effects of H2O2 generated by glucose (G) and glucose oxidase (GO) on the isolated rabbit aorta suspended in Krebs-Ringer solution. H2O2 produced contraction in small concentration and relaxation followed by contraction in large concentration. Contraction produced by large concentration was smaller than that produced by small concentration of H2O2. Relaxation was prevented by deendothelialization or NG-monomethyl-L-arginine, an inhibitor of nitric oxide synthesis. These results suggest that H2O2 in large concentrations produces relaxation followed by contraction, and that the relaxation is endothelium-dependent and is mediated by nitric oxide, an endothelium-derived relaxing factor.  相似文献   

7.
Phospholipase A2 (PLA2) fromBungarus multicinctus snake venom was subjected to Lys modification with 4-chloro-3,5-dinitrobenzoate and trinitrobenzene sulfonic acid, and one major carboxydinitrophenylated (CDNP) PLA2 and two trinitrophenylated (TNP) derivatives (TNP-1 and TNP-2) were separated by high-performance liquid chromatography. The results of amino acid analysis and sequence determination revealed that CDNP-PLA2 and TNP-1 contained one modified Lys residue at position 6, and both Lys-6 and Lys-62 were modified in TNP-2. It seemed that the Lys-6 was more accessible to modified reagents than other Lys residues in PLA2. Modification of Lys-6 caused a 94% drop in enzymatic activity as observed with CDNP-PLA2 and TNP-1. Alternatively, the enzyme modified on both Lys-6 and Lys-62 retained little PLA2 activity. Either carboxydinitrophenylation or trinitrophenylation did not significantly affect the secondary structure of the enzyme molecule as revealed by the CD spectra, and Ca2+ binding and antigenicity of Lys-6-modified PLA2 were unaffected. Conversion of nitro groups to amino groups resulted in a partial restoration of enzymatic activity of CDNP-PLA2 to 32% of that of PLA2. It reflected that the positively charged side chain of Lys-6 might play an exclusive role in PLA2 activity. The TNP derivatives could be regenerated with hydrazine hydrochloride. The biological activity of the regenerated PLA2 is almost the same as that of native PLA2. These results suggest that the intact Lys-6 is essential for the enzymatic activity of PLA2, and that incorporation of a bulky CDNP or TNP group on Lys-6 might give rise to a distortion of the interaction between substrate and the enzyme molecule, and the active conformation of PLA2.  相似文献   

8.
Phospholipase A2 (PLA2) is the most abundant protein found in snake venom. PLA2 induces a variety of pharmacological effects such as neurotoxicity, myotoxicity and cardiotoxicity as well as anticoagulant, hemolytic, anti-platelet, hypertensive, hemorrhagic and edema inducing effects. In this study, the three dimensional structure of PLA2 of Naja sputatrix (Malayan spitting cobra) was modeled by I-TASSER, SWISS-MODEL, PRIME and MODELLER programs. The best model was selected based on overall stereo-chemical quality. Further, molecular dynamics simulation was performed to know the stability of the modeled protein using Gromacs software. Average structure was generated during the simulation period of 10?ns. High throughput virtual screening was employed through different databases (Asinex, Hit finder, Maybridge, TOSLab and ZINC databases) against PLA2. The top seven compounds were selected based on the docking score and free energy binding calculations. These compounds were analyzed by quantum polarized ligand docking, induced fit docking and density functional theory calculation. Furthermore, the stability of lead molecules in the active site of PLA2 was employed by MD simulation. The results show that selected lead molecules were highly stable in the active site of PLA2.  相似文献   

9.
Acetylcholine (ACh) induced dilation of precontracted strips of rabbit aorta by a mechanism dependent on an intact endothelium, probably by releasing an unknown endothelial relaxing factor (ERF). The relaxation was completely inhibited by the lipoxygenase inhibitor nor-dihydroguaiaretic acid (10−5 M) but not by the cyclo-oxygenase inhibitor indomethacin (10−5 M). The aortic strips were found to release small amounts of a material with a leukotriene-like activity. Its action on the guinea pig ileum was antagonized by FPL 55712 (10−6 M). However, FPL 55712 (10−6 - 10−4 M) did not alter the response of rabbit aortic strips to ACh. Also when decreasing intracellular concentrations of glutathion (GSH) by incubating the strips with diethylmaleat or 2-cyclohexen-1-one (both 10−3 M) the vasodilator response could still be elicited. Leukotriene (LT) C4 and LTD4 (10−9 - 10−10 M) were found to be ineffective on oartic strips under basal or induced tension. The same held true for LTE4 ( 10−9 - 10−7 M). At 10−6 M, however, LTE4 induced slight relaxations of the vascular tissues. For reasons discussed this is likely to be a pharmacological action independent of the effects of endogenous ERF (e.g. inhibition of the formation of the LTE4 precursor LTD4 by high extracellular GSH concentrations did not reverse the ACh-induced vasodilation). It is concluded from these data, that C-6-sulfidopeptide leukotrienes, although probably produced by vascular tissue, are unlikely to be involved in the ACh-induced relaxation of rabbit aorta.  相似文献   

10.
Phospholipase A2 (PLA2) lipolytic activity can be regarded as a limiting factor for the development of inflammatory processes by restricting the production of pro-inflammatory mediators, hence representing a valuable therapeutic target for drugs that are able to modulate the activity of this enzyme. In the current work, the hydrolysis of phospholipids by PLA2 was monitored with acrylodan-labelled intestinal fatty acid binding protein (ADIFAB) and this fluorescence based technique was also used to access the enzymatic inhibitory effect of non-steroidal anti-inflammatory drugs (NSAIDs). The intrinsic fluorescence of PLA2 tryptophan residues was further used to gain complementary information regarding the accessibility of these residues on the PLA2 structure upon interaction with the NSAIDs tested; and to calculate the NSAIDs-PLA2 binding constants. Finally, circular dichroism (CD) measurements were performed to evaluate changes in PLA2 conformation resultant from the inhibitory effect of the drugs tested. Overall, results gathered in this study point to the conclusion that the studied NSAIDs inhibit PLA2 activity due to a disturbance of the enzyme binding efficiency to membrane interface possibly by a shielding effect of the Trp residues required for the membrane interfacial binding step that precedes lipolysis process.  相似文献   

11.
Phospholipase A2 (PLA2) enzymes (EC3.1.4.4) regulate the release of biologically active fatty acids and lysophospholipids from membrane phospholipid pools. These lipids are also substrates for intracellular biochemical pathways that generate potent autocrine and paracrine lipid mediators such as the eicosanoids and platelet activating factor. These factors, in turn, regulate cell proliferation, survival, differentiation, motility, tissue vascularisation, and immune surveillance in virtually all tissues, functions that are subverted by cancer cells for tumour growth and metastasis. Thus the relevance of PLA2-dependent pathways to the genesis and progression of cancer has been of interest since their discovery and with recent technological advances, their role in tumourigenesis has become more tractable experimentally. Limited human genetic studies have not yet identified PLA2 enzymes as classical mutated oncogenes or tumour suppressor genes. However, there is strong evidence that of the 22 identified human PLA2 enzymes, ten of which have been studied in cancer to date, most are aberrantly expressed in a proportion of tumours derived from diverse organs. Correlative and functional studies implicate the expression of some secreted enzymes (sPLA2s), particularly the best studied enzyme Group IIA sPLA2 in either tumour promotion or inhibition, depending on the organ involved and the biochemical microenvironment of tumours. As in immune-mediated inflammatory pathologies, genetic deletion studies in mice, supported by limited studies with human cells and tissues, have identified an important role for Group IVA PLA2 in regulating certain cancers. Pharmacological intervention studies in prostate cancer suggest that hGIIA-dependent tumour growth is dependent on indirect regulation of Group IVA PLA2. Group VI calcium-independent PLA2 enzymes have also been recently implicated in tumourigenesis with in vitro studies suggesting multiple possible roles for these enzymes. Though apparently complex, further characterization of the regulatory relationships amongst PLA2 enzymes, lipid mediator biosynthetic enzymes and the lipid mediators they produce during tumour progression is required to define the biochemical context in which the enzymes modulate cancer growth and development.  相似文献   

12.
Phospholipase A2 (PLA2) not only plays a role in the membrane vesiculation system but also mediates membrane-raft budding and fission in artificial giant liposomes. This study aimed to demonstrate the same effects in living cells. Differentiated Caco-2 cells were cultured on filter membranes. MDCK cells were challenged with Influenza virus. The MDCK cultures were harvested for virus titration with a plaque assay. Alkaline phosphatase (ALP), a membrane-raft associated glycosylphosphatidylinositol (GPI)-anchored protein, was 70% released by adding 0.2 mmol/l lysophosphatidylcholine, which was abolished by treatment with a membrane-raft disrupter, methyl-β-cyclodextrin. Activation of calcium-independent PLA2 (iPLA2) by brefeldin A increased the apical release of ALP by approximately 1.5-fold (p < 0.01), which was blocked by PLA2 inhibitor bromoenol lactone (BEL). BEL also reduced Influenza virus production into the media (< 10%) in the MDCK culture. These results suggest that cells utilize inverted corn-shaped lysophospholipids generated by PLA2 to modulate plasma membrane structure and assist the budding of raft-associated plasma membrane particles, which virus utilizes for its budding. Brush borders are enriched with membrane-rafts and undergo rapid turnover; thus, PLA2 may be involved in the regulatory mechanism in membrane dynamism. Further, iPLA2 may provide a therapeutic target for viral infections.  相似文献   

13.
Phospholipase A2 (PLA2) associated with the membrane fraction of trophocytes from Periplaneta americana fat body increases by as much as 100% when the cells are incubated with hypertrehalosemic hormone (HTH-II). Activation with HTH-II is approximately halved by inclusion of the PKC inhibitor sphingosine in the incubation medium. Because activation of PLA2 by HTH-II is blocked by the GDP analogue GDP-β-S, and the unactivated enzyme is activated by the GTP analogue GTP-γ-S it is likely that a G protein is involved in activation of the enzyme. Activation of PLA2 was also achieved by treating the trophocytes with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol in the presence of thapsigargin. This supports the view that protein kinase C is also involved in the activation process.  相似文献   

14.
1. Norepinephrine (NE) (10(-5) M) in rabbit aorta relaxed ring segments with endothelium precontracted with 10(-6) M NE, but not segments without endothelium. 2. The relaxation was inhibited with metoprolol and methylene blue, but not inhibited with yohimbine and indomethacin. 3. NE (10(-5) M) significantly elevated tissue c-GMP levels in segments with endothelium. 4. These studies suggest that the vascular relaxation by high doses of NE is mediated by the release of endothelium-derived relaxing factor (EDRF) induced by the stimulation of beta 1-adrenoceptor.  相似文献   

15.
Phospholipase A2 (PLA2) increases adenylate cyclase (AC) activity in the rat caudate nucleus in a dose-dependent manner. After maximal stimulation by fluoride, PLA2 treatment further increases AC activity 2.4 fold. Adenylate cyclase activity is maximal after 45% hydrolysis of the phospholipids. Of the products of PLA2 treatment only lysophosphatidylcholine (LPC) produces such an increase in AC activity. In contrast to PLA2 treatment, LPC solubilizes the enzyme, decreases the Km value for ATP, and requires much larger amounts of LPC than that produced by lipase treatment. After maximal stimulation with fluoride and PLA2, removal of most of the LPC does not reduce the activity of adenylate cyclase. These findings suggest that removal of membrane lipid rather than generation of LPC is responsible for the activation of brain adenylate cyclase by phospholipase A2.  相似文献   

16.
Intercalation of drugs in the platelet membrane affects phospholipid-requiring enzymatic processes according to the drugs’ intercalation capability. We investigated effects of Promethazine, Citalopram, Ziprasidone, Risperidone, and Diazepam on phospholipase A2 (PLA2) and polyphosphoinositide (PPI) metabolism in thrombin-stimulated human platelets. We also examined effects of the drugs on monolayers of glycerophospholipids using the Langmuir technique. Diazepam did not influence PLA 2 activity, had no effects on PPI cycle, and caused no change in mean molecular area of phospholipid monolayers. The remaining psychotropic drugs affected these parameters in different ways and levels of potency suggesting that they act by being intercalated between the molecules of adjacent membrane phospholipids, thus causing changes in substrate availability for phospholipid-hydrolyzing enzymes (PLA2 and Phospholipase C). We show that several psychotropic drugs can also have other cellular effects than receptor antagonism. These effects may be implicated in the psychotropic effects of the drugs and/or their side effects.  相似文献   

17.
A new Phospholipase A2 (PLA2) from Micrurus dumerilii carinicauda venom was isolated and its primary structure determined. This new PLA2 showed a low enzymatic activity when compared with other PLA2s and it is moderately basic with an isoelectric point of 8.0. Its amino acid sequence showed the presence of 120 amino acid residues and its sequence was: NLIQFLNMIQCTTPGREPLVAFANYGCYCGRGGSGTPVDELDRCCQVHDNCYDTAKKVFGCSPYFTMYSYDCSEGKLTCKDNNTKCKAAVCNCDRTAALCFAKAPYNDKNYKIDLTKRCQ. The structural model of MIDCA1, when compared with other strong neurotoxic PLA2s, such as Naja naja, showed significant differences in the β-wing and neurotoxic sites, despite the high level of amino acid sequence similarity. These observations indicate a dissociation between the biological and catalytic activity of this new PLA2, supporting the view that other regions of the protein are involved in the biological effects.  相似文献   

18.
Previous studies have suggested a role for cytosolic Ca2+-independent phospholipase A2 (PLA2) activity in the formation of endosome membrane tubules that participate in the export of transferrin (Tf) and transferrin receptors (TfR) from sorting endosomes (SEs) and the endocytic recycling compartment (ERC). Here we show that the PLA2 requirement is a general feature of endocytic trafficking. The reversible cytoplasmic PLA2 antagonist ONO-RS-082 (ONO) produced a concentration-dependent, differential block in the endocytic recycling of both low-density lipoprotein receptor (LDLR) and TfRs, and in the degradative pathways of LDL and epidermal growth factor (EGF). These results are consistent with the model that a cytoplasmic PLA2 plays a general role in the export of cargo from multiple endocytic compartments by mediating the formation of membrane tubules.  相似文献   

19.
Phospholipase A2 (PLA2) fromBungarus multicinctus snake venom was subjected to Lys modification with 4-chloro-3,5-dinitrobenzoate and trinitrobenzene sulfonic acid, and one major carboxydinitrophenylated (CDNP) PLA2 and two trinitrophenylated (TNP) derivatives (TNP-1 and TNP-2) were separated by high-performance liquid chromatography. The results of amino acid analysis and sequence determination revealed that CDNP-PLA2 and TNP-1 contained one modified Lys residue at position 6, and both Lys-6 and Lys-62 were modified in TNP-2. It seemed that the Lys-6 was more accessible to modified reagents than other Lys residues in PLA2. Modification of Lys-6 caused a 94% drop in enzymatic activity as observed with CDNP-PLA2 and TNP-1. Alternatively, the enzyme modified on both Lys-6 and Lys-62 retained little PLA2 activity. Either carboxydinitrophenylation or trinitrophenylation did not significantly affect the secondary structure of the enzyme molecule as revealed by the CD spectra, and Ca2+ binding and antigenicity of Lys-6-modified PLA2 were unaffected. Conversion of nitro groups to amino groups resulted in a partial restoration of enzymatic activity of CDNP-PLA2 to 32% of that of PLA2. It reflected that the positively charged side chain of Lys-6 might play an exclusive role in PLA2 activity. The TNP derivatives could be regenerated with hydrazine hydrochloride. The biological activity of the regenerated PLA2 is almost the same as that of native PLA2. These results suggest that the intact Lys-6 is essential for the enzymatic activity of PLA2, and that incorporation of a bulky CDNP or TNP group on Lys-6 might give rise to a distortion of the interaction between substrate and the enzyme molecule, and the active conformation of PLA2.  相似文献   

20.
Phospholipase A2 (PLA2) is one of the main components of bee venom. Here, we identify a venom PLA2 from the bumblebee, Bombus ignitus. Bumblebee venom PLA2 (Bi-PLA2) cDNA, which was identified by searching B. ignitus venom gland expressed sequence tags, encodes a 180 amino acid protein. Comparison of the genomic sequence with the cDNA sequence revealed the presence of four exons and three introns in the Bi-PLA2 gene. Bi-PLA2 is an 18-kDa glycoprotein. It is expressed in the venom gland, cleaved between the residues Arg44 and Ile45, and then stored in the venom sac. Comparative analysis revealed that the mature Bi-PLA2 (136 amino acids) possesses features consistent with other bee PLA2s, including ten conserved cysteine residues, as well as a highly conserved Ca2+-binding site and active site. Phylogenetic analysis of bee PLA2s separated the bumblebee and honeybee PLA2 proteins into two groups. The mature Bi-PLA2 purified from the venom of B. ignitus worker bees hydrolyzed DBPC, a known substrate of PLA2. Immunofluorescence staining of Bi-PLA2-treated insect Sf9 cells revealed that Bi-PLA2 binds at the cell membrane and induces apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号