首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The platinum group metals (PGM) Pt, Pd and Rh are emitted into the environment mainly by catalytic exhaust gas converters of cars. As PGM accumulate in sediments of aquatic ecosystems, the study was focused on the uptake of the noble metals by European eels, Anguilla anguilla infected with the acanthocephalan Paratenuisentis ambiguus. Eels were exposed to ground catalytic converter material for six weeks. After exposure Pt and Pd were detected in the liver and kidney of the eels and in the parasites. Palladium was also found in fish muscle and intestine. No Rh uptake by the eel tissues and the parasites occurred. Paratenuisentis ambiguus contained the highest levels of both metals with 40 times higher Pt concentrations and four times higher Pd concentrations than the liver of its host. Due to its accumulation capacity for PGM, P. ambiguus can be applied as a sensitive accumulation indicator in field studies to assess the degree of environmental PGM contamination in aquatic ecosystems.  相似文献   

2.
The strong affinity of chitosan for metal ions and more specifically for precious metals such as palladium and platinum has focused the interest on using this biopolymer as a support for catalytic metals. The manufacturing of hollow chitosan fibers, softly cross-linked with glutaraldehyde, followed by palladium sorption at pH 2 in HCl solutions and further reduction using hydrogen gas, opened the route for the design of a new continuous catalytic system. This material was used for the hydrogenation of nitrotoluene, which was converted into o-toluidine, in methanol solutions. The substrate was circulated inside the lumen of the fiber, while the hydrogen donor (hydrogen gas) was maintained at constant pressure in the outlet compartment of the reactor. Several parameters (substrate concentration, metal content in the fiber, and flow rate) have been tested for their impact on catalytic performance, measured by the turnover frequency (TOF), conversion yield or o-toluidine production, using a surface response methodology for the optimization of the process. Metal content in the fiber revealed a critical parameter; the influence of this parameter was extensively studied through the structural characterization of the fibers using XPS analysis (oxidation state of Pd), X-ray diffraction analysis (size of Pd crystals), TEM analysis (size and distribution of Pd crystals), and diffusion profiles (porosity) in order to correlate catalytic performance to fiber characterization.  相似文献   

3.
For many years now automotive exhaust catalysts have been used to reduce the significant amounts of harmful chemical substances generated by car engines, such as carbon monoxide, nitrogen oxides, and aromatic hydrocarbons. Although they considerably decrease environmental contamination with the above-mentioned compounds, it is known that catalysts contribute to the environmental load of platinum metals (essential components of catalysts), which are released with exhaust fumes. Contamination with platinum metals stems mainly from automotive exhaust converters, but other major sources also exist. Since platinum group elements (PGEs): platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru) and iridium (Ir) seem to spread in the environment and accumulate in living organisms, they may pose a threat to animals and humans. This paper discusses the modes and forms of PGE emission as well as their impact on the environment and living organisms.  相似文献   

4.
Diffusion towards the root surface has recently been shown to control the uptake of metal ions from solutions. The uptake flux of phosphorus (P) from solutions often approaches the maximal diffusion flux at low external concentrations, suggesting diffusion-controlled uptake also for P. Potential diffusion limitation in P uptake from nutrient solutions was investigated by measuring P uptake of Brassica napus from solutions using P-loaded Al(2) O(3) nanoparticles as mobile P buffer. At constant, low free phosphate concentration, plant P uptake increased up to eightfold and that of passive, diffusion-based samplers up to 40-fold. This study represents the first experimental evidence of diffusion-limited P uptake by plant roots from nutrient solution. The Michaelis constant of the free phosphate ion obtained in unbuffered solutions (K(m) = 10.4 μmol L(-1) ) was 20-fold larger than in the buffered system (K(m) ~0.5 μmol L(-1) ), indicating that K(m) s determined in unbuffered solutions do not represent the transporter affinity. Increases in the P uptake efficiency of plants by increasing the carrier affinity are therefore unlikely, while increased root surface area or exudation of P-solubilizing compounds are more likely to enhance P uptake. Furthermore, our results highlight the important role natural nanoparticles may have in plant P nutrition.  相似文献   

5.
Measurement of short-term nutrient uptake rates in cranberry by aeroponics   总被引:1,自引:1,他引:1  
Aeroponics, a soil-less plant culture system in which fresh nutrient solutions are intermittently or continuously misted on to plant roots, is capable of sustaining plant growth for extended periods of time while maintaining a constantly refreshed nutrient solution. Although used relatively extensively in commercial installations and in root physiology research, use of aeroponics in nutrient studies is rare. The object of this study was to examine whether nutrient uptake rates could be calculated for aeroponic systems by difference using measurements of concentrations and volumes of input and efflux solutions. Data were collected from an experiment with cranberry plants (Vaccinium macrocarpon Ait. cv. Stevens) cultured aeroponically with nutrient solutions containing various concentrations of ammonium-N and isotopically labelled nitrate-N. Validation of the calculated uptake rates was sought by: (1) evaluating charge balance of the solutions and total ion uptake (including proton efflux) and (2) comparison with N-isotope measurements. Charge balance and proton efflux calculations required use of chemical modelling of the solutions to determine speciation of dissolved phosphate and acid-neutralizing capacity (ANC). The results show that charge balance requirements were acceptably satisfied for individual solution analyses and for total ion uptake when proton efflux was included. Relative rates of nitrate/ammonium uptake determined by difference were in agreement with those determined by isotopic techniques. Additional information was easily obtained from this experimental technique, including evidence of diurnal variation in nutrient uptake, correlation between ammonium uptake and proton efflux, and the relationship between ion concentration and uptake. Use of aeroponic systems for non-destructive measurement of water and ion uptake rates for numerous other species and nutrients appears promising.  相似文献   

6.
It has been frequently suggested that root exudates play a role in trace metal mobilization and uptake by plants, but there is little in vivo evidence. We studied root exudation of dicotyledonous plants in relation to mobilization and uptake of Cu and Zn in nutrient solutions and in a calcareous soil at varying Cu and Zn supply. Spinach (Spinacia oleracea L.) and tomato (Lycopersicon esculentum L.) were grown on resin-buffered nutrient solutions at varying free ion activities of Cu (pCu 13.0–10.4) and Zn (pZn 10.1–6.6). The Cu and Zn concentrations in the nutrient solution increased with time, except in plant-free controls, indicating that the plant roots released organic ligands that mobilized Cu and Zn from the resin. At same pCu, soluble Cu increased more at low Zn supply, as long as Zn deficiency effects on growth were small. Zinc deficiency was observed in most treatment solutions with pZn ≥ 9.3, but not in nutrient solutions of a smaller volume/plant ratio in which higher Zn concentrations were observed at same pZn. Root exudates of Zn-deficient plants showed higher specific UV absorbance (SUVA, an indicator of aromaticity and metal affinity) than those of non-deficient plants. Measurement of the metal diffusion flux with the DGT technique showed that the Cu and Zn complexes in the nutrient solutions were highly labile. Diffusive transport (through the unstirred layer surrounding the roots) of the free ion only could not explain the observed plant uptake of Cu and of Zn at low Zn2+ activity. The Cu and Zn uptake by the plants was well explained if it was assumed that the complexes with root exudates contributed 0.4% (Cu) or 20% (Zn) relative to the free ion. In the soil experiment, metal concentrations and organic C concentrations were larger in the solution of planted soils than in unplanted controls. The SUVA of the soil solution after plant growth was higher for unamended soils, on which the plants were Zn-deficient, than for Zn-amended soils. In conclusion, root exudates of dicotyledonous plants are able to mobilize Cu and Zn, and plants appear to respond to Zn deficiency by exuding root exudates with higher metal affinity.  相似文献   

7.
The technique of diffusive gradients in thin films (DGT) has been shown to be a promising tool to assess metal uptake by plants in a wide range of soils. With the DGT technique, diffusion fluxes of trace metals through a diffusion layer towards a resin layer are measured. The DGT technique therefore mimics the metal uptake by plants if uptake is limited by diffusion of the free ion to the plant roots, which may not be the case at high metal supply. This study addresses the capability of DGT to predict cadmium (Cd) uptake by plants at varying Cd supply. To test the performance of DGT in such conditions, we used the chloride (Cl?) enhancement effect, i.e. the increase in Cd solution concentrations—due to chloride complexation of Cd—and Cd uptake with increasing Cl? concentrations, as previously characterized in pot, field and solution culture experiments. The uptake of Cd by spinach was assessed in soil amended with Cd (0.4–10.5 mg Cd kg?1) and NaCl (up to 120 mM) in a factorial design. Treatments with NaNO3 were included as a reference to correct for ionic strengths effects. The effect of Cl? on the shoot Cd concentrations was significant at background Cd but diminished with increasing soil Cd. Increasing Cl? concentrations increased the root area based Cd uptake fluxes by more than a factor of 5 at low soil Cd, but had no significant effect at high soil Cd. Short-term uptake of Cd in spinach from nutrient solutions confirmed these trends. In contrast, increasing Cl? concentrations increased the DGT measured fluxes by a factor of 5 at all Cd levels. As a result, DGT fluxes were able to explain soil Cl? effects on plant Cd concentrations at low but not at high Cd supply. This example illustrates under which conditions DGT mimics trace metal bioavailability. If biouptake is controlled by diffusive limitations, DGT should be a successful tool for predicting ion uptake across different conditions.  相似文献   

8.
After growing barley (Hordeum vulgare L.) in nutrient solutionscontaining EDTA, uptake of the nutrient metals was determinedat three harvests and concentrations of the various chemicalspecies of each metal in the growth solutions was modelled bycomputer simulation. Complexation with EDTA had different effectson the uptake of the ions Fe3+, Mn2+, Cu2+, and Zn2+. At thehighest EDTA level (EDTA/Fe=2/l) the plants were chlorotic andgrowth was inhibited. This is attributed to a deficiency inZn rather than in Fe. The critical level of free Zn2+ requiredin nutrient solutions for healthy growth was found to be approximately10–1010–10 mol dm–3, which is consistent withthat found by earlier workers for other plant species. Barleytolerated much lower levels of the free ions of copper and ironwithout exhibiting any obvious adverse effects. Key words: EDTA, micronutrients, trace metals, computer simulation, deficiencies, absorption, iron, manganese, copper, zinc  相似文献   

9.
Summary Growth and ion uptake by maize seedlings was studied as functions of calcium concentration and rate of flow of nutrient solutions. With calcium concentrations established at 1, 10, and 100 ppm Ca, all other nutrients being kept at constant concentration, the solutions passed through narrow culture trays at velocities of 2, 8, and 24 liter/day.Fresh and dry weights of seedlings increased as the concentration of calcium increased from 1 to 10 or 100 ppm for any value ofV.Positive response in the plant calcium content was particularly noticed when Ca increased to 100 ppm in the nutrient solution. Phosphorus content of tops decreased with increasing (Ca) in the nutrient solution, while the other elements were more or less unaffected. In the case of roots, phosphorus was generally increased, iron decreased and potassium showed inconsistent trends.Estimates of the uptake efficiency relative to calcium were made by calculating the ratio of the amount of calcium taken up by the entire seedling to the product of calcium concentration and daily flow rate of the solution. It appears that the uptake efficiency diminishes with increasing flow rate. Other instances points to the maintenance of the same uptake efficiency as (Ca) increased with the decreasingV or vice versa. These observations point to the critical nature of environmental factors on the effective contacts between supply and uptake belts that have been adopted as model in this study.  相似文献   

10.
The objective of the present research was to explore the effects of combined irrigation and fertilization (fertigation) frequency on growth, yield and uptake of water and nutritional elements by plants. Lettuce (Lactuca sativa L., cv. Iceberg) was used as the model plant. Two experiments were conducted in a screen-house: compound fertilizer at a constant N:P:K ratio at different concentrations was used in the first, while in the second the concentration of P varied solely while the concentration of the other nutritional elements was kept constant. The lettuce was planted in pots filled with perlite and irrigated daily with a constant volume of nutrient solution at different frequencies. The major finding in the two experiments was that high fertigation frequency induced a significant increase in yield, mainly at low nutrients concentration level. Yield improvement was primarily related to enhancement of nutrient uptake, especially P. It was suggested that the yield reduction obtained at low frequency resulted from nutrient deficiency, rather than water shortage, and that high irrigation frequency can compensate for nutrient deficiency. Frequent fertigation improved the uptake of nutrients through two main mechanisms: continuous replenishment of nutrients in the depletion zone at the vicinity of root interface and enhanced transport of dissolved nutrients by mass flow, due to the higher averaged water content in the medium. As such, an increase in fertigation frequency enables to reduce the concentrations of immobile elements such as P, K and trace metals in irrigation water, and to lessen the environment pollution by discharge.  相似文献   

11.
The effects of cobalt on the growth and nutrient balance of mung beans were investigated. Inhibition of seedling growth occurred at 5 μ M Co and was associated with chlorosis of the younger leaves. Analysis of nutrient concentrations in root and leaf tissue of mung beans treated with 5 μ M Co showed that none of the macronutrients and only two of the micronutrients, Mn and Fe, were significantly affected. The Mn concentration in roots was reduced by 55% and the Fe concentration in the leaves by 80%. Uptake of Fe into roots was not inhibited by Co but transport of Fe to the shoot was greatly reduced. It was shown that the effect of Co on growth was additive to that of Fe deficiency, which argues against Co-induced Fe deficiency as the primary cause of growth inhibition by Co. Rather, it was considered that the high concentrations of Co in the roots and leaves compared with essential micronutrient cations can disrupt a range of metabolic processes due to competitive interactions. Comparison of the toxic effects of Co with those of other toxic trace metals Cd, Cu, Ni and Hg showed that at an applied concentration of 5 μ M , there were obvious differences in both the visual symptoms and in nutrient concentrations. The main difference between Co and the other metals was that only Co stimulated the uptake of S into the plant and its transport to the shoots, where the S concentration in the leaves was increased 2-fold. The common feature of all the trace metals examined was the strong inhibition of Fe transport to the shoot. A possible mechanism for the interaction of other trace metals with Fe transport is discussed.  相似文献   

12.
This study was designed to investigate the effects of platinum, as hydrogen hexachloroplatinate (Pt; 0.0025-25 microM), on the production of reactive oxygen species (ROS) by human neutrophils in vitro. ROS were measured by lucigenin-enhanced chemiluminescence (LECL). Addition of Pt to neutrophils was accompanied by a lag phase of about 1 min, followed by a linear dose-related increase in LECL, which peaked at around 4 min and achieved statistical significance at concentrations of 0.025 microM Pt and higher. Interestingly, Pt-mediated enhancement of LECL was not associated with meaningful alterations in neutrophil oxygen consumption, assembly of NADPH oxidase, or cytosolic Ca2+ and was completely attenuated by superoxide dismutase and inhibitors of NADPH oxidase, but not by catalase or scavengers of hydroxyl radical, and was undetectable with cells from individuals with chronic granulomatous disease. Exposure of alpha1-proteinase inhibitor to Pt-treated neutrophils resulted in inactivation of elastase-inhibitory capacity, underscoring the potential toxicity of neutrophil/Pt interactions. The pro-oxidative actions of Pt were mimicked by palladium (Pd), but not by cisplatin or rhodium. These observations demonstrate that Pt and Pd potentiate the reactivity, as opposed to the generation of neutrophil-derived oxidants, an activity that may contribute to airway inflammation in occupationally and possibly environmentally exposed individuals.  相似文献   

13.
Summary Humic acid affected nutrient uptake differently in sand culture. It generally increased Cu uptake, slightly, though insignificantly, increased Fe uptake and practically had no effect on Zn uptake. Such results agree fairly well with the relative stability of humic acid with these metals.When humic acid was added to sand culture at increasing concentration of the metal, it considerably increased dry weight, Cu uptake and Cu concentration through decreasing its toxicity to plant. With Fe, however, humic acid and Na2EDDHA slightly increased Fe uptake at lower Fe concentration (30 ppm) but significantly reduced both Fe uptake and Fe concentration in plant at higher concentration of Fe compared to the control treatment. Humic acid reduced Zn uptake and Zn concentration in plant at concentrations of 0.5–1.5 ppm Zn, and guarded against Zn toxicity which developed at higher concentration of Zn when no humic acid was added.  相似文献   

14.
In this study, typical moss crusts, which were dominated by the species Didymodon vinealis (Brid.) Zand., were collected from the Loess Plateau and a 65-day cultivation experiment was performed to study the effects of five kinds of nutrient solutions (Knop, Murashige-Skoog (MS), Benecke, Part and Hoagland), two kinds of carbohydrates (glucose and sucrose) and three kinds of plant growth regulators (thidiazuron (TDZ), 6-benzylaminopurine (6-BA) and naphthaleneacetic acid (NAA)) on the coverage, plant density, and plant height of moss crusts. The main conclusions are as follows. (1) All Knop, MS, Benecke, Part and Hoagland nutrient solutions improved the coverage and plant density of moss crusts to different degrees and the promotional effects of the Hoagland nutrient solution were most significant. (2) Glucose and sucrose could promote the formation of moss crusts, but they inhibited the development of moss crusts at concentrations greater than 10?g/L. (3) With an increase in concentration, the effects of TDZ on the development of moss crusts changed from “enhanced” to “inhibited”. Regardless of whether the concentration was high or low, 6BA had no significant effects on the growth of moss crusts, and NAA reduced the development of moss crusts. Results suggest that nutrient solutions (e.g. Hoagland), low concentration carbohydrates solutions, and some plant growth regulators (e.g. 1?mg/L TDZ) enhance the development of moss crusts in Loess Plateau under the appropriate environmental conditions.  相似文献   

15.
Nitrogen uptake     
B. L. Haines 《Oecologia》1977,26(4):295-303
Summary Nitrogen uptake from applied nutrient solutions was evaluated in two old fields, in a pine plantation, and in a hardwood stand, to test the idea that plant communities become more efficient trappers and retainers of plant nutrients during succession. Uptake was estimated as the difference between nutrient concentrations in water collected from beneath soil profiles with and without roots by lysimeters within each successional stage. Results suggest that nitrate uptake decreased while ammonia uptake increased with succession. This apparent shift from a nitrate to an ammonia nitrogen economy during succession has been reported by other workers and is evolutionarily significant as an energy, nitrogen, and cation saving mechanism.  相似文献   

16.
McLaughlin  M. J.  Andrew  S. J.  Smart  M.K.  Smolders  E. 《Plant and Soil》1998,202(2):211-216
The impacts of both sulfate (SO4) and calcium (Ca) concentrations in solution on plant uptake of cadmium (Cd) vary according to effects on both sorption of Cd by soil and on uptake by the plant root. This study investigated how complexation of Cd by SO4 affected plant Cd uptake in nutrient solution. Swiss chard (Beta vulgaris L. cv. Fordhook Giant) was grown in nutrient solution with SO4 concentrations varying between 8 mM and 58 m M, with ionic strength maintained constant across treatments using nitrate (NO3). In a separate experiment, solution Ca concentrations was also varied to compensate for SO4 complexation by Ca. Plant growth was unaffected by increasing SO4 concentrations in solution. Despite considerable reductions in free Cd2+ ion activities in solution by increasing SO4 concentrations, plant Cd concentrations were unaffected. Similarly, plant Cd concentrations were unaffected by increasing Ca concentrations in solution to compensate for SO4 complexation of Ca. These data suggest that the CdSO40 complex is taken up by plants with equal efficiency to the free Cd2+ ion.  相似文献   

17.
A review of the literature on unusual metals as carcinogens was carried out. The metals covered are some of the rare earths, copper, silver, gold, mercury, germanium, tin, antimony, lead, platinum, palladium, aluminum, titanium, niobium, manganese, scandium, yttrium, indium, rhodium, and gallium.  相似文献   

18.
Abstract

Colonization of plant roots by arbuscular mycorrhizal fungi can greatly increase the plant uptake of phosphorus and nitrogen. The most prominent contribution of arbuscular mycorrhizal fungi to plant growth is due to uptake of nutrients by extraradical mycorrhizal hyphae. Quantification of hyphal nutrient uptake has become possible by the use of soil boxes with separated growing zones for roots and hyphae. Many (but not all) tested fungal isolates increased phosphorus and nitrogen uptake of the plant by absorbing phosphate, ammonium, and nitrate from soil. However, compared with the nutrient demand of the plant for growth, the contribution of arbuscular mycorrhizal fungi to plant phosphorus uptake is usually much larger than the contribution to plant nitrogen uptake. The utilization of soil nutrients may depend more on efficient uptake of phosphate, nitrate, and ammonium from the soil solution even at low supply concentrations than on mobilization processes in the hyphosphere. In contrast to ectomycorrhizal fungi, nonsoluble nutrient sources in soil are used only to a limited extent by hyphae of arbuscular mycorrhizal fungi. Side effects of mycorrhizal colonization on, for example, plant health or root activity may also influence plant nutrient uptake.  相似文献   

19.
Plant uptake rates of nitrate and potassium (K) are under feedback control from plant concentrations of nitrogen (N) and K, respectively. However, there is uncertainty concerning the interactions between nitrate and K uptake. We tested the hypothesis that plant concentrations of N affect K uptake and plant concentrations of K affect uptake rates of nitrate. Two experiments were carried out with wheat. Each consisted of three phases. In Phase 1, the plants were grown in complete nutrient solution for 17–18 days. In Phase 2, nitrate and K treatments were imposed – the plants were either starved of the nutrient or provided excess for 2.5 or 5 days. This generated plants of similar size but with different N and K concentrations. In Phase 3, complete nutrient solutions were restored for all plants and nitrate and K uptake was followed for 8 h. Uptake till the end of Phases 2 and 3 was examined by analysis of variance. Uptake during Phase 3 was also examined using a simple model that included Michaelis‐Menten uptake kinetics and feedback control due to whole‐plant N and K concentrations, but assumed no interaction between nitrate and K uptake. The model was fitted using Phase 3 measurements of nitrate uptake following nitrate starvation or excess and K uptake following K starvation or excess. There was little influence of plant N on K uptake or of plant K on nitrate uptake for periods that started with adequate plant concentrations of N and K (Phases 1 and 2). However, in Phase 3 when N starvation was broken, the plants took up more K than controls and model predictions, so feedback control of K uptake had been lessened. Similarly, when K starvation was broken, feedback control of nitrate uptake was lessened. If plants had endured both N and K starvation then on release of that they took up more K but less nitrate than predicted by the model. These results support the hypothesis under test, and suggest interactions between the mechanisms that regulate uptake of nitrate and K.  相似文献   

20.
Summary Experiments on cucumber plants grown in nutrient solution were conducted in order to study long and short time effects of ammonia on growth, nutrient element uptake and respiration of roots.Shoot yield and potassium concentration in tissue of plants treated 18 days with varied ammonia concentration were decreased. However, it was not assumed that K deficiency caused the yield reduction. The ammonia effect on K content was more pronounced in roots than in shoots.The decreased K concentration of plant tissue was linked to a diminished ability of plant roots to absorb potassium. The maximum rate of potassium uptake was lowered by ammonia during both, long- and short-time treatment. The results indicated that the NH3 influence on potassium uptake was due to effects on metabolism and permeability of roots because changes of K uptake rate occurred immediately after starting the NH3 treatment. Furthermore, it is shown that ammonia inhibited respiration of roots.During the short-time treatment net potassium efflux of roots was observed at higher NH3 concentrations. The extent of K efflux depended on K concentration of both, root tissue and nutrient solution.Pretreating the plants for 12 hours with ammonia also resulted a decline in K uptake rate. However, plant roots subjected to ammonia concentrations up to 0.09 mM completely recovered during 24 hours after removing the NH3 treatment whereas at higher NH3 concentrations only a partial recovery occurred.Furthermore, it was shown that ammonia also influenced P uptake by plant roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号