首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The independently folding C2 domain motif serves as a Ca(2+)-dependent membrane docking trigger in a large number of Ca(2+) signaling pathways. A comparison was initiated between three closely related C2 domains from the conventional protein kinase C subfamily (cPKC, isoforms alpha, beta, and gamma). The results reveal that these C2 domain isoforms exhibit some similarities but are specialized in important ways, including different Ca(2+) stoichiometries. In the absence of membranes, Ca(2+) affinities of the isolated C2 domains are similar (2-fold difference) while Hill coefficients reveal cooperative Ca(2+) binding for the PKC beta C2 domain but not for the PKC alpha or PKC gamma C2 domain (H = 2.3 +/- 0.1 for PKC beta, 0.9 +/- 0.1 for PKC alpha, and 0.9 +/- 0.1 for PKC gamma). When phosphatidylserine-containing membranes are present, Ca(2+) affinities range from the sub-micromolar to the micromolar (7-fold difference) ([Ca(2+)](1/2) = 0.7 +/- 0.1 microM for PKC gamma, 1.4 +/- 0.1 microM for PKC alpha, and 5.0 +/- 0.2 microM for PKC beta), and cooperative Ca(2+) binding is observed for all three C2 domains (Hill coefficients equal 1.8 +/- 0.1 for PKC beta, 1.3 +/- 0.1 for PKC alpha, and 1.4 +/- 0.1 for PKC gamma). The large effects of membranes are consistent with a coupled Ca(2+) and membrane binding equilibrium, and with a direct role of the phospholipid in stabilizing bound Ca(2+). The net negative charge of the phospholipid is more important to membrane affinity than its headgroup structure, although a slight preference for phosphatidylserine is observed over other anionic phospholipids. The Ca(2+) stoichiometries of the membrane-bound C2 domains are detectably different. PKC beta and PKC gamma each bind three Ca(2+) ions in the membrane-associated state; membrane-bound PKC alpha binds two Ca(2+) ions, and a third binds weakly or not at all under physiological conditions. Overall, the results indicate that conventional PKC C2 domains first bind a subset of the final Ca(2+) ions in solution, and then associate weakly with the membrane and bind additional Ca(2+) ions to yield a stronger membrane interaction in the fully assembled tertiary complex. The full complement of Ca(2+) ions is needed for tight binding to the membrane. Thus, even though the three C2 domains are 64% identical, differences in Ca(2+) affinity, stoichiometry, and cooperativity are observed, demonstrating that these closely related C2 domains are specialized for their individual functions and contexts.  相似文献   

2.
All-trans-retinoic acid (atRA) is a derivative of vitamin A and possesses antitumor activity. We demonstrate that atRA is able to modulate the activity of protein kinase C alpha (PKCalpha), which is related to tumor development. In vitro, it was found that atRA activated PKCalpha in the presence of Ca(2+) and in the absence of phosphatidylserine, although such activity is considerably inhibited in mutations affecting residues D246 and D248 and also residue N189, all of which are known to be essential for the interaction with Ca(2+) and phosphatidylserine in the C2 domain. It was concluded that atRA substitutes phosphatidylserine although with lower specific activities. However, atRA had a biphasic effect on PKCalpha activity in the presence of activating phospholipids, such as phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, yielding activation at low concentrations but inactivation at higher ones. This second inhibitory characteristic was not shown with K209 and K211 mutations (residues located in the Lys-rich cluster in the C2 domain) in PKCalpha. This interesting effect revealed the importance of phospholipid binding at this site to ensure maximum activity for the wild-type PKCalpha. The C1 domain was not related with the atRA effect on PKCalpha. It was concluded that whereas atRA may activate PKCalpha through the Ca(2+)-phosphatidylserine-binding site of the C2 domain, it may also inhibit the activity of this enzyme when displacing the phospholipid from the Lys-rich cluster also located in the C2 domain.  相似文献   

3.
The C2 domain of PKCalpha is a Ca(2+)-dependent membrane-targeting module involved in the plasma membrane localization of the enzyme. Recent findings have shown an additional area located in the beta3-beta4 strands, named the lysine-rich cluster, which has been demonstrated to be involved in the PtdIns(4,5)P(2)-dependent activation of the enzyme. Nevertheless, whether other anionic phospholipids can bind to this region and contribute to the regulation of the enzyme's function is not clear. To study other possible roles for this cluster, we generated double and triple mutants that substituted the lysine by alanine residues, and studied their binding and activation properties in a Ca(2+)/phosphatidylserine-dependent manner and compared them with the wild-type protein. It was found that some of the mutants exerted a constitutive activation independently of membrane binding. Furthermore, the constructs were fused to green fluorescent protein and were expressed in fibroblast cells. It was shown that none of the mutants was able to translocate to the plasma membrane, even in saturating conditions of Ca(2+) and diacylglycerol, suggesting that the interactions performed by this lysine-rich cluster are a key event in the subcellular localization of PKCalpha. Taken together, the results obtained showed that these lysine residues might be involved in two functions: one to establish an intramolecular interaction that keeps the enzyme in an inactive conformation; and the second, once the enzyme has been partially activated, to establish further interactions with diacylglycerol and/or acidic phospholipids, leading to the full activation of PKCalpha.  相似文献   

4.
Signal transduction via protein kinase C (PKC) is closely regulated by its subcellular localization. To map the molecular determinants mediating the C2 domain-dependent translocation of PKCalpha to the plasma membrane, full-length native protein and several point mutants in the Ca(2+)/phosphatidylserine-binding site were tagged with green fluorescent protein and transiently expressed in rat basophilic leukemia cells (RBL-2H3). Substitution of several aspartate residues by asparagine completely abolished Ca(2+)-dependent membrane targeting of PKCalpha. Strikingly, these mutations enabled the mutant proteins to translocate in a diacylglycerol-dependent manner, suggesting that neutralization of charges in the Ca(2+) binding region enables the C1 domain to bind diacylglycerol. In addition, it was demonstrated that the protein residues involved in direct interactions with acidic phospholipids play differential and pivotal roles in the membrane targeting of the enzyme. These findings provide new information on how the C2 domain-dependent membrane targeting of PKCalpha occurs in the presence of physiological stimuli.  相似文献   

5.
The C2 domain is a conserved signaling motif that triggers membrane docking in a Ca(2+)-dependent manner, but the membrane docking surfaces of many C2 domains have not yet been identified. Two extreme models can be proposed for the docking of the protein kinase C alpha (PKC alpha) C2 domain to membranes. In the parallel model, the membrane-docking surface includes the Ca(2+) binding loops and an anion binding site on beta-strands 3-4, such that the beta-strands are oriented parallel to the membrane. In the perpendicular model, the docking surface is localized to the Ca(2+) binding loops and the beta-strands are oriented perpendicular to the membrane surface. The present study utilizes site-directed fluorescence and spin-labeling to map out the membrane docking surface of the PKC alpha C2 domain. Single cysteine residues were engineered into 18 locations scattered over all regions of the protein surface, and were used as attachment sites for spectroscopic probes. The environmentally sensitive fluorescein probe identified positions where Ca(2+) activation or membrane docking trigger measurable fluorescence changes. Ca(2+) binding was found to initiate a global conformational change, while membrane docking triggered the largest fluorescein environmental changes at labeling positions on the three Ca(2+) binding loops (CBL), thereby localizing these loops to the membrane docking surface. Complementary EPR power saturation measurements were carried out using a nitroxide spin probe to determine a membrane depth parameter, Phi, for each spin-labeled mutant. Positive membrane depth parameters indicative of membrane insertion were found for three positions, all located on the Ca(2+) binding loops: N189 on CBL 1, and both R249 and R252 on CBL 3. In addition, EPR power saturation revealed that five positions near the anion binding site are partially protected from collisions with an aqueous paramagnetic probe, indicating that the anion binding site lies at or near the surface of the headgroup layer. Together, the fluorescence and EPR results indicate that the Ca(2+) first and third Ca(2+) binding loops insert directly into the lipid headgroup region of the membrane, and that the anion binding site on beta-strands 3-4 lies near the headgroups. The data support a model in which the beta-strands are tilted toward the parallel orientation relative to the membrane surface.  相似文献   

6.
The C2 domain of protein kinase Calpha (PKCalpha) corresponds to the regulatory sequence motif, found in a large variety of membrane trafficking and signal transduction proteins, that mediates the recruitment of proteins by phospholipid membranes. In the PKCalpha isoenzyme, the Ca2+-dependent binding to membranes is highly specific to 1,2-sn-phosphatidyl-l-serine. Intrinsic Ca2+ binding tends to be of low affinity and non-cooperative, while phospholipid membranes enhance the overall affinity of Ca2+ and convert it into cooperative binding. The crystal structure of a ternary complex of the PKCalpha-C2 domain showed the binding of two calcium ions and of one 1,2-dicaproyl-sn-phosphatidyl-l-serine (DCPS) molecule that was coordinated directly to one of the calcium ions. The structures of the C2 domain of PKCalpha crystallised in the presence of Ca2+ with either 1,2-diacetyl-sn-phosphatidyl-l-serine (DAPS) or 1,2-dicaproyl-sn-phosphatidic acid (DCPA) have now been determined and refined at 1.9 A and at 2.0 A, respectively. DAPS, a phospholipid with short hydrocarbon chains, was expected to facilitate the accommodation of the phospholipid ligand inside the Ca2+-binding pocket. DCPA, with a phosphatidic acid (PA) head group, was used to investigate the preference for phospholipids with phosphatidyl-l-serine (PS) head groups. The two structures determined show the presence of an additional binding site for anionic phospholipids in the vicinity of the conserved lysine-rich cluster. Site-directed mutagenesis, on the lysine residues from this cluster that interact directly with the phospholipid, revealed a substantial decrease in C2 domain binding to vesicles when concentrations of either PS or PA were increased in the absence of Ca2+. In the complex of the C2 domain with DAPS a third Ca2+, which binds an extra phosphate group, was identified in the calcium-binding regions (CBRs). The interplay between calcium ions and phosphate groups or phospholipid molecules in the C2 domain of PKCalpha is supported by the specificity and spatial organisation of the binding sites in the domain and by the variable occupancies of ligands found in the different crystal structures. Implications for PKCalpha activity of these structural results, in particular at the level of the binding affinity of the C2 domain to membranes, are discussed.  相似文献   

7.
J Ubach  X Zhang  X Shao  T C Südhof    J Rizo 《The EMBO journal》1998,17(14):3921-3930
C2-domains are widespread protein modules with diverse Ca2+-regulatory functions. Although multiple Ca2+ ions are known to bind at the tip of several C2-domains, the exact number of Ca2+-binding sites and their functional relevance are unknown. The first C2-domain of synaptotagmin I is believed to play a key role in neurotransmitter release via its Ca2+-dependent interactions with syntaxin and phospholipids. We have studied the Ca2+-binding mode of this C2-domain as a prototypical C2-domain using NMR spectroscopy and site-directed mutagenesis. The C2-domain is an elliptical module composed of a beta-sandwich with a long axis of 50 A. Our results reveal that the C2-domain binds three Ca2+ ions in a tight cluster spanning only 6 A at the tip of the module. The Ca2+-binding region is formed by two loops whose conformation is stabilized by Ca2+ binding. Binding involves one serine and five aspartate residues that are conserved in numerous C2-domains. All three Ca2+ ions are required for the interactions of the C2-domain with syntaxin and phospholipids. These results support an electrostatic switch model for C2-domain function whereby the beta-sheets of the domain provide a fixed scaffold for the Ca2+-binding loops, and whereby interactions with target molecules are triggered by a Ca2+-induced switch in electrostatic potential.  相似文献   

8.
The protein kinase C (PKC) isoforms are maintained in an inactive and closed conformation by intramolecular interactions. Upon activation these are disrupted by activators, binding proteins and cellular membrane. We have seen that autophosphorylation of two sites in the C-terminal V5 domain is crucial to keep PKC alpha insensitive to the activator diacylglycerol, which presumably is caused by a masking of the diacylglycerol-binding C1a domain. Here we demonstrate that the diacylglycerol sensitivity of the PKC beta isoforms also is suppressed by autophosphorylation of the V5 sites. To analyze conformational differences, a fusion protein ECFP-PKC alpha-EYFP was expressed in cells and the FRET signal was analyzed. The analogous mutant with autophosphorylation sites exchanged for alanine gave rise to a substantially lower FRET signal than wild-type PKC alpha indicating a conformational difference elicited by the mutations. Expression of the isolated PKC alpha V5 domain led to increased diacylglycerol sensitivity of PKC alpha. We identified acidic residues in the V5 domain that, when mutated to alanines or lysines, rendered PKC alpha sensitive to diacylglycerol. Furthermore, mutation to glutamate of four lysines in a lysine-rich cluster in the C2 domain gave a similar effect. Simultaneous reversal of the charges of the acidic residues in the V5 and the lysines in the C2 domain gave rise to a PKC alpha that was insensitive to diacylglycerol. We propose that these structures participate in an intramolecular interaction that maintains PKC alpha in a closed conformation. The disruption of this interaction leads to an unmasking of the C1a domain and thereby increased diacylglycerol sensitivity of PKC alpha.  相似文献   

9.
Protein kinase C (PKC) regulates fundamental cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. All-trans-retinoic acid (atRA) modulates PKC activity, but the mechanism of this regulation is unknown. Amino acid alignments and crystal structure analysis of retinoic acid (RA)-binding proteins revealed a putative atRA-binding motif in PKC, suggesting existence of an atRA binding site on the PKC molecule. This was supported by photolabeling studies showing concentration- and UV-dependent photoincorporation of [(3)H]atRA into PKCalpha, which was effectively protected by 4-OH-atRA, 9-cis-RA, and atRA glucuronide, but not by retinol. Photoaffinity labeling demonstrated strong competition between atRA and phosphatidylserine (PS) for binding to PKCalpha, a slight competition with phorbol-12-myristate-13-acetate, and none with diacylglycerol, fatty acids, or Ca(2+). At pharmacological concentrations (10 micrometer), atRA decreased PKCalpha activity through the competition with PS but not phorbol-12-myristate-13-acetate, diacylglycerol, or Ca(2+). These results let us hypothesize that in vivo, pharmacological concentrations of atRA may hamper binding of PS to PKCalpha and prevent PKCalpha activation. Thus, this study provides the first evidence for direct binding of atRA to PKC isozymes and suggests the existence of a general mechanism for regulation of PKC activity during exposure to retinoids, as in retinoid-based cancer therapy.  相似文献   

10.
The C2 domain is a targeting domain that responds to intracellular Ca2+ signals in classical protein kinases (PKCs) and mediates the translocation of its host protein to membranes. Recent studies have revealed a new motif in the C2 domain, named the lysine-rich cluster, that interacts with acidic phospholipids. The purpose of this work was to characterize the molecular mechanism by which PtdIns(4,5)P2 specifically interacts with this motif. Using a combination of isothermal titration calorimetry, fluorescence resonance energy transfer and time-lapse confocal microscopy, we show here that Ca2+ specifically binds to the Ca2+-binding region, facilitating PtdIns(4,5)P2 access to the lysine-rich cluster. The magnitude of PtdIns(4,5)P2 binding is greater than in the case of other polyphosphate phosphatidylinositols. Very importantly, the residues involved in PtdIns(4,5)P2 binding are essential for the plasma membrane localization of PKCα when RBL-2H3 cells are stimulated through their IgE receptors. Additionally, CFP-PH and CFP-C1 domains were used as bioprobes to demonstrate the co-existence of PtdIns(4,5)P2 and diacylglycerol in the plasma membrane, and it was shown that although a fraction of PtdIns(4,5)P2 is hydrolyzed to generate diacylglycerol and IP3, an important amount still remains in the membrane where it is available to activate PKCα. These findings entail revision of the currently accepted model of PKCα recruitment to the membrane and its activation.  相似文献   

11.
The Ca(v)1.3 (alpha(1D)) variant of L-type Ca(2+) channels plays a vital role in the function of neuroendocrine and cardiovascular systems. In this article, we report on the molecular and functional basis of alpha(1D) Ca(2+) channel modulation by protein kinase C (PKC). Specifically, we show that the serine 81 (S81) phosphorylation site at the NH(2)-terminal region plays a critical role in alpha(1D) Ca(2+) channel modulation by PKC. The introduction of a negatively charged residue at position 81, by converting serine to aspartate, mimicked the PKC phosphorylation effect on alpha(1D) Ca(2+) channel. The modulation of alpha(1D) Ca(2+) channel by PKC was prevented by dialyzing cells with a 35-amino acid peptide mimicking the alpha(1D) NH(2)-terminal region comprising S81. In addition, the data revealed that only betaII- and epsilonPKC isozymes are implicated in this regulation. These novel findings have significant implications in the pathophysiology of alpha(1D) Ca(2+) channel and in the development of PKC isozyme-targeted therapeutics.  相似文献   

12.
Protein kinase C (PKC) isozymes comprise a family of related enzymes that play a central role in many intracellular eukaryotic signaling events. Isozyme specificity is mediated by association of each PKC isozyme with specific anchoring proteins, termed RACKs. The C2 domain of betaPKC contains at least part of the RACK-binding sites. Because the C2 domain contains also a RACK-like sequence (termed pseudo-RACK), it was proposed that this pseudo-RACK site mediates intramolecular interaction with one of the RACK-binding sites in the C2 domain itself, stabilizing the inactive conformation of betaPKC. BetaPKC depends on calcium for its activation, and the C2 domain contains the calcium-binding sites. The x-ray structure of the C2 domain of betaPKC shows that three Ca(2+) ions can be coordinated by two opposing loops at one end of the domain. Starting from this x-ray structure, we have performed molecular dynamics (MD) calculations on the C2 domain of betaPKC bound to three Ca(2+) ions, to two Ca(2+) ions, and in the Ca(2+)-free state, in order to analyze the effect of calcium on the RACK-binding sites and the pseudo-RACK sites, as well as on the loops that constitute the binding site for the Ca(2+) ions. The results show that calcium stabilizes the beta-sandwich structure of the C2 domain and thus affects two of the three RACK-binding sites within the C2 domain. Also, the interactions between the third RACK-binding site and the pseudo-RACK site are not notably modified by the removal of Ca(2+) ions. On that basis, we predict that the pseudo-RACK site within the C2 domain masks a RACK-binding site in another domain of betaPKC, possibly the V5 domain. Finally, the MD modeling shows that two Ca(2+) ions are able to interact with two molecules of O-phospho-l-serine. These data suggest that Ca(2+) ions may be directly involved in PKC binding to phosphatidylserine, an acidic lipid located exclusively on the cytoplasmic face of membranes, that is required for PKC activation.  相似文献   

13.
14.
Protein kinase Calpha (PKCalpha), which is known to be critical for the control of many cellular processes, was submitted to site-directed mutagenesis in order to test the functionality of several amino acidic residues. Thus, D187, D246 and D248, all of which are located at the Ca(2+) binding site of the C2 domain, were substituted by N. Subcellular fractionation experiments demonstrated that these mutations are important for both Ca(2+)-dependent and diacylglycerol-dependent membrane binding. The mutants are not able to phosphorylate typical PKC substrates, such as histone and myelin basic protein. Furthermore, using increasing concentrations of dioleylglycerol, one of the mutants (D246/248N) was able to recover total activity although the amounts of dioleylglycerol it required were larger than those required by wild type protein. On the other hand, the other mutants (D187N and D187/246/248) only recovered 50% of their activity. These data suggest that there is a relationship between the C1 domain, where dioleylglycerol binds, and the C2 domain, and that this relationship is very important for enzyme activation. These findings led us to propose a mechanism for PKCalpha activation, where C1 and C2 domains cannot be considered independent membrane binding modules.  相似文献   

15.
The interaction of the brain-specific calmodulin-binding protein kinase C (PKC) substrate, neuromodulin (GAP 43), with membrane phospholipids was studied. Specific binding of neuromodulin to negatively charged phospholipids through electrostatic interactions was demonstrated. Comparison of the binding of neuromodulin to acidic phospholipids with that of neurogranin, a newly characterized calmodulin-binding PKC substrate (Baudier J., Deloulme, J. C., Van Dorsselaer, A., Black, D., and Mathes H. (1991) J. Biol. Chem. 266, 229-237) suggested that the conserved basic amino acid sequence which characterizes the two proteins and which corresponds to the PKC phosphorylation and calmodulin binding domain also serves as phospholipid binding site. In the absence of calmodulin, binding of neuromodulin to phosphatidylserine at low concentration parallels its phosphorylation by PKC, suggesting that formation of a ternary complex between neuromodulin, phosphatidylserine, and PKC is required for optimum neuromodulin phosphorylation. In the presence of calmodulin, the binding of neuromodulin to phosphatidylserine is inhibited, resulting in total inhibition of neuromodulin phosphorylation. Our results suggest that, in vivo, phosphorylation of neuromodulin may not only depend on protein kinase C (PKC)1 activation but also on the accessibility of the neuromodulin phosphorylation domain to activated membrane-bound PKC that could regulated by CaM.  相似文献   

16.
In view of the interest shown in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) as a second messenger, we studied the activation of protein kinase Calpha by this phosphoinositide. By using two double mutants from two different sites located in the C2 domain of protein kinase Calpha, we have determined and characterized the PtdIns(4,5)P(2)-binding site in the protein, which was found to be important for its activation. Thus, there are two distinct sites in the C2 domain: the first, the lysine-rich cluster located in the beta3- and beta4-sheets and which activates the enzyme through direct binding of PtdIns(4,5)P(2); and the second, the already well described site formed by the Ca(2+)-binding region, which also binds phosphatidylserine and a result of which the enzyme is activated. The results obtained in this work point to a sequential activation model, in which protein kinase Calpha needs Ca(2+) before the PtdIns(4,5)P(2)-dependent activation of the enzyme can occur.  相似文献   

17.
Lipid activation of protein kinase C alpha (PKC alpha) was studied using a model mixture containing POPC/POPS (molar ratio 4:1) and different proportions of either DPG or POG. The lipid mixtures containing DPG were physically characterized by using different physical techniques, and a phase diagram was constructed by keeping a constant POPC/POPS molar ratio of 4:1 and changing the concentration of 1,2-DPG. The phase diagram displayed three regions delimited by two compounds: compound 1 (CO(1)) with 35 mol % of 1,2-DPG and compound 2 (CO(2)) with 65 mol % of 1,2-DPG. PKC alpha activity was assayed at increasing concentrations of 1,2-DPG, maximum activity being reached at 30 mol % 1,2-DPG, which decreased at higher concentrations. Maximum activity occurred, then, at concentrations of 1,2-DPG which corresponded to the transition from region 1 to region 2 of the phase diagram. It was interesting that this protein was maximally bound to the membrane at all DPG concentrations. Similar results were observed when the enzyme was activated by POG, when a maximum was reached at about 10 mol %. This remained practically constant up to 50 mol %, about which it decreased, the binding level remaining maximal and constant at all POG concentrations. The fact that in the assay conditions used maximal binding was already reached even in the absence of diacylglycerol was attributed to the interaction of the C2 domain with the POPS present in the membrane through the Ca(2+) ions also present. To confirm this, the isolated C2 domain was used, and it was also found to be maximally bound at all DPG concentrations and even in its absence. Since the intriguing interaction patterns observed seemed to be due then to the C1 domain, the PKC alpha mutant D246/248N was used. This mutant has a decreased Ca(2+)-binding capacity through the C2 domain and was not activated nor bound to membranes by increasing concentrations of DPG. However, POG was able to activate the mutant, which showed a similar dependence on POG concentration with respect to activity and binding to membranes. These data underline the importance of unsaturation in one of the fatty acyl chains of the diacylglycerol.  相似文献   

18.
Activation of vanilloid receptor (VR1) by protein kinase C (PKC) was investigated in cells ectopically expressing VR1 and primary cultures of dorsal root ganglion neurons. Submicromolar phorbol 12,13-dibutyrate (PDBu), which stimulates PKC, acutely activated Ca(2+) uptake in VR1-expressing cells at pH 5.5, but not at mildly acidic or neutral pH. PDBu was antagonized by bisindolylmaleimide, a PKC inhibitor, and ruthenium red, a VR1 ionophore blocker, but not capsazepine, a vanilloid antagonist indicating that catalytic activity of PKC is required for PDBu activation of VR1 ion conductance, and is independent of the vanilloid site. Chronic PDBu dramatically down-regulated PKC(alpha) in dorsal root ganglion neurons or the VR1 cell lines, whereas only partially influencing PKCbeta, -delta, -epsilon, and -zeta. Loss of PKC(alpha) correlated with loss of response to acute re-challenge with PDBu. Anandamide, a VR1 agonist in acidic conditions, acts additively with PDBu and remains effective after chronic PKC down-regulation. Thus, two independent VR1 activation pathways can be discriminated: (i) direct ligand binding (anandamide, vanilloids) or (ii) extracellular ligands coupled to PKC by intracellular signaling. Experiments in cell lines co-expressing VR1 with different sets of PKC isozymes showed that acute PDBu-induced activation requires PKC(alpha), but not PKC(epsilon). These studies suggest that PKC(alpha) in sensory neurons may elicit or enhance pain during inflammation or ischemia.  相似文献   

19.
Clostridium perfringens phospholipase C (Cp-PLC), the major virulence factor in the pathogenesis of gas gangrene, is a Zn(2+) metalloenzyme with lecithinase and sphingomyelinase activities. Its structure shows an N-terminal domain containing the active site, and a C-terminal Ca(2+) binding domain required for membrane interaction. Although the knowledge of the structure of Cp-PLC and its interaction with aggregated phospholipids has advanced significantly, an understanding of the effects of Cp-PLC in mammalian cells is still incomplete. Cp-PLC binds to artificial bilayers containing cholesterol and sphingomyelin or phosphatidylcholine (PC) and degrades them, but glycoconjugates present in biological membranes influence its binding or positioning toward its substrates. Studies with Cp-PLC variants harboring single amino-acid substitutions have revealed that the active site, the Ca(2+) binding region, and the membrane interacting surface are required for cytotoxic and haemolytic activity. Cp-PLC causes plasma membrane disruption at high concentrations, whereas at low concentrations it perturbs phospholipid metabolism, induces DAG generation, PKC activation, Ca(2+) mobilization, and activates arachidonic acid metabolism. The cellular susceptibility to Cp-PLC depends on the composition of the plasma membrane and the capacity to up-regulate PC synthesis. The composition of the plasma membrane determines whether Cp-PLC can bind and acquire its active conformation, and thus the extent of phospholipid degradation. The capacity of PC synthesis and the availability of precursors determine whether the cell can replace the degraded phospholipids. Whether the perturbations of signal transduction processes caused by Cp-PLC play a role in cytotoxicity is not clear. However, these perturbations in endothelial cells, platelets and neutrophils lead to the uncontrolled production of intercellular mediators and adhesion molecules, which inhibits bacterial clearance and induces thrombotic events, thus favouring bacterial growth and spread in the host tissues.  相似文献   

20.
Voltage-dependent Ca(2+) channel (Ca(v)1.2, L-type Ca(2+) channel) function is highly regulated by hormones and neurotransmitters in large part through the activation of kinases and phosphatases. Regulation of Ca(v)1.2 by protein kinase C (PKC) is of significant physiologic importance, mediating, in part, the cardiac response to hormonal regulation. Although PKC has been reported to mediate activation and/or inhibition of Ca(v)1.2 function, the molecular mechanisms mediating the response have not been definitively elucidated. We show that PKC forms a macromolecular complex with the alpha(1c) subunit of Ca(v)1.2 through direct interaction with the C terminus. This interaction leads to phosphorylation of the channel in response to activators of PKC. We identify Ser(1928) as the residue that is phosphorylated by PKC in vitro and in vivo. Ser(1928) has been identified previously as the site mediating, in part, the protein kinase A up-regulation of channel activity. Thus, the protein kinase A and PKC signaling pathways converge on the Ca(v)1.2 complex at Ser(1928) to increase channel activity. Our results identify two mechanisms leading to regulation of Ca(v)1.2 activity by PKC: pre-association of the channel with PKC isoforms and phosphorylation of specific sites within the alpha(1c) subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号