首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Several ecological and genetic factors affect the diet specialization of insect herbivores. The evolution of specialization may be constrained by lack of genetic variation in herbivore performance on different food‐plant species. By traditional view, trade‐offs, that is, negative genetic correlations between the performance of the herbivores on different food‐plant species favour the evolution of specialization. To investigate whether there is genetic variation or trade‐offs in herbivore performance between different food plants that may influence specialization of the oligophagous seed‐eating herbivore, Lygaeus equestris (Heteroptera), we conducted a feeding trial in laboratory using four food‐plant species. Although L. equestris is specialized on Vincetoxicum hirundinaria (Apocynaceae) to some degree, it occasionally feeds on alternative food‐plant species. We did not find significant negative genetic correlations between mortality, developmental time and adult biomass of L. equestris on the different food‐plant species. We found genetic variation in mortality and developmental time of L. equestris on some of the food plants, but not in adult biomass. Our results suggest that trade‐offs do not affect adaptation and specialization of L. equestris to current and novel food‐plant species, but the lack of genetic variation may restrict food‐plant utilization. As food‐plant specialization of herbivores may have wide‐ranging effects, for instance, on coevolving plant–herbivore interactions and speciation, it is essential to thoroughly understand the factors behind the specialization process. Our findings provide valuable information about the role of genetic factors in food‐plant specialization of this oligophagous herbivore.  相似文献   

2.
We tested the importance of innate wariness, avoidance learning, memory and generalization for the formation of predatory behaviour in naive great tits (Parus major) towards mimetic complex of four aposematic species of true bugs (Insecta: Hemiptera: Heteroptera): Lygaeus equestris, Spilostethus saxatilis, Pyrrhocoris apterus and Graphosoma lineatum. The birds showed almost no innate wariness against the aposematically coloured bugs, although a hidden wariness elicited by defensive chemicals of some of the bug species is not excluded. Naive birds learned to avoid different species at different rates, which resulted in different prey mortalities. The avoidance learning was faster when the defensive chemicals produced an immediate irritating effect (particularly when squirted into distance – Glineatum) than when they caused sickness several minutes after the consumption (P. apterus). The experience of birds from learning to avoid a particular species of bug affected their subsequent behaviour to other species – experience with better‐defended species resulted in longer attack latencies, more cautious attacks, broader generalization and lower prey mortality. The least defended species, Papterus, benefited from the experience of birds with better‐defended species, whereas the birds' experience with Papterus did not reduce mortality risk of the other species comparably. Judging from the inexperienced young birds, the mimetic relationships are likely to be quasi‐Batesian. However, as wild‐caught great tits avoid all the four species to the same extent, the relationships may become more mutualistic (quasi‐Müllerian) in later phases of learning under natural conditions. The relationships among species in the mimetic complex thus seem to depend on the amount of experience of the bird predators.  相似文献   

3.
Theory suggests that, under some circumstances, sexual conflict over mating can lead to divergent sexually antagonistic coevolution among populations for traits associated with mating, and that this can promote reproductive isolation and hence speciation. However, sexual conflict over mating may also select for traits (e.g. male willingness to mate) that enhance gene flow between populations, limiting population divergence. In the present study, we compare pre‐ and post‐mating isolation within and between two species characterized by male–female conflict over mating rate. We quantify sexual isolation among five populations of the seed bug Lygaeus equestris collected from Italy and Sweden, and two replicates of a population of the sister‐species Lygaeus simulans, also collected from Italy. We find no evidence of reproductive isolation amongst populations of L. equestris, suggesting that sexual conflict over mating has not led to population divergence in relevant mating traits in L. equestris. However, there was strong asymmetric pre‐mating isolation between L. equestris and L. simulans: male L. simulans were able to mate successfully with female L. equestris, whereas male L. equestris were largely unable to mate with female L. simulans. We found little evidence for strong post‐mating isolation between the two species, however, with hybrid F2 offspring being produced. Our results suggest that sexual conflict over mating has not led to population divergence, and indeed perhaps supports the contrary theoretical prediction that male willingness to mate may retard speciation by promoting gene flow.  相似文献   

4.
Several characteristics of habitats of herbivores and their food-plant communities, such as plant-species composition and plant quality, influence population genetics of both herbivores and their host plants. We investigated how different ecological and geographic factors affect genetic variation in and differentiation of 23 populations of the oligophagous seed predator Lygaeus equestris (Heteroptera) in southwestern Finland and in eastern Sweden. We tested whether genetic differentiation of the L. equestris populations was related to the similarity of vegetation, and whether there was more within-population genetic variation in habitats with a high number of plant species or in those with a large population of the primary food plant, Vincetoxicum hirundinaria. We also tested whether genetic differentiation of the populations was related to the geographic distance, and whether location of the populations on islands or on mainland, island size, or population size affected within-population genetic variation. Pairwise FST ranged from 0 to 0.1 indicating low to moderate genetic differentiation of populations. Differentiation increased with geographic distance between the populations, but was not related to the similarity of vegetation between the habitats. Genetic variation within the L. equestris populations did not increase with the population size of the primary food plant. However, the more diverse the plant community the higher was the level of genetic variation within the L. equestris population. Furthermore, the level of genetic variation did not vary significantly between island and mainland populations. The effect of the population size on within-population genetic variation was related to island size. Usually small populations are susceptible to loss of genetic variation, but small L. equestris populations on large islands seemed to maintain a relatively high level of within-population genetic variation. Our findings suggest that, in addition to geographic and species-specific ecological factors, the plant community affects population genetic structure of oligophagous herbivores.  相似文献   

5.
Summary An experiment was performed to assess the relative survival of two forms of 5th instar larvae of Lygaeus equestris (Heteroptera, Lygaeidae) — the normal red form, called aposematic, and a mutant grey form, called cryptic — when given to hand-raised great tits (Parus major).Sixteen birds were presented with aposematic larvae and 16 were presented with cryptic larvae in 10 consecutive trials. One attack per trial was allowed. Both larval forms were presented against a background matching the grey larvae, but since both prey types were presented in a specific place known to the predator, detection rate for both was assumed to be unity.Birds learned to avoid both prey types. However, the survival of the aposematic larvae was higher than that of the cryptic ones due to three aspects of predator behaviour: i) a greater initial reluctance to attack, ii) a more rapid avoidance learning, and iii) a lower frequency of killing in an attack, when the prey was aposematic. Moreover, a greater number of birds learned to avoid prey without killing any individual, when the prey was aposematic. This result is considered to be due to prey coloration alone, since, in a separate test, no difference in prey distastefulness could be detected.This experiment shows that individual prey can benefit from being aposematic and indicates that individual selection can be a sufficient explanation for the evolution of aposematic coloration. It was concluded that, since the survivorship was 6.4 times higher for the aposematic prey, it could have a detection rate that is correspondingly higher than the cryptic in order for the two forms to have equal fitness.  相似文献   

6.
Reproductive interference arises when individuals of one species engage in reproductive activities with individuals of another, leading to fitness costs in one or both species. Reproductive interference (RI) therefore has two components. First, there must be mis-directed mating interactions. Second, there must be costs associated with these mis-directed interactions. Here we consider RI between four species of true bug in the family Lygaeidae, focusing in particular on the fitness consequences to Lygaeus equestris. The species we consider vary in their relationships with each other, including species in the same or different genus, and with or without natural overlap in their geographic ranges. First we show that inter-specific mating interactions, although not a certain outcome, are common enough to perhaps influence mating behaviour in these species (arising in up to 10 % of inter-specific pairings). Second, we show that reproductive interference can seriously reduce female fitness in L. equestris. Importantly, different species impose different costs of RI on L. equestris, with interactions with male Spilostethus pandurus inflicting fitness costs of similar magnitude to the costs of mating with con-specifics. On the other hand, mating interactions with male Oncopeltus fasciatus appear to have no effect on female fitness. In a follow-up experiment, when we allowed competition amongst just females of S. pandurus and L. equestris, the fitness of the latter was not reduced, arguing more strongly for the role of reproductive interference. However, in our final experiments under mass mating conditions with extended ecological interactions (including scope for competition for resources and cannibalism), the costs of RI were less apparent. Our data therefore suggest that the costs of RI will be context-specific and may act in concert with, or be swamped by, other ecological effects. We suggest that comparative studies of this sort that both mimic naturally occurring reproductive interference events, and also artificially generate new ones, will be necessary if we are to better understand the ecological and evolutionary significance of reproductive interference.  相似文献   

7.
Adaptation to novel host plants is a much‐studied process in arthropod herbivores, but not in their predators. This is surprising, considering the attention that has been given to the role of predators in host range expansion in herbivores; the enemy‐free space hypothesis suggests that plants may be included in the host range of herbivores because of lower predation and parasitism rates on the novel host plants. This effect can only be important if natural enemies do not follow their prey to the novel host plant, at least not immediately, thus allowing the herbivores to adapt to the novel host plant. Hence, depending on the speed with which natural enemies follow their prey to a new host plant, enemy‐free space on novel host plants may only exist for a limited period. This situation may presently be occurring in a system consisting of the herbivorous moth Thyrinteina arnobia Stoll (Lepidoptera: Geometridae) that attacks various species of Myrtaceae, such as guava (Psidium guajava L.) and jaboticaba (Myrciaria spp.), in Brazil. Since the introduction of eucalyptus (Myrtaceae) species into this country some 100 years ago, the moth has included this plant species in its host range and frequently causes outbreaks, a phenomenon that does not occur on the native host plant species. This suggests that the natural enemies that attack the herbivore on native species are not very effective on the novel host. We tested this hypothesis by studying the searching behaviour of one of the natural enemies, the omnivorous predatory bug Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae). When offered a choice between plants of the two species, the predators (originally collected in eucalyptus plantations) preferred guava to eucalyptus when both plant species were clean, infested with herbivores, or damaged by herbivores but with herbivores removed prior to the experiments. The bugs preferred herbivore‐damaged to clean guava, and showed a slight preference for damaged to clean eucalyptus. These results may explain the lack of impact of predatory arthropods on herbivore populations on eucalyptus and suggests that eucalyptus may offer an enemy‐free space for herbivores.  相似文献   

8.
1. Aggregative feeding of larvae is widespread in the Lepidoptera, and many hypotheses have been proposed to explain the adaptive significance of this trait. Group feeding occurs disproportionately more in species with aposematic, chemically defended larvae compared with species with cryptic, non‐chemically defended larvae, consistent with the hypothesis that group feeding provides an enhanced aposematic signal to natural enemies. Most species characterised as having chemically defended larvae are cryptic during the first instar, when they are most highly aggregated and most vulnerable to predation. 2. The benefits of group feeding in terms of decreased predation were explored for first‐instar larvae of the pipevine swallowtail, Battus philenor, a species that sequesters aristolochic acids from its Aristolochia host plant and exhibits aposematism in later instars and as adults. We found that groups of larvae with experimentally enhanced aristolochic acid content had significantly lower survivorship due to predation both in the field and in laboratory experiments compared with groups of larvae without enhanced chemical defence. 3. A laboratory experiment found that aristolochic acid does not deter the generalist predator Hippodamia convergens. 4. No evidence was found that was consistent with the hypothesis that group feeding and increased sequestered chemical defence interact to decrease rates of larval mortality in non‐aposematic, first‐instar larvae. Future research on chemical defence, aposematism, and aggregative feeding should continue to appreciate that particular chemical defences and feeding behaviours are not universally effective against all natural enemies.  相似文献   

9.
Myrmecophytes depend on symbiotic ants (plant‐ants) to defend against herbivores. Although these defensive mechanisms are highly effective, some herbivorous insects can use myrmecophytes as their host‐plants. The feeding habits of these phytophages on myrmecophytes and the impacts of the plant‐ants on their feeding behavior have been poorly studied. We examined two phasmid species, Orthomeria alexis and O. cuprinus, which are known to feed on Macaranga (Euphorbiaceae) myrmecophytes in a Bornean primary forest. Our observations revealed that: (i) each phasmid species relied on two closely‐related myrmecophytic Macaranga species for its host‐plants in spite of their normal plant‐ant symbioses; and (ii) there was little overlap between their host‐plant preferences. More O. cuprinus adults and nymphs were found on new leaves, which were attended by more plant‐ants than mature leaves, while most adults and nymphs of O. alexis tended to avoid new leaves. In a feeding choice experiment under ant‐excluded conditions, O. alexis adults chose a non‐host Macaranga myrmecophyte that was more intensively defended by plant‐ants and was more palatable than their usual host‐plants almost as frequently as their usual host‐plant, suggesting that the host‐plant range of O. alexis was restricted by the presence of plant‐ants on non‐host‐plants. Phasmid behavior that appeared to minimize plant‐ant attacks is described.  相似文献   

10.
Species interactions, such as interspecific competition, determine population dynamics and community structure. In a park of Amami Oshima Island, Japan, two field cricket species Teleogryllus occipitalis (Audinet‐Serville) (Gryllidae) and Loxoblemmus equestris Saussure (Gryllidae) are dominant species. We examined the interference competition at the nymph and adult stages in the two crickets under controlled laboratory conditions. Survival and emergence rates of T. occipitalis were not affected by the density of L. equestris, whereas survival and emergence rates of L. equestris decreased as the density of T. occipitalis increased. These results showed that T. occipitalis was competitively superior over L. equestris in species interactions. We discuss inconsistency between the results and coexistence of these two species under field conditions.  相似文献   

11.
Evolutionary convergence of color pattern in mimetic species is tightly linked with the evolution of chemical defenses. Yet, the evolutionary forces involved in natural variations of chemical defenses in aposematic species are still understudied. Herein, we focus on the evolution of chemical defenses in the butterfly tribe Heliconiini. These neotropical butterflies contain large concentrations of cyanogenic glucosides, cyanide‐releasing compounds acting as predator deterrent. These compounds are either de novo synthesized or sequestered from their Passiflora host plant, so that their concentrations may depend on host plant specialization and host plant availability. We sampled 375 wild Heliconiini butterflies across Central and South America, covering 43% species of this clade, and quantify individual variations in the different CGs using liquid chromatography coupled with tandem mass spectrometry. We detected new compounds and important variations in chemical defenses both within and among species. Based on the most recent and well‐studied phylogeny of Heliconiini, we show that ecological factors such as mimetic interactions and host plant specialization have a significant association with chemical profiles, but these effects are largely explained by phylogenetic relationships. Our results therefore suggest that shared ancestries largely contribute to chemical defense variation, pointing out at the interaction between historical and ecological factors in the evolution of Müllerian mimicry.  相似文献   

12.
Nysius natalensis Evans (Hemiptera: Orsillidae) is a pest of sunflower in South Africa. Adults invade sunflower fields from their weedy hosts which occur inside crop fields and on surrounding headlands. The host plant suitability for survival and reproduction as well as the effect of within‐generation host switching was studied on different wild host plants and sunflower. Life history parameters used to assess host plant suitability were F1 adult survival, pre‐oviposition period, fecundity, and longevity. Nymphs and adults were provided with stems and seeds of five host plants, viz., Amaranthus hybridus L. (Amaranthaceae), Portulaca oleracea L. (Portulacaceae), Chenopodium album L. (Chenopodiaceae), Conyza albida Spreng. (Asteraceae), and sunflower, Helianthus annuus L. (Asteraceae). Nymphs were reared on crushed seed of the five plant species. After completion of the nymphal stage, emerging adults of each host plant group were provided with seed of a different host plant species for food. Adults did not survive long on stems only and very few eggs were laid. Seeds of the host plant species were shown to be an essential source of nutrients for N. natalensis reproduction, whereas the vegetative plant parts were unsuitable. Nymphal food and host‐plant switching between the nymphal and adult stages significantly affected the pre‐oviposition period. Nymphal and adult food source also affected female longevity. The number of eggs laid was not influenced by nymphal food, but was influenced by adult food and the switch between nymphal and adult food. The comparative attractiveness of sunflower and wild host plants for oviposition was also investigated and showed that females preferred to lay eggs on wild host plants, compared with sunflower. These results may explain why N. natalensis will lay their eggs on sunflower after weeds in the vicinity are controlled, or senesce toward the end of the growing season.  相似文献   

13.
It is well known that herbivore-induced plant defenses alter host plant quality and can affect the behavior and performance of later arriving herbivores.Effects of sequential attacks by herbivores that either suppress or induce plant defenses are less well studied.We sequentially infested leaves of tomato plants with a strain of the phytophagous spider mite Tetranychus urticae that induces plant defenses and the closely related Tetranychus evansi, which suppresses plant defenses.Plant quality was quantified through oviposifion of both spider mite species and by measuring proteinase inhibitor activity using plant material that had been sequentially attacked by both herbivore species.Spider-mite oviposifion data show that T.evansi could suppress an earlier induction of plant defenses by T.urticae,and T.urticae could induce defenses in plants previously attacked by T.evansi in 1 day.Longer attacks by the second species did not result in further changes in oviposifion.Proteinase inhibitor activity levels showed that T.evansi suppressed the high activity levels induced by T.urticae to constitutive levels in 1 day,and further suppressed activity to levels similar to those in plants attacked by T.evansi alone.Attacks by T.urticae induced proteinase inhibitor activity in plants previously attacked by T.evansi,eventually to similar levels as induced by T.urticae alone.Hence,plant quality and plant defenses were significantly affected by sequential attacks and the order of attack does not affect subsequent performance,but does affect proteinase inhibitor activity levels.Based on our results,we discuss the evolution of suppression of plant defenses.  相似文献   

14.
Reactive α,β‐unsaturated aldehydes, including 4‐oxoalk‐2‐enals, are known to be present in volatile secretions of numerous heteropteran insect species. Because the aldehydes are likely to originate from metabolism of fatty acids (FAs), the present study aimed to examine and compare the aldehyde and FA profiles of four model heteropteran species. The model species consisted of adult family group representatives within the infraorder Pentatomomorpha (Hemiptera: Heteroptera): seed bug (Lygaeus equestris (Lygaeoidea)), dock leaf bug (Coreus marginatus (Coreoidea)), red firebug (Pyrrhocoris apterus (Pyrrhocoroidea)), and European stink bug (Graphosoma lineatum (Pentatomoidea)). Solid‐phase microextraction combined with two‐dimensional gas‐chromatography/time‐of‐flight mass spectrometry was used to establish the profiles of volatile secretions in stressed living insects. The FA profiles of acylglyceride and phospholipid fractions deposited in fat body and/or hemolymph were obtained by liquid chromatography/mass spectrometry and gas chromatography with flame ionization detection techniques. Our results based on multivariate statistical analyses of the data imply that volatile secretion blends as well as fat body and/or hemolymph lipid profiles are species specific but the differences in volatile blends between different species do not mirror the changes in corresponding fat body and/or hemolymph lipid profiles of stressed and non‐stressed individuals.  相似文献   

15.
Most studies on plant defenses against insect herbivores investigate direct and indirect plant defenses independently. However, these defenses are not necessarily mutually exclusive. Plant metabolites can be transmitted through the food chain and can also affect the herbivore's natural enemies. A conflict may arise when a natural enemy is attracted to a plant that is suboptimal in terms of its own fitness. In addition, plant defenses are often studied in cultivated plant species in which artificial selection may have resulted in reduced resistance against insect herbivores. In this study, we investigated both direct and indirect plant defenses in two closely related wild brassicaceous plant species, Brassica nigra L. and Sinapis arvensis L. The herbivore Pieris brassicae L. (Lepidoptera: Pieridae), which is specialized on brassicaceous plant species, developed faster and attained higher pupal mass when reared on B. nigra than on S. arvensis. In contrast, Cotesia glomerata L. (Hymenoptera: Braconidae), which is a gregarious endoparasitoid of P. brassicae caterpillars, developed equally well on P. brassicae irrespective of the food plant on which its host had been reared. The feeding strategy of the parasitoid larvae, that is, selectively feeding on hemolymph and fat body, is likely to allow for a much wider host‐size range without affecting the size or development time of the emerging parasitoids. In flight chamber experiments, C. glomerata, which had an oviposition experience in a host that fed on Brussels sprout, exhibited significant preference for host‐damaged B. nigra over host‐damaged S. arvensis plants. Headspace analysis revealed quantitative and qualitative differences in volatile emissions between the two plant species. This parasitoid species may use a range of cues associated with the host and the host's food plant in order to recognize the different plant species on which the host can feed. These results show that there is no conflict between direct and indirect plant defenses for this plant–host–parasitoid complex.  相似文献   

16.
Carotenoid‐based integumental coloration is often associated with individual performance in various animals. This is because the limited amount of the pigment has to be allocated to different vital functions. However, most of the evidence for the carotenoid‐based trade‐off comes from vertebrate studies, and it is unclear if this principle can be applied to insects. This possibility was investigated in Orgyia antiqua L. (Lepidoptera: Lymantriidae). The larvae of this species are polyphenic in their coloration, varying from a highly conspicuous combination of yellow hair tufts on black background to cryptic appearance with brown hair tufts. The conspicuous larvae are aposematic, advertising their aversive hairiness. The maintenance of different colour morphs in O. antiqua requires explanation, as an aposematic signal is expected to evolve towards monomorphism. Chromatographic analysis showed that the yellow coloration of the hair is based on the carotenoid pigment lutein (α‐carotene‐3,3’‐diol). The colour of hair tufts was dependent on their carotenoid content. This justifies an expectation of carotenoid‐based physiological trade‐offs between aposematic coloration and individual performance. To test this hypothesis, we monitored life histories of differently coloured larvae reared on various host plants, recording their body sizes, growth rates, and mortalities in each instar. There was a significant but relatively low heritability of tuft coloration, which allowed us to expect environmental effects. We found no phenotypic associations between hair tuft colour and performance indices in O. antiqua larvae, neither did the quality of host plant affect the frequency of colour morphs. However, the frequency of colour morphs differed between larval instars. Our results suggest that carotenoid‐mediated physiological trade‐offs are not involved in the maintenance of colour morphs in O. antiqua larvae, and factors other than individual condition should be responsible for the observed variability.  相似文献   

17.
1. Interactions between two trophic levels can be very intimate, often making species dependent on each other, something that increases with specialisation. Some specialised multivoltine herbivores may depend on multiple plant species for their survival over the course of a growing season, especially if their food plants are short‐lived and grow at different times. Later generations may exploit different plant species from those exploited by previous generations. 2. Multivoltine parasitoids as well as their natural enemies must also find their hosts on different food plants in different habitats across the season. Secondary hyperparasitoid communities have been studied on cocoons of the primary parasitoid, Cotesia glomerata (Hymenoptera: Braconidae), on black mustard (Brassica nigra) – a major food plant of its host, the large cabbage white (Pieris brassicae) – which grows in mid‐summer. 3. Here, hyperparasitoid communities on C. glomerata pupal clusters were studied on an early‐season host, garlic mustard, Alliaria petiolata, over ‘time’ (one season, April–July) in six closely located ‘populations’ (c. 2 km apart), and within two different ‘areas’ at greater separation (c. 100 km apart). At the plant level, spatial effects of pupal ‘location’ (canopy or bottom) on the plant were tested. 4. Although large‐scale separation (area) did not influence hyperparasitism, sampling time and small‐scale separation (population) affected hyperparasitism levels and composition of hyperparasitoid communities. Location on the plant strongly increased proportions of winged species in the canopy and proportions of wingless species in bottom‐located pupae. 5. These results show that hyperparasitism varies considerably at the local level, but that differences in hyperparasitoid communities do not increase with spatial distance.  相似文献   

18.
Genetic variation in the melanocortin‐1 receptor (MC1R) locus is responsible for color variation, particularly melanism, in many groups of vertebrates. Fairy‐wrens, Maluridae, are a family of Australian and New Guinean passerines with several instances of dramatic shifts in plumage coloration, both intra‐ and inter‐specifically. A number of these color changes are from bright blue to black plumage. In this study, we examined sequence variation at the MC1R locus in most genera and species of fairy‐wrens. Our primary focus was subspecies of the white‐winged fairy‐wren Malurus leucopterus in which two subspecies, each endemic to islands off the western Australian coast, are black while the mainland subspecies is blue. We found fourteen variable amino acid residues within M. leucopterus, but at only one position were alleles perfectly correlated with plumage color. Comparison with other fairy‐wren species showed that the blue mainland subspecies, not the black island subspecies, had a unique genotype. Examination of MC1R protein sequence variation across our sample of fairy‐wrens revealed no correlation between plumage color and sequence in this group. We thus conclude that amino acid changes in the MC1R locus are not directly responsible for the black plumage of the island subspecies of M. leucopterus. Our examination of the nanostructure of feathers from both black and blue subspecies of M. leucopterus and other black and blue fairy‐wren species clarifies the evolution of black plumage in this family. Our data indicate that the black white‐winged fairy‐wrens evolved from blue ancestors because vestiges of the nanostructure required for the production of blue coloration exist within their black feathers. Based on our phylogeographic analysis of M. leucopterus, in which the two black subspecies do not appear to be each other's closest relatives, we infer that there have been two independent evolutionary transitions from blue to black plumage. A third potential transition from blue to black appears to have occurred in a sister clade.  相似文献   

19.
1. The nitrogen limitation hypothesis posits that phytophagous insects benefit from nitrogen enrichment of their host plants through a reduction of the concentration of toxic compounds and an increase of free amino acids and proteins. However, species' response to nitrogen enrichment varies substantially and high nitrogen levels are associated with population decline, suggesting there are major costs to feeding on nitrogen‐rich host plants. 2. To test the hypothesis that larval growth performance is maximal at intermediate nitrogen enrichment, nitrogen levels were measured in 18 populations of the host plant of Lycaena helle, a specialist butterfly inhabiting nutrient‐poor wet meadows. The nitrogen content of host plants was then modified to mirror average natural nitrogen levels (C), highest field‐recorded levels (T1), and levels higher than those observed across our study populations (T2). 3. Caterpillars fed with T1 leaves had a greater maximum body mass than caterpillars of the C group because of their improved food assimilation during the early stages of their development. Caterpillars of C and T2 groups had similar growth patterns but high nitrogen content had detrimental effects, as caterpillars fed with T2 leaves had a slower ingestion rate than C and T1 groups. 4. Quantifying the fitness consequences of these changes in growth performance is necessary to fully understand the implications of nitrogen enrichment for L. helle (rapid growth may result in fitness costs). However, conservation plans for this emblematic glacial relict species should also consider the preservation of its host plant quality to ensure its persistence.  相似文献   

20.
The ‘enemy‐free space’ hypothesis predicts that herbivorous insects can escape their natural enemies by switching to a novel host plant, with consequences for the evolution of host plant specialisation. However, if natural enemies follow herbivores to their novel host plants, enemy‐free space may only be temporary. We tested this by studying the colonisation of the introduced tree Eucalyptus grandis (Hill) Maiden (Myrtaceae) by insects in Brazil, where various species of herbivores have added eucalyptus to their host plant range, which consists of native myrtaceous species such as guava. Some herbivores, for example, Thyrinteina leucoceraea Ringe (Lepidoptera: Geometridae), cause outbreaks in eucalyptus plantations but not on guava, possibly because eucalyptus offers enemy‐free space. We sampled herbivores (mainly Lepidoptera species) and natural enemies on eucalyptus and guava and assessed parasitism of Lepidoptera larvae on both host plant species during ca. 2 years. Overall, predators were encountered more frequently on guava than on eucalyptus. In contrast, parasitoids were encountered equally and parasitism rates of Lepidoptera larvae were similar on both host plants. This indicates that herbivores may escape some enemies by moving to a novel host plant. However, this escape may be temporary and may vary with time. We argue that studying temporal and spatial patterns of enemy‐free space and the response of natural enemies to host use changes of their herbivorous prey is essential for understanding the role of natural enemies in the evolution of host plant use by herbivorous arthropods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号