首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The human gastric pathogenic bacterium Helicobacter pylori lacks a MutSLH-like DNA mismatch repair system. Here, we have investigated the functional roles of a mutS homologue found in H. pylori, and show that it plays an important physiological role in repairing oxidative DNA damage. H. pylori mutS mutants are more sensitive than wild-type cells to oxidative stress induced by agents such as H2O2, paraquat or oxygen. Exposure of mutS cells to oxidative stress results in a significant ( approximately 10-fold) elevation of mutagenesis. Strikingly, most mutations in mutS cells under oxidative stress condition are G:C to T:A transversions, a signature of 8-oxoguanine (8-oxoG). Purified H. pylori MutS protein binds with a high specific affinity to double-stranded DNA (dsDNA) containing 8-oxoG as well as to DNA Holliday junction structures, but only weakly to dsDNA containing a G:A mismatch. Under oxidative stress conditions, mutS cells accumulate higher levels (approximately threefold) of 8-oxoG DNA lesions than wild-type cells. Finally, we observe that mutS mutant cells have reduced colonization capacity in comparison to wild-type cells in a mouse infection model.  相似文献   

2.
Fanconi anaemia (FA) is a cancer-prone genetic disorder that is characterised by cytogenetic instability and redox abnormalities. Although rare subtypes of FA (B, D1 and D2) have been implicated in DNA repair through links with BRCA1 and BRCA2, such a role has yet to be demonstrated for gene products of the common subtypes. Instead, these products have been strongly implicated in xenobiotic metabolism and redox homeostasis through interactions of FANCC with cytochrome P-450 reductase and with glutathione S-transferase, and of FANCG with cytochrome P-450 2E1, as well as redox-dependent signalling through an interaction between FANCA and Akt kinase. We hypothesise that FA proteins act directly (via FANCC and FANCG) and indirectly (via FANCA, BRCA2 and FANCD2) with the machinery of cellular defence to modulate oxidative stress. The latter interactions may co-ordinate the link between the response to DNA damage and oxidative stress parameters (3, 6-12).  相似文献   

3.
Asthma is characterized by the influx of inflammatory cells, especially of eosinophils as well as reactive oxygen species (ROS) production, driven by the release of the T helper 2 (Th2)-cell-associated cytokines. The cholinergic anti-inflammatory pathway (CAP) inhibit cytokines production and controls inflammation. Thus, we investigated the effects of pharmacological activation of CAP by neostigmine on oxidative stress and airway inflammation in an allergic asthma model. After the OVA challenge, mice were treated with neostigmine. We showed that CAP activation by neostigmine reduced the levels of pro-inflammatory cytokines (IL-4, IL-5, IL-13, IL-1β, and TNF-α), which resulted in a decrease of eosinophils influx. Furthermore, neostigmine also conferred airway protection against oxidative stress, attenuating ROS production through the increase of antioxidant defense, evidenced by the catalase (CAT) activity. We propose, for the first time, that pharmacological activation of the CAP can lead to new possibilities in the therapeutic management of allergic asthma.  相似文献   

4.
5.
Platelet endothelial cell adhesion molecule-1 (PECAM-1; CD31) is a 130-kDa member of the Ig superfamily that is expressed on platelets and leukocytes and is highly enriched at endothelial cell-cell junctions. Previous studies showed that this vascular cell adhesion and signaling receptor functions to regulate platelet activation and thrombosis, to suppress apoptotic cell death, to mediate transendothelial migration of leukocytes, and to maintain the integrity of the vasculature. Because systemic exposure to the bacterial endotoxin LPS triggers an acute inflammatory response that involves many of these same processes, we compared the pathophysiological responses of wild-type versus PECAM-1-deficient mice to LPS challenge. We found that PECAM-1-deficient mice were significantly more sensitive to systemic LPS administration than their wild-type counterparts and that the lack of PECAM-1 expression at endothelial cell-cell junctions could account for the majority of the increased LPS-induced mortality observed. The diverse functional roles played by PECAM-1 in thrombosis, inflammation, apoptosis, and the immune response may make this molecule an attractive target for the development of novel therapeutics to manage and treat endotoxic shock.  相似文献   

6.
This study investigated the stress responses of cinnamic acid (CA) in pea plants and explored the protective role of spermidine (SPD) against CA-induced adverse effects. Pea seedlings exposed to CA had reduced length, biomass, moisture, chlorophyll, sugar, and protein contents and reduced nitrate reductase activity. These parameters increased when SPD was applied alone and in combination with CA. Electrolyte leakage and malondialdehyde content were high in seedlings treated with CA but decreased when the SPD + CA treatment was applied. Foliar exposure to SPD partially mitigated CA-induced stress effects by strengthening the antioxidant defense system, which helped preserve the integrity of biochemical processes. These results indicate that SPD (1 mM) could mitigate the adverse effects of CA and enhance plant defense system. Hence, SPD can be used as a growth regulator for the maintenance of physiological functions in pea plants in response to the pernicious consequences of CA stress.  相似文献   

7.
There is some anecdotal evidence that oxygen-ozone therapy may be beneficial in some human diseases. However so far only a few biochemical and pharmacodynamic mechanisms have been elucidated. On the basis of preliminary data we postulated that controlled ozone administration would promote an oxidative preconditioning preventing the hepatocellular damage mediated by free radicals. Six groups of rats were classified as follows: (1) negative control, using intraperitoneal sunflower oil; (2) positive control using carbon tetrachloride (CCl4) as an oxidative challenge; (3) oxygen-ozone, pretreatment via rectal insufflation (15 sessions) and after it, CCl4; (4) oxygen, as group 3 but using oxygen only; (5) control oxygen-ozone, as group 3, but without CCl4; group (6) control oxygen, as group 5, but using oxygen only. We have evaluated critical biochemical parameters such as levels of transaminase, cholinesterase, superoxide dismutase, catalase, phospholipase A, calcium dependent ATPase, reduced glutathione, glucose 6 phosphate dehydrogenase and lipid peroxidation. Interestingly, in spite of CCl4 administration, group 3 did not differ from group 1, while groups 2 and 4 showed significant differences from groups 1 and 3 and displayed hepatic damage. To our knowledge these are the first experimental results showing that repeated administration of ozone in atoxic doses is able to induce an adaptation to oxidative stress thus enabling the animals to maintain hepatocellular integrity after CCl4 poisoning.  相似文献   

8.
The present review deals with the chemical properties of selenium in relation to its antioxidant properties and its reactivity in biological systems. The interaction of selenite with thiols and glutathione and the reactivity of selenocompounds with hydroperoxides are described. After a short survey on distribution, metabolism and organification of selenium, the role of this element as a component of the two seleno-dependent glutathione peroxidases is described. The main features of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are also reviewed. Both enzymes reduce different hydroperoxides to the corresponding alcohols and the major difference is the reduction of lipid hydroperoxides in membrane matrix catalyzed only by the phospholipid hydroperoxide glutathione peroxidase. However, in spite of the different specificity for the peroxidic substrates, the kinetic mechanism of both glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase seems identical and proceeds through a tert-uni ping pong mechanism. In the reaction cycle, indeed, as supported by the kinetic data, the oxidation of the ionized selenol by the hydroperoxide yields a selenenic acid that in turn is reduced back by two reactions with reduced glutathione. Special emphasis has been given to the role of selenium-dependent glutathione peroxidases in the prevention of membrane lipid peroxidation. While glutathione peroxidase is able to reduce hydrogen peroxide and other hydroperoxides possibly present in the soluble compartment of the cell, this enzyme fails to inhibit microsomal lipid peroxidation induced by NADPH or ascorbate and iron complexes. On the other hand, phospholipid hydroperoxide glutathione peroxidase, by reducing the phospholipid hydroperoxides in the membranes, actively prevents lipid peroxidation, provided a normal content of vitamin E is present in the membranes. In fact, by preventing the free radical generation from lipid hydroperoxides, phospholipid hydroperoxide glutathione peroxidase decreases the vitamin E requirement necessary to inhibit lipid peroxidation. Finally, the possible regulatory role of the selenoperoxidases on the arachidonic acid cascade enzymes (cyclooxygenase and lipoxygenase) is discussed.  相似文献   

9.
The murine cytomegalovirus (MCMV) immediate-early gene 1 (IE1) encodes an 89-kDa phosphoprotein (pp89) which plays a key role in protecting BALB/c mice against the lethal effects of the MCMV infection. In this report, we have addressed the question of whether "naked DNA" vaccination with a eukaryotic expression vector (pcDNA-89) that contains the MCMV IE1 gene driven by a strong enhancer/promoter can confer protection. BALB/c mice were immunized intradermally with pcDNA-89 or with the plasmid backbone pcDNAI/Amp (pcDNA) and then challenged 2 weeks later with either a lethal or a sublethal intraperitoneal dose of the K181 strain of MCMV. Variable results were obtained for the individual experiments in which mice received a lethal challenge. In four separate trials, an average of 63% of the mice immunized with pcDNA-89 survived, compared with 18% of the mice immunized with pcDNA. However, in two other trials there was no specific protection. The results of experiments in which mice were injected with a sublethal dose of MCMV were more consistent, and significant decreases in viral titer in the spleen and salivary glands of pcDNA-89-immunized mice were observed, relative to controls. At the time of peak viral replication, titers in the spleens of immunized mice were reduced 18- to >63-fold, while those in the salivary gland were reduced approximately 24- to 48-fold. Although DNA immunization elicited only a low level of seroconversion in these mice, by 7 weeks postimmunization the mice had generated a cytotoxic T-lymphocyte response against pp89. These results suggest that DNA vaccination with selected CMV genes may provide a safe and efficient means of immunizing against CMV disease.  相似文献   

10.
2,3-Dihydroxybiphenyl 1,2-dioxygenase (EC ), the extradiol dioxygenase of the biphenyl biodegradation pathway, is subject to inactivation during the steady-state cleavage of catechols. Detailed analysis revealed that this inactivation was similar to the O(2)-dependent inactivation of the enzyme in the absence of catecholic substrate, resulting in oxidation of the active site Fe(II) to Fe(III). Interestingly, the catecholic substrate not only increased the reactivity of the enzyme with O(2) to promote ring cleavage but also increased the rate of O(2)-dependent inactivation. Thus, in air-saturated buffer, the apparent rate constant of inactivation of the free enzyme was (0.7 +/- 0.1) x 10(-3) s(-1) versus (3.7 +/- 0.4) x 10(-3) s(-1) for 2,3-dihydroxybiphenyl, the preferred catecholic substrate of the enzyme, and (501 +/- 19) x 10(-3) s(-1) for 3-chlorocatechol, a potent inactivator of 2,3-dihydroxybiphenyl 1,2-dioxygenase (partition coefficient = 8 +/- 2, K(m)(app) = 4.8 +/- 0.7 microm). The 2,3-dihydroxybiphenyl 1,2-dioxygenase-catalyzed cleavage of 3-chlorocatechol yielded predominantly 2-pyrone-6-carboxylic acid and 2-hydroxymuconic acid, consistent with the transient formation of an acyl chloride. However, the enzyme was not covalently modified by this acyl chloride in vitro or in vivo. The study suggests a general mechanism for the inactivation of extradiol dioxygenases during catalytic turnover involving the dissociation of superoxide from the enzyme-catecholic-dioxygen ternary complex and is consistent with the catalytic mechanism.  相似文献   

11.
12.
The META cluster of Leishmania amazonensis contains both META1 and META2 genes, which are upregulated in metacyclic promastigotes and encode proteins containing the META domain. Previous studies defined META2 as a 48.0-kDa protein, which is conserved in other Leishmania species and in Trypanosoma brucei. In this work, we demonstrate that META2 protein expression is regulated during the Leishmania life cycle but constitutive in T. brucei. META2 protein is present in the cytoplasm and flagellum of L. amazonensis promastigotes. Leishmania META2-null replacement mutants are more sensitive to oxidative stress and, upon heat shock, assume rounded morphology with shortened flagella. The increased susceptibility of null parasites to heat shock is reversed by extra-chromosomal expression of the META2 gene. Defective Leishmania promastigotes exhibit decreased ability to survive in macrophages. By contrast, META2 expression is decreased by 80% in RNAi-induced T. brucei bloodstream forms with no measurable effect on survival or resistance to heat shock.  相似文献   

13.
Summary. The polyamines spermidine and spermine have been hypothesized to possess different functions in the protection of DNA from reactive oxygen species. The growth and survival of mouse fibroblasts unable to synthesize spermine were compared to their normal counterparts in their native and polyamine-depleted states in response to oxidative stress. The results of these studies suggest that when present at normal or supraphysiological concentrations, either spermidine or spermine can protect cells from reactive oxygen species. However, when polyamine pools are pharmacologically manipulated to produce cells with low levels of predominately spermine or spermidine, spermine appears to be more effective. Importantly, when cells are depleted of both glutathione and endogenous polyamines, they exhibit increased sensitivity to hydrogen peroxide as compared to glutathione depletion alone, suggesting that polyamines not only play a role in protecting cells from oxidative stress but this role is distinct from that played by glutathione.  相似文献   

14.
In this mini review we summarize recent studies from our laboratory that show the involvement of superoxide and the lipid peroxidation product 4-hydroxynonenal in the regulation of mitochondrial uncoupling. Superoxide produced during mitochondrial respiration is a major cause of the cellular oxidative damage that may underlie degenerative diseases and ageing. Superoxide production is very sensitive to the magnitude of the mitochondrial protonmotive force, so can be strongly decreased by mild uncoupling. Superoxide is able to give rise to other reactive oxygen species, which elicit deleterious effects primarily by oxidizing intracellular components, including lipids, DNA and proteins. Superoxide-induced lipid peroxidation leads to the production of reactive aldehydes, including 4-hydroxynonenal. These aldehydic lipid peroxidation products are in turn able to modify proteins such as mitochondrial uncoupling proteins and the adenine nucleotide translocase, converting them into active proton transporters. This activation induces mild uncoupling and so diminishes mitochondrial superoxide production, hence protecting against disease and oxidative damage at the expense of energy production.  相似文献   

15.
Modulation of radiation- and metal ion-catalyzed oxidative-induced damage using plasmid DNA, genomic DNA, and cell survival, by three nitroxides and their corresponding hydroxylamines, were examined. The antioxidant property of each compound was independently determined by reacting supercoiled DNA with copper II/1,10-phenanthroline complex fueled by the products of hypoxanthine/xanthine oxidase (HX/XO) and noting the protective effect as assessed by agarose gel electrophoresis. The nitroxides and their corresponding hydroxylamines protected approximately to the same degree (33-47% relaxed form) when compared to 76.7% relaxed form in the absence of protectors. Likewise, protection by both the nitroxide and corresponding hydroxylamine were observed for Chinese hamster V79 cells exposed to hydrogen peroxide. In contrast, when plasmid DNA damage was induced by ionizing radiation (100 Gy), only nitroxides (10 mM) provide protection (32.4-38.5% relaxed form) when compared to radiation alone or in the presence of hydroxylamines (10 mM) (79.8% relaxed form). Nitroxide protection was concentration dependent. Radiation cell survival studies and DNA double-strand break (DBS) assessment (pulse field electrophoresis) showed that only the nitroxide protected or prevented damage, respectively. Collectively, the results show that nitroxides and hydroxylamines protect equally against the damage mediated by oxidants generated by the metal ion-catalyzed Haber-Weiss reaction, but only nitroxides protect against radiation damage, suggesting that nitroxides may more readily react with intermediate radical species produced by radiation than hydroxylamines.  相似文献   

16.
Pang CH  Li K  Wang B 《Physiologia plantarum》2011,143(4):355-366
To evaluate the physiological importance of chloroplastic ascorbate peroxidase (CHLAPX) in the reactive oxygen species (ROS)‐scavenging system of a euhalophyte, we cloned the CHLAPX of Suaeda salsa (SsCHLAPX) encoding stromal APX (sAPX) and thylakoid‐bound APX. The stromal APX of S. salsa (Ss.sAPX) cDNA consists of 1726 nucleotides including an 1137‐bp open reading frame (ORF) and encodes 378 amino acids. The thylakoid‐bound APX of S. salsa (Ss.tAPX) cDNA consists of 1561 nucleotides, including a 1284‐bp ORF, and encodes 427 amino acids. The N‐terminal 378 amino acids of Ss.sAPX are identical with those of Ss.tAPX, whereas the C‐terminal 49 amino acids differ. Arabidopsis thaliana lines overexpressing Ss.sAPX and Ss.tAPX were constructed using Agrobacterium tumefaciens transformation methods. Under high light (1000 µmol m?2 s?1), malondialdehyde (MDA) content was lower in transgenic plants than in the wild type. Under high light, Fv/Fm and chlorophyll contents of both overexpressing lines and the wild type declined but were significantly higher in the overexpressing lines than in the wild type. The activities of APX (EC 1.11.1.11), catalase (CAT 1.11.1.6) and superoxide dismutase (SOD EC 1.15.1.1) were higher in the overexpressing lines than in the wild type. The transgenic plants showed increased tolerance to oxidative stress caused by high light. These results suggest that SsCHLAPX plays an important role in scavenging ROS in chloroplasts under stress conditions such as high light.  相似文献   

17.
Aspergillus fumigatus is an important human fungal pathogen. The Aspergillus fumigatus genome contains 14 nonribosomal peptide synthetase genes, potentially responsible for generating metabolites that contribute to organismal virulence. Differential expression of the nonribosomal peptide synthetase gene, pes1, in four strains of Aspergillus fumigatus was observed. The pattern of pes1 expression differed from that of a putative siderophore synthetase gene, sidD, and so is unlikely to be involved in iron acquisition. The Pes1 protein (expected molecular mass 698 kDa) was partially purified and identified by immunoreactivity, peptide mass fingerprinting (36% sequence coverage) and MALDI LIFT-TOF/TOF MS (four internal peptides sequenced). A pes1 disruption mutant (delta pes1) of Aspergillus fumigatus strain 293.1 was generated and confirmed by Southern and western analysis, in addition to RT-PCR. The delta pes1 mutant also showed significantly reduced virulence in the Galleria mellonella model system (P < 0.001) and increased sensitivity to oxidative stress (P = 0.002) in culture and during neutrophil-mediated phagocytosis. In addition, the mutant exhibited altered conidial surface morphology and hydrophilicity, compared to Aspergillus fumigatus 293.1. It is concluded that pes1 contributes to improved fungal tolerance against oxidative stress, mediated by the conidial phenotype, during the infection process.  相似文献   

18.
DNA vaccination has been evaluated with the lymphocytic choriomeningitis virus (LCMV) model system. Plasmid DNA encoding the LCMV nucleoprotein, when injected intramuscularly, induces both antiviral antibodies and cytotoxic T lymphocytes. Injection of DNA encoding the nucleoprotein or the viral glycoprotein confers protection against normally lethal LCMV challenge in a major histocompatibility complex-dependent manner. The protection conferred is incomplete, but it is most probably mediated by the induced cytotoxic T lymphocytes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号