首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Milnacipran is an antidepressant drug belonging to the class of serotonin and noradrenaline reuptake inhibitors. A sensitive high performance liquid chromatographic during the development method coupled with a fluorimetric detection was set up, validated and then used routinely of the drug. After liquid-liquid extraction, milnacipran and its internal standard were analyzed by reversed-phase liquid chromatography (LC). The drug was derivatized with fluorescamine for fluorescence detection. The identity of the liquid chromatography peaks was controlled using mass spectrometry. The assay linearity was validated up to 1000 ng/ml. The limit of quantification was set at 5 ng/ml. Precision values (relative standard deviations) were lower than 5.4%, whereas the mean accuracy was higher than 95%. The extraction recoveries were higher than 70% for both milnacipran and the internal standard. In clinics, the LC-fluorescence method was routinely used to investigate the pharmacokinetics of milnacipran in patients and proved to be robust and capable of quantifying milnacipran in plasma for at least 36 h (four- to five-fold the elimination half-life).  相似文献   

2.
A high-performance liquid chromatographic method for the determination of naproxen in plasma is described. The technique is based on the single extraction of the drug from acidified plasma with chloroform using 2-naphthalene acetic acid as internal standard. The chromatographic system consisted of a column packed with Spherisorb ODS (5 μm); the mobile phase was acetonitrile—phosphoric acid (pH 3) (45:55, v/v).The method can accurately measure plasma naproxen concentrations down to 1 μg/ml using 100 μl of sample, with no interference from endogenous compounds. The coefficients of variation of the method at 120 μg/ml and 1 μg/ml are 2.8 and 21.6%, respectively, and the calibration curve is linear. The method described is very suitable for routine clinical and pharmacokinetic studies.  相似文献   

3.
A gas chromatographic method for the determination of oxpentifylline and a metabolite, 1-(5′-hydroxyhexyl)-3,7-dimethylxanthine is described. Oxpentifylline, metabolite and internal standard are extracted from basified plasma into dichloromethane, then the metabolite and internal standard are converted to their O-trifluoroacetates. Analysis by gas—liquid chromatography using a nitrogen-selective detector allows quantification of oxpentifylline and 1-(5′-hydroxyhexyl)-3,7-dimethylxanthine down to levels of 3 ng/ml and 3–10 ng/ml, respectively. The assay had been applied to plasma samples from volunteers after both intravenous and oral administration of oxpentifylline. The need to separate plasma from erythrocytes immediately after venipuncture sampling to prevent further metabolism of oxpentifylline is emphasized.  相似文献   

4.
A method for the simultaneous determination of de(N-methyl)-N-ethyl-8,9-anhydroerythromycin A 6,9-hemiacetal (EM523, I) and its three metabolites in human plasma and urine has been developed using high-performance liquid chromatography (HPLC) with chemiluminescence (CL) detection. Plasma and urine samples spiked with erythromycin as an internal standard were extracted with a mixture of dichloromethane and diethyl ether under alkaline conditions. The ortanic layer was evaporated under a stream of nitrogen gas. The reconstituted sample was injected into an HPLC apparatus and separated on an ODS column using a gradient elution method. The elute was reacted on-line with a mixture of tris(2,2′-bipyridine) ruthenium(II) and peroxodisulfate, and the generated CL intensity was detected. Optimization of the CL reaction conditions resulted in a sensitive and stable CL intensity for the determination of I and its metabolites. The recovery of each compound from human plasma and urine, and the sensitivity, linearity, accuracy and precision of the method were satisfactory. The lower limits of quantitation for each compound using 0.2 ml of plasma and 0.1 ml of urine were 1 and 00 ng/ml, respectively. This method has been used for the determination of I in samples from clinical trials.  相似文献   

5.
A sensitive and selective high-performance liquid chromatographic method for the determination of 6-methylen-androsta-1,4-diene-3,17-dione (exemestane) and its 17-dihydro metabolite in human plasma has been developed. The analytes and internal standard (Norgestrel) were extracted from plasma samples with a methylene chloride—iso—octane mixture; the organic phase was dried and the residue was reconstituted with an acetonitrile—water mixture, then analyzed by reversed-phase liquid chromatography. Quantification was achieved by ultraviolet detection of the eluate. The linearity, precision and accuracy of the method were evaluated. No interference from the constituents of human blank plasma was observed. The lower limit of quantification was 10 ng/ml plasma. The suitability of the method for in vivo samples was checked by analysis of plasma samples drawn from healthy male volunteers who had received a 200-mg single oral dose of the test compound.  相似文献   

6.
A micro method for determination of indomethacin in plasma was developed. Following deproteinization of plasma with acetonitrile containing internal standard (mefenamic acid), the separation of indomethacin and internal standard was achieved by high-performance liquid chromatography using a 7 μm LiChrosorb-RP18 column (250×4 mm I.D.) at 50°C. The mobile phase was 6 mM phosphoric acid–acetonitrile (50:50). The flow-rate was kept at 2.0 ml/min and the column effluent was monitored at 205 nm. The coefficients of variation of the method estimated at 0.2 and 1.0 μg/ml were 4.2 and 2.3%, and the detection limit of the drug was about 0.05 μg/ml (S/N=5). The method requires minimum pretreatment of the plasma with a small sample volume (25 μl), and is very suitable for therapeutic drug monitoring of indomethacin in premature infants with symptomatic patent ductus arteriosus.  相似文献   

7.
A gas chromatography—mass spectrometry method for quantitation of the thyreostatic agent methimazole in plasma is described. The drug was transferred from the plasma sample and derivatized in one step by extractive alkylation. Either of two alkylating agents benzylchloride or pentafluorobenzyl bromide were used. Deuterium-labelled methimazole was used as internal standard. The precision of the method at the level of 5 ng methimazole per ml plasma was 6%.  相似文献   

8.
A methane chemical ionization quantitative assay for methylphenidate and its major metabolite, ritalinic acid, is described. Methylphenidate and the internal standard, ethylphenidate, were extracted from plasma samples and derivatized to prevent thermal decomposition in the gas chromatography. Ritalinic acid was esterified with diazomethane and extracted as methylphenidate. The intensity of the protonated molecular ion of the derivatized drug and internal standard was measured by selected ion monitoring. Calibration curves were prepared from drug standards dissolved in drug-free plasma, and the lower limit of the curves extended to 0.5 ng methylphenidate per ml plasma. The method was used to generate plasma decay curves for pediatric patients undergoing methylphenidate therapy.  相似文献   

9.
Nelfinavir mesylate, a potent and orally bioavailable inhibitor of HIV-1 protease (Ki=2 nM), has undergone Phase III clinical evaluation in a large population of HIV-positive patients. A high-performance liquid chromatography analytical method was developed to determine the pharmacokinetic parameters of the free base, nelfinavir, in these human subjects. The method involved the extraction of nelfinavir and an internal standard, 6,7-dimethyl-2,3-di-(2-pyridyl)quinoxaline, from 250 μl of human plasma with a mixture of ethyl acetate–acetonitrile (90:10, v/v). The analysis was via ultraviolet detection at 220 nm using a reversed-phase C18 analytical column and a mobile phase consisting of 25 mM monobasic sodium phosphate buffer (adjusted to pH 3.4 with phosphoric acid)–acetonitrile (58:42, v/v) that resolved the drug and internal standard peaks from non-specific substances in human plasma. The method was validated under Good Laboratory Practice (GLP) conditions for specificity, inter- and intra-assay precision and accuracy, absolute recovery and stability. The mean recovery ranged from 92.4 to 83.0% for nelfinavir and was 95.7% for the internal standard. The method was linear over a concentration range of 0.0300 μg/ml to 10 μg/ml, with a minimum quantifiable level of 0.0500 μg/ml for nelfinavir.  相似文献   

10.
A new method was developed for determination of itopride in human serum by reversed phase high-performance liquid chromatography (HPLC) with fluorescence detection (excitation at 291 nm and emission at 342 nm). The method employed one-step extraction of itopride from serum matrix with a mixture of tert-butyl methyl ether and dichloromethane (70:30, v/v) using etoricoxib as an internal standard. Chromatographic separation was obtained within 12.0 min using a reverse phase YMC-Pack AM ODS column (250 mm x 4.6 mm, 5 microm) and an isocratic mobile phase constituting of a mixture of 0.05% tri-fluoro acetic acid in water and acetonitrile (75:25, v/v) flowing at a flow rate of 1.0 ml/min. The method was linear in the range of 14.0 ng/ml to 1000.0 ng/ml. The lower limit of quantitation (LLOQ) was 14.0 ng/ml. Average recovery of itopride and the internal standard from the biological matrix was more than 66.04 and 64.57%, respectively. The inter-day accuracy of the drug containing serum samples was more than 97.81% with a precision of 2.31-3.68%. The intra-day accuracy was 96.91% or more with a precision of 5.17-9.50%. Serum samples containing itopride were stable for 180.0 days at -70+/-5 degrees C and for 24.0 h at ambient temperature (25+/-5 degrees C). The method was successfully applied to the bioequivalence study of itopride in healthy, male human subjects.  相似文献   

11.
An analytical method employing reversed-phase high-performance liquid chromatography is described for the determination of a potential anxiolytic agent in human plasma. This experimental drug candidate has potent and selective affinity for the central benzodiazepine receptor complex. The compound and internal standard are extracted from buffered plasma (pH 9.0) into ethyl acetate. The solvent is evaporated and the residue is reconstituted in chromatographic mobile phase. Separation is achieved on a 5-μm phenyl column with ultraviolet absorbance detection of the drug and internal standard at 270 nm. Recovery and reproducibility assessments indicate good accuracy (overall relative recovery of 101%) and precision (coefficients of variation from 2.0 to 11%) over the concentration range 10–1000 ng/ml. The limit of quantification for the method is 10 ng/ml. The method is suitable for pharmacokinetic analysis following the administration of 80 mg of drug to normal volunteers.  相似文献   

12.
A simple method for determination of mimosine and 3,4-dihydroxypyridine (3,4-DHP) in plasma and milk was developed. Milk and plasma, with tyrosine as internal standard, were deproteinized using 9% trichloracetic acid and extracted with diethyl ether. Metabolites were separated by isocratic high-performance liquid chromatography, with 0.02 M orthophosphoric acid (pH 2.5) at 0.5 ml/min and a Hypersil ODS microbore column. Mimosine, 3,4-DHP and tyrosine were detected at 275 nm. The recovery of the mimosine added to the plasma samples 101.6±2.3% and 103.3±1.0% for milk samples. 3,4-DHP recovery for plasma samples was 101.2±0.9% and for milk samples 100.8±1.4%. The reproducibility of the method was evaluated by analyzing six plasma samples and six goat milk samples. The analyses yielded relative standard deviations of 2.65 and 2.82%, respectively.  相似文献   

13.
Ertapenem is a new once-a-day antibiotic with excellent coverage of common community gram negative and gram positive aerobes and anaerobes. It demonstrates nonlinear protein binding in human plasma (about 94% bound). An assay for unbound drug was developed to study the pharmacokinetics of unbound ertapenem in plasma. Unbound drug is separated from plasma samples (1.0 ml) by ultrafiltration using a Centrifree((R)) centrifugal filter device. Ertapenem (vulnerable to hydrolysis of the beta-lactam moiety) is stabilized in the filtrate by adding an equal volume of 0.1 M MES buffer, pH 6.5 and then is analyzed by reversed-phase high-performance liquid chromatography (HPLC) with ultraviolet (UV) absorbance detection (300 nm). Non-specific binding to the Centrifree((R)) device is <3%. A suitable internal standard is not available. The assay is specific and linear over the concentration range of 0.25 to 100 microgram/ml in plasma filtrate. The lower limit of quantitation (LLOQ) is 0.25 microgram/ml. Intra-day precision is C.V.<10% and accuracy ranges from 97 to 101% of nominal concentration. Inter-day precision and accuracy were determined using quality control samples (QCs) prepared in plasma ultrafiltrate at 0.5, 12 and 80 microgram/ml and stored at -70 degrees C with stabilizer. Inter-day assay accuracy and precision ranged from 100 to 111% of nominal concentration and 1.8 to 5.3% C.V. (n=40), respectively. The assay has been used to analyze plasma samples from subjects receiving 500 and 2000 mg i.v. doses of ertapenem (30 min infusion).  相似文献   

14.
A sensitive (50 pg/ml) method for the determination of heptylphysostigmine in human plasma is described. The procedure is based on liquid—liquid extraction of the drug from buffered plasma, and analysis of the concentrated organic extract using high-performance liquid chromatography on a silica column, under normal-phase chromatographic conditions, with fluorescence detection. Physostigmine was used as an internal standard. The assay has been fully validated in the concentration range 50–2000 pg/ml and utilized for the analysis of clinical samples from subjects dosed with heptylphysostigmine.  相似文献   

15.
A method was developed for the rapid quantitative analysis of chlorpheniramine in plasma, saliva and urine using high-performance liquid chromatography. A diethyl ether or hexane extract of the alkalinized biological samples was extracted with dilute acid which was chromatographed on a reversed-phase column using mixtures of acetonitrile and ammonium phosphate buffer as the mobile phase. Ultraviolet absorption at 254 nm was monitored for the detection and brompheniramine was employed as the internal standard for the quantitation. The effects of buffer, pH, and acetonitrile concentration in the mobile phase on the chromatographic separation were investigated. A mobile phase 20% acetonitrile in 0.0075 M phosphate buffer at a flow-rate of 2 ml/min was used for the assays of plasma and saliva samples. A similar mobile phase was used for urine samples. The drug and internal standard were eluted at retention volumes of less than 17 ml. The method can also be used to quantify two metabolites, didesmethyl- and desmethylchlorpheniramine, in the urine. The method can accurately measure chlorpheniramine levels down to 2 ng/ml in plasma or saliva using 1 ml of sample, and should be adequate for biopharmaceutical and pharmacokinetic studies. Various precautions for using the assay are discussed.  相似文献   

16.
A rapid method for the quantification of amiodarone and desethylamiodarone in animal plasma using high-performance liquid chromatography combined with UV detection (HPLC-UV) is presented. The sample preparation includes a simple deproteinisation step with acetonitrile. In addition, a sensitive method for the quantification of amiodarone and desethylamiodarone in horse plasma and urine using high-performance liquid chromatography combined with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) is described. The sample preparation includes a solid-phase extraction (SPE) with a SCX column. Tamoxifen is used as an internal standard for both chromatographic methods. Chromatographic separation is achieved on an ODS Hypersil column using isocratic elution with 0.01% diethylamine and acetonitrile as mobile phase for the HPLC-UV method and with 0.1% formic acid and acetonitrile as mobile phase for the LC-MS/MS method. For the HPLC-UV method, good linearity was observed in the range 0-5 microg ml(-1), and in the range 0-1 microg ml(-1) for the LC-MS/MS method. The limit of quantification (LOQ) was set at 50 and 5 ng ml(-1) for the HPLC-UV method and the LC-MS/MS method, respectively. For the UV method, the limit of detection (LOD) was 15 and 10 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The LODs of the LC-MS/MS method in plasma were much lower, i.e. 0.10 and 0.04 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The LODs obtained for the urine samples were 0.16 and 0.09 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The methods were shown to be of use in horses. The rapid HPLC-UV method was used for therapeutic drug monitoring after amiodarone treatment, while the LC-MS/MS method showed its applicability for single dose pharmacokinetic studies.  相似文献   

17.
Solid-phase microextraction (SPME) was investigated as a sample preparation method for assaying the neuroleptic drug clozapine in human plasma. A mixture of human plasma, water, loxapine (as internal standard) and aqueous NaOH was extracted with a 100-μm polydimethylsiloxane (PDMS) fiber (Supelco). Desorption of the fiber was performed in the injection port of a gas chromatograph at 260°C (HP 5890; 30 m×0.53 mm I.D., 1 μm film capillary; nitrogen–phosphorous selective detection). Fibers were used repeatedly in up to about 75 analyses. The recovery was found to be 3% for clozapine from plasma after 30 min of extraction. However, in spite of the low recovery, the analyte was well separated and the calibration was linear between 100 and 1000 ng/ml. The within-day and between-day precision was consistently about 8 to 15% at concentrations of 200 ng/ml to 1000 ng/ml. No interfering drug was found. The limit of detection was 30 ng/ml. The sample volume was 250 μl. The influence of the concentration of proteins, triglycerides and salt, i.e., changes in the matrix on the peak areas and peak-area ratios was studied. The method is not impaired by physiological changes in the composition of the matrix. Good agreement was found with a liquid–liquid extraction–gas–liquid chromatography (LLE–GLC) standard method and an on-line column-switching high-performance liquid chromatography (HPLC) method for patients’ samples and spiked samples, respectively. It is concluded that the method can be used in the therapeutic drug monitoring of clozapine because the therapeutic window of clozapine is from 350 to 600 ng/ml.  相似文献   

18.
A new HPLC method was developed for the estimation of carboxylic acid metabolite of clopidogrel bisulfate in rat plasma using atorvastatin as internal standard. Plasma samples were extracted with a mixture of ethyl acetate and di-chloro methane (80:20, v/v) followed by subsequent reconstitution in a mixture of water:methanol:acetonitrile (40:40:20, v/v). The chromatographic separation was achieved with gradient elution on Kromasil ODS, 250 mm x 4.6 mm i.d., 5 microm analytical column maintained at 30 degrees C. Carboxylic acid metabolite of clopidogrel as well as the internal standard were detected at a wavelength of 220 nm. The method was validated as per USFDA guidelines. Calibration curves were linear in the concentration range of 125.0-32,000 ng/ml and the correlation coefficient was better than 0.999. The extraction efficiency for the carboxylic acid metabolite of clopidogrel was more than 85.76%. The intra-day accuracy ranged from 98.9% to 101.5% with a precision of 1.30% to 6.06%. Similarly, the inter-day accuracy was between 96.2% and 101.1% with a precision of 3.47% to 4.30%. The drug containing plasma samples were stable at -70 degrees C for 48 days and at ambient temperature for 24h. In the auto-sampler maintained at 15 degrees C, the processed and reconstituted samples were stable for 35 h. The drug containing frozen plasma samples were stable enough to with stand three freeze thaw cycles. The method was successfully applied to the pharmacokinetic study of the two different polymorphs of clopidogrel bisulfate in Wistar rat.  相似文献   

19.
A high-performance liquid chromatographic method for the determination of bufaralol, a benzofuran analogue, in plasma is described.The unchanged drug, the major metabolites and an internal standard are extracted from plasma, purified by back-extraction steps and thereafter separated using a reversed-phase liquid chromatographic system. The detection is carried out by means of a fluorescence detector and an UV detector connected in series. The sensitivity of the assay for the unchanged drug and the major metabolite is about 1 ng/ml plasma using a 0.5 ml specimen per analysis and the relative standard deviation of the whole assay lies in the range ± 4–5%.The procedure was successfully used to determine plasma levels in volunteers following a single oral dose of 40 mg of bufaralol. The results obtained using the new high-performance liquid chromatographic method were compared with those determined by another method which combines gas chromatography with mass fragmentography, and it was found that these two sets of results coincided quite well.  相似文献   

20.
A highly sensitive and selective method has been developed and validated to determine limaprost, a prostaglandin (PG) E(1) analogue, in human plasma by on-line two-dimensional reversed-phase liquid chromatography-tandem mass spectrometry (2D-LC/MS/MS) due to the lack of efficient methods to determine very low levels of limaprost in plasma. Limaprost and its deuterium derivatives, used as internal standard, were extracted by protein precipitation and following three-step solid phase extractions. After extraction procedure, samples were analyzed by on-line 2D-LC/MS/MS with electrospray ionization in negative mode. The 2D-LC system consists of Phenyl column at first dimension and ODS at second dimension with a trapping column placed between the separation columns. The linear dynamic range of this method was 0.1-10 pg/ml with 3 ml of plasma (r >0.9987). Acceptable precision and accuracy were obtained over the calibration curve ranges. The assay has been successfully used in analyses of human plasma samples to support clinical pharmacokinetics studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号