首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutants resistant to various phenylalanine- or tyrosine-analogs were isolated from a phenylalanine auxotroph of Corynebacterium glutamicum KY 10233 by treatment with N- methyl-N′-nitro-N-nitrose guanidine (NTG) and screened for L-tyrosine production. A mutant, 98–Tx–71, which is resistant to 3-aminotyrosine, p-aminophenylalanine, p-fluoro-phenylalanine, and tyrosine hydroxamate was found to produce L-tyrosine at a concentration of 13.5 mg/ml in the cane molasses medium containing 10% of sugar calculated as glucose. A tyrosine-sensitive mutant, pr–20 which was derived from 98–Tx–71 produced L-tyrosine at a concentration of 17.6 mg/ml. L-Tyrosine formation in the strain pr–20 was found to be still inhibited by L-phenylalanine though it was not inhibited by L-tyrosine. The L-tyrosine formation in the mutant was repressed neither by L-phenylalanine nor by L-tyrosine.  相似文献   

2.
The new enzyme phenylalanine dehydrogenase [L-phenylalanine: NAD+-oxidoreductase (deaminating)] was detected in the crude extract of a strain of Brevibacterium spec. The bacterium was isolated from a soil sample by enrichment with phenylalanine. This strain was the only one containing phenylalanine dehydrogenase out of 173 tested strains, among them 22 of the genus Brevibacterium, 74 strains from soil samples and 77 strains from a culture collection belonging to several genera. The enzyme is involved in the degradation of phenylalanine and could be induced by addition of L-, D-, D,l-phenylalanine or L-histidine, the optimum inducer concentration of phenylalanine being 1%.The reaction mechanism of a reductive amination was confirmed by demonstrating the close coupling between NADH-consumption and phenylalanine production; ammonia could not be replaced by L-glutamate or L-aspartate as amino donor. The -keto acid of L-tyrosine was converted too, while the corresponding compound of histidine was inactive. The optimum pH value for reductive amination in the crude extract was 8.5 and for oxidative desamination 10.5.  相似文献   

3.
Summary L-Phenylalanine is a potent inhibitor of growth in a marine species of blue-green bacteria, Agmenellum quadruplicatum. The growth inhibition is reversed by many amino acids when added to the culture medium simultaneously with L-phenylalanine. The most effective L-phenylalanine antagonists are L-tyrosine, L-alanine, L-leucine, L-methionine, L-tryptophan, and L-isoleucine. However, L-tyrosine is the only effective L-phenylalanine antagonist when growth is inhibited by L-phenylalanine for two or more hours prior to addition of an equimolar concentration of the compound tested as an antagonist. Various explanations that could account for inhibition of growth by L-phenylalanine are discussed. Inhibition of growth by L-phenylalanine is not a feature peculiar to the general physiology of blue-green bacteria. For example, the growth of Anacystis nidulans, a fresh water species, was not inhibited by L-phenylalanine, although a different pattern of metabolite sensitivity was found.  相似文献   

4.
To increase the productivity of l-phenylalanine from acetamidocinnamic acid, we screened bacteria containing high acetamidocinnamate amidohydrolase activity, and strain S-5 containing high activity was isolated from soil. The bacteria were identified as Corynebacterium sp. S-5.When strain S-5 was cultured in a medium containing acetamidocinnamic acid as the sole carbon source or enzyme inducer, the formation of acetamidocinnamate amidohydrolase was observed. This was controlled by catabolite repression. When the strain was cultured in a medium containing glucose and acetamidocinnamic acid as the sole nitrogen source, it showed low acetamidocinnamate amidohydrolase activity and an increased doubling time.To obtain acetamidocinnamate amidohydrolase-hyperproducing strain, we enriched cells growing faster than strain S-5 in a medium containing glucose and acetamidocinnamic acid by continuous culture of mutagenized cells. Mutant C-23 had 12-fold the enzyme production and 3-fold the growth rate of the wild-type strain in a medium containing glucose. Acetamidocinnamate amidohydrolase formation in the mutant did not require acetamidocinnamic acid as enzyme inducer and was resistant to catabolite repression.  相似文献   

5.
The Antarctic bacterial isolate Sphingomonas sp. strain Ant 17 utilized a wide range of L-isomer amino acids as the sole carbon and energy source for growth. The pH and temperature optima for growth on amino acids were pH 7.0 and 15°C, respectively. Growth on serine and tryptophan was inhibited by uncouplers and inhibitors of oxidative phosphorylation, but not by monensin, a Na+/H+ antiporter, suggesting that sodium gradients were not specifically required for growth on these amino acids. Serine transport was via a high-affinity (apparent Km of 8 M) permease specific for both the L- and D-isomer. Tryptophan transport exhibited biphasic kinetics with both high-affinity (apparent Km of 2.5 M) and low-affinity (non-saturable) uptake systems detected. The high-affinity system was specific for L-tryptophan, L-tyrosine, and L-phenylalanine whereas the low-affinity permease was specific for L-tryptophan and L-phenylalanine, but not L-tyrosine. Neither orthovanadate nor sodium arsenate, inhibitors of ATP-dependent permeases, had any significant inhibitory effect on the rate of serine and tryptophan transport. The protonophore carbonyl cyanide m-chlorophenylhydrazone completely abolished serine and tryptophan transport; maximum rates of solute uptake were observed at acidic pH values (pH 4.0–5.0) for both amino acids. These results suggest that an electrochemical potential of protons is the driving force for serine and tryptophan transport by Ant 17. These high-affinity proton-driven permeases function over environmental extremes (e.g. broad temperature and pH range) that are likely to prevail in the natural habitat of this bacterium.  相似文献   

6.
Polyauxotrophic mutants of Corynebacterium glutamicum which have additional requirements to L-phenylalanine were derived from L-tyrosine producing strains of phenylalanine auxotrophs, C. glutamicum KY 9189 and C. glutamicum KY 10233, and screened for L-tyrosine production. The increase of L-tyrosine production was noted in many auxotrophic mutants derived from both strains. Especially some double auxotrophs which require phenylalanine and purine, phenylalanine and histidine, or phenylalanine and cysteine produced significantly higher amounts of L-tyrosine compared to the parents, A phenylalanine and purine double auxotrophic strain LM–96 produced L-tyrosine at a concentration of 15.1 mg per ml in the medium containing 20% sucrose. L-Tyrosine production by the strain decreased at high concentrations of L-phenylalanine.  相似文献   

7.
Summary A new acylase catalyzing the deacetylation of acetamidocinnamic acid (ACA) was found in strains of Brevibacterium sp. Such strains could be isolated from soil samples by their ability to grow on ACA as well as on l-phenylalanine. A 110-fold enrichment of the enzyme with an over-all yield of 48% was obtained in 4 steps resulting in an electrophoretically pure preparation of 28.6 U·mg-1. Important enzymological data concerning the application of the enzyme are: K M (ACA) 0.45 mM, pH-optimum 7.5, heat stability up to 52°C, molecular weight of 50.000 Dalton, two subunits. Deacetylation of ACA resulted in phenylpyruvate via the unstable enamine-imine derivative. Coupling the acylase with l-phenylalanine dehydrogenase proved to be an alternative route for l-phenylalanine production avoiding substrate inhibition by phenylpyruvate and its instability. The substrate specifity of ACA-acylase revealed that the enzyme probably acts as a dipeptidase in its biological function.Abbreviations ACA acetamidocinnamate, acetamidocinnamic acid - FPLC fast protein liquid chromatography - pheDH l-Phenylalanine dehydrogenase - HicDH Hydroxyisocaproate dehydrogenase - OD optical density - BSA bovine serum albumin - FDH formate dehydrogenase Dedicated to Professor Dr. H. J. Rehm on the occasion of his 60th birthday  相似文献   

8.
Injection ofl-p-tyrosine (800 mg/kg, 2 h) increased the mouse striatalpara-hydroxyphenylacetic acid (p-HPAA) concentrations. A smaller dose ofd,l-m-tyrosine (20 mg/kg, 2h) produced a larger increase in mouse striatalmeta-hydroxyphenylacetic acid (m-HPAA) concentrations. The administration ofl-phenylalanine to mice caused a slight increase in thep-HPAA concentrations in the corpus striatum after 2h while a larger dose ofl-phenylalanine (800 mg/kg) produced a greater increase. Eight hours followingl-phenylalanine injection,p-HPAA concentrations were still elevated. Withd-phenylalanine a significant increase was observed at eight hours after drug administration.Two drugs which reduce dopamine synthesis, -methyl-para-tyrosine and apomorphine, decreasedm-HPAA striatal concentrations without affectingp-HPAA concentrations. From these results, it is proposed that tyrosine hydroxylase activity determinesp-HPAA concentrations by regulatingp-tyrosine availability. This enzyme may also synthesizem-tyrosine which is subsequently decarboxylated to formm-tyramine and then oxidatively deaminated to formm-HPAA.  相似文献   

9.
In Nocardia sp. 239 d-phenylalanine is converted into l-phenylalanine by an inducible amino acid racemase. The further catabolism of this amino acid involves an NAD-dependent l-phenylalanine dehydrogenase. This enzyme was detected only in cells grown on l- or d-phenylalanine and in batch cultures highest activities were obtained at relatively low amino acid concentrations in the medium. The presence of additional carbon- or nitrogen sources invariably resulted in decreased enzyme levels. From experiments with phenylalanine-limited continuous cultures it appeared that the rate of synthesis of the enzyme increased with increasing growth rates. The regulation of phenylalanine dehydrogenase synthesis was studied in more detail during growth of the organism on mixtures of methanol and l-phenylalanine. Highest rates of l-phenylalanine dehydrogenase production were observed with increasing ratios of l-phenylalanine/methanol in the feed of chemostat cultures. Characteristic properties of the enzyme were investigated following its (partial) purification from l- and d-phenylalanine-grown cells. This resulted in the isolation of enzymes with identical properties. The native enzyme had a molecular weight of 42 000 and consisted of a single subunit; it showed activity with l-phenylalanine, phenylpyruvate, 4-hydroxyphenyl-pyruvate, indole-3-pyruvate and -ketoisocaproate, but not with imidazolepyruvate, d-phenylalanine and other l-amino acids tested. Maximum activities with phenylpyruvate (310 mol min-1 mg-1 of purified protein) were observed at pH 10 and 53°C. Sorbitol and glycerol stabilized the enzyme.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPT hexulose-6-phosphate isomerase - FPLC fast protein liquid chromatography  相似文献   

10.
Zusammenfassung Das Murein eines aus Milch isolierten Stammes von Staphylococcus epidermidis weist folgende Molverhältnisse auf (auf- bzw. abgerundete Zahlen): Mur:GlcNH2:Ala:Glu:Lys:Gly=1:1:3:1:1:4. Das Verhältnis D-Ala:L-Ala ist 1:2,03. Die Glutaminsäure liegt in der D-Konfiguration und als Amid vor.Durch die Isolierung und Identifizierung der Peptide des Partialhydrolysats des Mureins konnte die Aminosäuresequenz erschlossen werden. Die Sequenz des an die Muraminsäure gebundenen Tetrapeptides (L-Ala-D-GluNH2-L-Lys-D-Ala) stimmt mit dem der meisten anderen Bakterien überein. Die Quervernetzung wird durch das Peptid (Gly)4–5-L-Ala hergestellt, das mit dem N-terminalen Glycin an die Carboxylgruppe des D-Alanins und mit dem C-terminalen L-Alanin an die -Aminogruppe des Lysins zweier benachbarter Tetrapeptide gebunden ist. Die Dinitrophenylierung des Mureins ergab, daß 2% des Lysins (-Aminogruppe), 3% des gesamten Alanins und 7% des gesamten Glycins N-terminal vorliegen. Demnach ist die Quervernetzung nur zu rund 60% realisiert. Neben unvernetzten mehr oder weinger vollständigen Interpeptidbrücken kommen auch unvollständige Peptide vor, bei denen nur L-Alanin an die -Aminogruppe des Lysins gebunden ist. In mindestens 2% der Fälle fehlt die Interpeptidkette völlig.
The amino acid sequence of the murein of Staphylococcus epidermidis (winslow and winslow) evans, strain 66
Summary A strain of Staphylococcus epidermidis was isolated from raw milk. Its murein contained muramic acid, glucosamine, alanine, D-glutamic acid, L-lysine and glucine at a molar ratio of about 1:1:3:1:1:4. The ratio D-Ala: L-Ala is 1:2.03. D-glutamic acid is present as an amide.By partial acid hydrolysis of the cell wall and subsequent isolation and identification of the peptides the amino acid sequence of the murein was elucidated. The tetrapeptide, bound to muramic acid is identical with that of most bacteria: L-Ala-D-GluNH2-L-Lys-D-Ala. The crosslinking of the murein is performed by the peptide (Gly)4–5-L-Ala. L-Ala is attached to the -aminogroup of lysine, while the N-terminal glycine is bound to the C-terminal D-alanine of an adjacent tetrapeptide. About 2% of lysine, 3% of alanine and 7% of glycine of the murein are dinitrophenylizable, indicating that about 2% of the tetrapeptides are not substituted by an interpeptide chain, and that 40% of the interpeptide chains are more or less incomplete (10% consist of L-alanine only) and are not bound to a C-terminal D-alanine.
  相似文献   

11.
Zusammenfassung Bie 17 Stämmen von coryneformen Organismen wurde 2,4-Diaminobuttersäure als Bestandteil des Mureins gefunden. In 15 Fällen ergab die genauere Analyse die gleiche Aminosäuresequenz, wie sie schon früher von Perkins (1968) bei Corynebacterium insidiosum beschrieben wurde. In diesem Falle ist die L-2,4-Diaminobuttersäure ein Bestandteil der Peptiduntereinheit, während die D-2,4-Diaminobuttersäure die Quervernetzung zwischen dem Glutaminsäurerest und dem C-terminalen Alanin zweier benachbarter Peptiduntereinheiten herstellt. Das Murein gehört demnach zur Gruppe B nach Schleifer u. Kandler (1972). Die -Aminogruppe der L-2,4-Diaminobuttersäure ist in einigen Fällen acetyliert, in anderen Fällen ist sie frei.Das Murein der beiden anderen Stämme unterscheidet sich in seiner Primärstruktur dadurch, daß nur L-2,4-Diaminobuttersäure vorkommt. Im Falle von C. bovis ist wie bei einigen coryneformen pflanzenpathogenen Stämmen die Diaminosäure der Peptiduntereinheit durch Homoserin ersetzt und die Quervernetzung erfolgt durch das Dipeptid -Gly-L-Dab zwischen Glutaminsäure und D-Alanin. Dieses Murein gehört demnach ebenfalls zur Gruppe B. Dagegen ist das Murein von Arthrobacter sp. Ar 22 eine neue Variante der Gruppe A. Die L-2,4-Diaminobuttersäure ist hier ein Glied der Peptiduntereinheit und die Quervernetzung zwischen der -Aminogruppe der 2,4-Diaminobuttersäure und dem D-Alaninrest einer benachbarten Peptiduntereinheit wird durch das Pentapeptid -L-Asp-L-Ala-Gly-L-Ala-L-Ala gebildet. Außerdem ist die Position 1 der Peptiduntereinheit nicht mit L-Alanin, sondern mit Glycin besetzt. Letzteres ist bisher nur bei Mureinen der Gruppe B, aber nicht bei denen der Gruppe A gefunden worden. Ebenfalls neu ist das Vorkommen von L-Asparaginsäure anstelle der bisher gefundenen D-Form.
The amino acid sequence of 2,4-diaminobutyric acid containing mureins of various coryneform bacteria and Agromyces ramosus
Summary In 17 strains of coryneform bacteria, 2,4-diaminobutyric acid was found to be a component of the murein (peptidoglycan). A detailed analysis showed that 15 strains contain a murein with the same amino acid sequence as that found in Corynebacterium insidiosum by Perkins (1968). In this case the L-2,4-diaminobutyric acid is a component of the peptite subunit while the D-2,4-diaminobutyric acid serves as interpetide bridge between D-glutamatic and the C-terminal D-alanine residue. Therefore this murein belongs to group B according to Schleifer and Kandler (1972). The -amino group of L-2,4-diaminobutyric acid is in some species acetylated, in others free.The murein of the remaining two strains differs by the lack of D-2,4-diaminobutyric acid. Only L-2,4-diaminobutyric acid is found. In the case of C. bovis, the diamino acid of the peptide subunit is replaced by L-homoserine as found in various plant pathogenic coryneform bacteria. The interpeptide bridge consists of the dipeptide -Gly-2,4-Dab. It connects the D-glutamic acid of one peptide subunit with the C-terminal D-alanine residue of an adjacent peptide subunit. Therefore this murein belongs also to group B.The murein of Arthrobacter sp. Ar 22 is a new varition of group A, however. Here the L-2,4-diaminobutyric acid is a component of the peptide subunit. The interpeptide bridge consists of the pentapeptide -L-Asp-L-Ala-Gly-L-Ala-L-Ala. It connects the -amino group of L-2,4-diaminobutyric acid and the C-terminal D-alanine residue of two peptide subunits. Position 1 of the peptide subunit is occupied by glycine instead of L-alanine as found in all the other mureins of group A so far. Another new feature of this murein is the occurrence of the L-form instead of the D-form of aspartic acid.
  相似文献   

12.
A gram-positive, mesophilic bacterium which assimilated l-phenylalanine but which failed to utilise l-tyrosine was isolated from soil. The isolate, identified as a strain of Bacillus carotarum, converted l-phenylalanine to phenylpyruvate with the initial step catalysed by an inducible, intracellular enzyme which possessed l-phenylalanine oxidase activity. Phenylalanine oxidase has not been previously reported in Gram-positive bacteria, although there are a few examples of non-specific l-amino acid oxidases with activity towards l-phenylalanine. The isolate grew abundantly on complex media but failed to synthesise significant amounts of the enzyme in the absence of l-phenylalanine. The highest enzyme levels were achieved in a chemically defined minimal salts medium containing the amino acid at 10 g/l as the primary carbon and energy source.  相似文献   

13.
The growth of Bacillus subtilis TR–44, a prototrophic transductant from one of inosine producers, was completely inhibited by 200 µg/ml of 5-fiuorotryptophan, a tryptophan analogue, and the inhibition was reversed by the addition of L-tryptophan.

Several mutants resistant to 5FT* produced L-tryptophan in the growing cultures. The best producer, strain FT–39, which was selected on a medium containing 1500 µg/ml of 5FT, produced 2 g/liter of L-tryptophan, when cultured in a medium containing 8% of glucose but without any tryptophan precursors. In this mutant, anthranilate synthetase, a key enzyme of the tryptophan biosynthesis, had increased over 280-fold, presumably owing to a genetic derepression. From FT–39, mutants resistant to 7000 µg/ml of 5FT were derived. Among them, strain FF–25 produced 4 g/liter of L-tryptophan, twice as much as did the parental strain. Since this strain produced large amount of L-phenylalanine as well as L-tryptophan, the genetic alteration seemed to be involved in some metabolic regulation of common part of the aromatic amino acid biosynthetic pathway.

Further, some auxotrophs derived from these 5FT resistant mutants produced more L-tryptophan than did the parental strains.

Relationships between the accumulation of L-tryptophan and the regulation mechanisms of the L-tryptophan biosynthesis were discussed.  相似文献   

14.
Summary Proline production via a part of the arginine biosynthetic pathway was examined. About 20 mg/ml ofl-proline was produced by using arginine biosynthetic enzymes. Accordingly, three mutations of arginine biosynthesis, namely, derepression of arginine biosynthetic enzymes (assigned byargR2), feedback inhibition-resistant N-acetylglutamate synthase (assigned byargA2) and defectiveness in N-acetylornithine aminotransferase (assigned byargD ) were introduced by three transductional crosses into a proline-producing strain which produced about 55 mg/ml ofl-proline. The constructed strain produced 62 mg/ml ofl-proline, although about 10 mg/ml ofl-arginine and 1 mg/ml of N-acetylglutamate--semialdehyde were produced as by-products.  相似文献   

15.
p-Fluorophenylalanine (PFP) and m-fluorophenylalanine were the most effective inhibitors on the growth of Corynebacterium glutamicum ATCC 13032 among the analogs of phenylalanine and tyrosine tested. Their inhibitory effects were released by L-phenylalanine, and slightly by L-tyrosine and L-tryptophan. 3-Aminotyrosine (3AT), p-aminophenylalanine, o-fluorophenylalanine, and β-2-thienylalanine were weak inhibitors.

Resistant mutants of C. glutamicum isolated on the medium containing both PFP and 3AT or PFP and L-tyrosine were found to accumulate both L-tyrosine and L-phenylalanine, while resistant mutants isolated on the medium containing only PFP were found to produce only L-phenylalanine. Resistant mutants from other glutamic acid producing bacteria isolated on the medium containing both PFP and 3AT or both PFP and L-tyrosine were found to accumulate L-tyrosine and L-phenylalanine.  相似文献   

16.
The evolution of aromatic amino acid biosynthesis and its regulation is under study in a large assemblage of prokaryotes (Superfamily A) whose phylogenetic arrangement has been constructed on the criterion of oligonucleotide cataloging. One section of this Superfamily consists of a well defined (rRNA homology) cluster denoted as Group III pseudomonads. Pseudomonas acidovorans ATCC 11299a, a Group III member, was chosen for indepth studies of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase, the initial regulatory enzyme of aromatic biosynthesis. This strain is of particular interest for evolutionary studies of aromatic metabolism because it possesses phenylalanine hydroxylase, an enzyme whose physiological role and distribution among prokaryotes is largely unknown. Although P. acidovorans ATCC 11299a has been of uncertain identity, we now establish it unambiguously as a species of acidovorans by virtue of its 87% DNA homology with P. acidovorans ATCC 15668 (type strain). This result conformed with enzyme patterning studies which placed ATCC 11299a into pseudomonad Group IIIa, a subgroup containing the acidovorans species. Crude extracts of Group III pseudomonads had previously been shown to share, as a common group characteristic, sensitivity of DAHP synthase to feedback inhibition by either l-tyrosine or l-phenylalanine. Detailed studies with partially purified preparations from strain ATCC 11299a revealed the presence of two distinct regulatory isozymes, DAHP synthase-phe and DAHP synthase-tyr. DAHP synthase-tyr is tightly controlled by l-tyrosine with 50% inhibition of activity being achieved at 4.0 M effector. DAHP synthase-phe is inhibited 50% by 40 M l-phenylalanine and exhibits dramatic changes in levels of activity, as well as chromatographic elution patterns, in response to dithiothreitol. This two-isozyme pattern of DAHP synthase has not been described previously, although it may prove to be widespread.Abbreviations DAHP 3-deoxy-d-arabino-heptulosonate 7-phosphate - E4P d-erythrose-4-phosphate - PEP phosphoenolpyruvate - DTT dithiothreitol - BSA fraction V bovine serum albumin  相似文献   

17.
The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extremehalophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by l-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, l-tryptophan inhibited activity while l-tyrosine, l-methionine, l-leucine, and l-isoleucine activated the enzyme. l-Isoleucine and l-phenylalanine were effective at M levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by -2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by l-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by l-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.  相似文献   

18.
W. Knogge  G. Weissenböck 《Planta》1986,167(2):196-205
Primary leaves of oats (Avena sativa L.) have been used to study the integration of secondary phenolic metabolism into organ differentiation and development. In particular, the tissue-specific distribution of products and enzymes involved in their biosynthesis has been investigated. C-Glucosylflavones along with minor amounts of hydroxycinnamic-acid esters constitute the soluble phenolic compounds in these leaves. In addition, considerable amounts of insoluble products such as lignin and wall-bound ferulic-acid esters are formed. The tissue-specific activities of seven enzymes were determined in different stages of leaf growth. The rate-limiting enzyme of flavonoid biosynthesis in this system, chalcone synthase, together with chalcone isomerase (EC 5.5.1.6) and the terminal enzymes of the vitexin and isovitexin branches of the pathway (a flavonoid O-methyltransferase and an isovitexin arabinosyltransferase) are located in the leaf mesophyll. Since the flavonoids accumulate predominantly (up to 70%) in both epidermal layers, an intercellular transport of products is postulated. In contrast to the flavonoid enzymes, L-phenylalanine ammonia-lyase (EC 4.3.1.5), 4-coumarate: CoA ligase (EC 6.2.1.12), and S-adenosyl-L-methionine: caffeate 3-O-methyltransferase (EC 2.1.1.-), all involved in general phenylpropanoid metabolism, showed highest activities in the basal leaf region as well as in the epidermis and the vascular bundles. We suggest that these latter enzymes participate mainly in the biosynthesis of non-flavonoid phenolic products, such as lignin in the xylem tissue and wall-bound hydroxycinnamic acid-esters in epidermal, phloem, and sclerenchyma tissues.Abbreviations CHI chalcone isomerase - CHS chalcone synthase - 4CL 4-coumarate: CoA ligase - CMT S-adenosyl-L-methionine:caffeate 3-O-methyltransferase - FMT S-adenosyl-L-methionine:vitexin 2-O-rhamnoside 7-O-methyltransferase - HPLC high-performance liquid chromatography - IAT uridine 5-diphosphate L-arabinose:isovitexin 2-O-arabinosyltransferase - PAL L-phenylalanine ammonia-lyase  相似文献   

19.
S. K. Goers  R. A. Jensen 《Planta》1984,162(2):117-124
The reaction catalyzed by chorismate mutase (EC 5.4.99.5) is a crucial step for biosynthesis of two aromatic amino acids as well as for the synthesis of phenylpropanoid compounds. The regulatory properties of two chorismate-mutase isoenzymes expressed in Nicotiana silvestris Speg. et Comes are consistent with their differential roles in pathway flow routes ending with l-phenylalanine and l-tyrosine on one hand (isoenzyme CM-1), and ending with secondary metabolites on the other hand (isoenzyme CM-2). Isoenzyme CM-1 was very sensitive to allosteric control by all three aromatic amino acids. At pH 6.1, l-tryptophan was a potent allosteric activator (K a =1.5 M), while feedback inhibition was effected by l-tyrosine (K i =15 M) or by l-phenylalanine (Ki=15 M). At pH 6.1, all three effectors acted competitively, influencing the apparent K m for chorismate. All three allosteric effectors protected isoenzyme CM-1 at pH 6.1 from thermal inactivation at 52° C. l-Tryptophan abolished the weak positive cooperativity of substrate binding found with isoenzyme CM-1 only at low pH. At pH 7.2, the allosteric effects of l-tyrosine and l-tryptophan were only modestly different, in striking contrast to results obtained with l-phenylalanine. At pH 7.2 (i) the K i for l-phenylalanine was elevated over 30-fold to 500 M, (ii) the kinetics of inhibition became non-competitive, and (iii) l-phenylalanine now failed to protect isoenzyme CM-1 against thermal inactivation. l-Phenylalanine may act at different binding sites depending upon the intracellular pH milieu. In-vitro data indicated that the relative ability of allosteric activation to dominate over allosteric inhibition increases markedly with both pH and temperature. The second isoenzyme, CM-2, was inhibited competitively by caffeic acid (K i =0.2 mM). Aromatic amino acids failed to affect CM-2 activity over a broad range of pH and temperature. Inhibition curves obtained in the presence of caffeic acid were sigmoid, yielding an interaction coefficient (from Hill plots) of n=1.8.Abbreviation DAHP synthase 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase  相似文献   

20.
Seven optical active 2-benzylamino alcohols were synthesized by reduction of N-benzoyl derivatives of L-alanine, L-valine, L-leucine, L-phenylalanine, L-aspartic acid, L-glutamic acid and L-lysine and applied for the resolution of (±)-trans-chrysanthemic acid. d-trans-Chrys-anthemic acid was obtained by resolution via the salts of 2-benzylamino alcohols derived from L-valine and L-leucine, while (?)-trans-chrysanthemic acid was prepared through the salts of the amino alcohols derived from L-alanine and L-phenylalanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号