首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Meadow fescue (Festuca pratensis Huds.) is an important cool-season forage grass in Europe and Asia. We developed a protocol for producing meadow fescue transgenic plants mediated by Agrobacterium tumefaciens transformation. Embryogenic calli derived from mature embryos were transformed with A. tumefaciens strain AGL1 carrying the binary vector pDM805, coding for the phosphinothricin acetyltransferase (bar) and β-glucuronidase (uidA) genes. Bialaphos was used as the selective agent throughout all phases of tissue culture. In total, 40 independent transgenic plants were recovered from 45 bialaphos-resistant callus lines and an average transformation efficiency of 2% was achieved. The time frame from infection of embryogenic calli with Agrobacterium to transferring the transgenic plants to the greenhouse was 18 weeks. In a study of 11 BASTA-resistant transgenic lines, the uidA gene was expressed in 82% of the transgenic lines. Southern blot analysis revealed that 82% of the tested lines integrated one or two copies of the uidA gene. C. Gao and J. Liu contributed equally to the work.  相似文献   

2.
A protocol was developed for Agrobacterium-mediated transformation of embryogenic suspension cultures of cassava. The bacterial strain ABI containing the binary vector pMON977 with the nptII gene as selectable marker and an intron-interrupted uidA gene (encoding β-glucuronidase) as visible marker was used for the experiments. Selection of transformed tissue with paromomycin resulted in the establishment of antibiotic-resistant, β-glucuronidase-expressing lines of friable embryogenic callus, from which embryos and subsequently plants were regenerated. Southern blot analysis demonstrated stable integration of the uidA gene into the cassava genome in five lines of transformed embryogenic suspension cultures and in two plant lines.  相似文献   

3.
 This study is the first report of a protocol for transfer and expression of foreign chimeric genes into cotyledons excised from Pinus pinea L. embryos. Agrobacterium tumefaciens EHA105 harbouring the plasmid p35SGUSint was more infective than LBA4404 or C58 GV3850, as determined by the percentage of cotyledons showing uidA expression. Factors which significantly affected the T-DNA transfer included: (1) preinduction and concentration of bacteria, (2) days of coculture and (3) the wounding procedure applied. More efficient transfer of the uidA gene was achieved growing the bacteria in YEP medium at pH 7, infecting the cotyledons according to the sonication-assisted Agrobacterium-mediated transformation procedure with a bacterial density of 1 (OD600 nm) for 5 min, and coculture for 72 h. Using this protocol, 49.7% of the cotyledons showed a diffuse blue staining 7 days after infection. However, all were necrotic 30 days after inoculation. Since a decrease in bacterial density to 0.01 allowed the recovery of about 4% of cotyledons forming buds 1 month after inoculation, we conclude that the high mortality associated with the infection may be related to the hypersensitive response of the plant to bacterial infection. Received: 19 October 1998 / Revision received: 18 February 1999 / Accepted: 24 February 1999  相似文献   

4.
An optimized procedure for transformation of wheat with the use of a Biolistic Particle Delivery System PDS 1000/He to deliver foreign DNA is described in detail. The bacterial uidA and bar genes (both driven by plant promoters) were utilized as the reporter and selectable marker genes, respectively. Moderately high gas pressure appeared to be most important to achieve the highest level of transient GUS expression in target tissues. There was, however, no apparent correlation between transient and stable GUS expression. The presence of telomeric DNA sequences in an uidA gene-containing vector did not influence transient GUS expression but, apparently, prevented its stable expression. Mechanical lesions caused by the bombardment (tungsten particles) seemed to be less severe when embryo- derived calli, instead of freshly excised immature embryos, were used as the target tissue. The limited ability of callus cells for regeneration, together with a restricted number of cells that receive the foreign DNA by particle bombardment, result in a low efficiency of wheat stable transformation.  相似文献   

5.
Mature zygotic embryos of recalcitrant Christmas tree species eastern white pine (Pinus strobus L.) were used as explants for Agrobacterium tumefaciens strain GV3101-mediated transformation using the uidA (β-Glucuronidase) gene as a reporter. Influence of the time of sonication and the concentrations of protein phosphatase inhibitor (okadaic acid) and kinase inhibitor (trifluoperazine) on Agrobacterium-mediated transformation have been evaluated. A high transformation frequency was obtained after embryos were sonicated for 45–50 s, or treated with 1.5–2.0 μM okadaic acid or treated with 100–200 μM trifluoperazine, respectively. Protein phosphatase and kinase inhibitors enhance Agrobacterium-mediated transformation in eastern white pine. A 2–3.5-fold higher rate of hygromycin-resistant callus was obtained with an addition of 2 μM okadaic acid or 150 μM trifluoperazine or sonicated embryos for 45 s. Stable integration of the uidA gene in the plant genome of eastern white pine was confirmed by polymerase chain reaction (PCR), Southern and northern blot analyses. These results demonstrated that a stable and enhanced transformation system has been established in eastern white pine and this system would provide an opportunity to transfer economically important genes into this Christmas tree species. Communicated by W. H. Wu  相似文献   

6.
Summary Two different promoters, a cauliflower mosaic virus (CaMV) 35S promoter with a 5′-untranslated leader sequence from alfalfa mosaic virus RNA4 (designated as CaMV 35S/AMV) and an E-8 fruit-ripening-specific promoter, were compared to evaluate their effects on expression of the uidA reporter gene in transgenic tomato plants. In order to generate sufficient numbers of transgenic tomato plants, both a reliable regeneration system and an efficient Agrobacterium transformation protocol were developed using 8-d-old cotyledons of tomato (Lycopersicon ecsulentum Mill. cv. Swifty Belle). Two sets of constructs, both derivatives of the binary vector pBI121, were used in transformation of tomato whereby the uidA gene was driven either by the CaMV 35S/AMV or the E-8 fruit-ripening-specific promoter. Southern blot hybridization confirmed the stable integration of the chimeric uidA gene into the tomato genome. Fruit and leaf tissues were collected from T0 and T1 plants, and assayed for β-glucuronidase (GUS) enzyme activity. As expected, both vegetative and fruit tissues of transgenic plants carrying the uidA gene under the control of CaMV 35S/AMV showed varying levels of GUS activity, while no expression was observed in vegetative tissues of transgenic plants carrying the uidA gene driven by the E-8 promoter. All fruits from transgenic plants produced with both sets of constructs displayed expression of the uidA gene. However, when this reporter gene was driven by the CaMV 35S/AMV, GUS activity levels were significantly higher than when it was driven by the E-8 fruit-specific promoter. The presence/absence of the uidA gene in T1 plants segregated in a 3∶1 Mendelian ratio.  相似文献   

7.
Transgenic Arabidopsis and tobacco plants (125) derived from seven Agrobacterium-mediated transformation experiments were screened by polymerase chain reaction and DNA gel blot analysis for the presence of vector `backbone' sequences. The percentage of plants with vector DNA not belonging to the T-DNA varied between 20% and 50%. Neither the plant species, the explant type used for transformation, the replicon type nor the selection seem to have a major influence on the frequency of vector transfer. Only the border repeat sequence context could have an effect because T-DNA vector junctions were found in more than 50% of the plants of three different transformation series in which T-DNAs with octopine borders without inner border regions were used. Strikingly, many transgenic plants contain vector backbone sequences linked to the left T-DNA border as well as vector junctions with the right T-DNA border. DNA gel blots indicate that in most of these plants the complete vector sequence is integrated. We assume that integration into the plant genome of complete vector backbone sequences could be the result of a conjugative transfer initiated at the right border and subsequent continued copying at the left and right borders, called read-through. This model would imply that the left border is not frequently recognized as an initiation site for DNA transfer and that the right border is not efficiently recognized as a termination site for DNA transfer.  相似文献   

8.
Agrobacterium-mediated genetic transformation is a method of choice for the development of transgenic plants. The presence of latentAgrobacterium that multiplies in the plant tissue in spite of antibiotic application confounds the results obtained by polymerase chain reaction (PCR) analysis of putative transgenic plants. The presence ofAgrobacterium can be confirmed by amplification of eitherAgrobacterium chromosomal genes or genes present out of transfer DNA (T-DNA) in the binary vector. However, the transgenic nature ofAgrobacterium-contaminated transgenic plants cannot be confirmed by PCR. Here we report a simple protocol for PCR analysis ofAgrobacterium-contaminated transgenic plants. This protocol is based on denaturation and renaturation of DNA. The contaminating plasmid vector becomes double-stranded after renaturation and is cut by a restriction enzyme having site(s) within the PCR amplicon. As a result, amplification by PCR is not possible. The genomic DNA with a few copies of the transgene remains single-stranded and unaffected by the restriction enzyme, leading to amplification by PCR. This protocol has been successfully tested with 4 different binary vectors and 3Agrobacterium tumefaciens strains: EHA105, LBA4404, and GV3101.  相似文献   

9.
An efficient protocol for shoot regeneration and genetic transformation was applied to root segments of a new Lotus corniculatus L. cultivar Bokor. The shoots, that regenerated on root segments, were inoculated with Agrobacterium rhizogenes A4M70GUS, and produced hairy roots, which on media with 0.2 mg dm−3 benzylaminopurine, regenerated shoots. After rooting and acclimation, the transformed plants were planted in the experimental field. Their morphological traits were compared to controls. No signs of the rol genes phenotype were present. The transformants were significantly taller than controls, while there were no significant differences in the leaf area. The glucuronidase activity and the presence of uidA gene was demonstrated in transformed plants of T0 and in seedlings of T1 generations. It is concluded that A. rhizogenes could be a vector of choice for the transfer of desirable genes into the bird's foot trefoil genome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A protocol for Agrobacterium tumefaciens-mediated genetic transformation of Rhipsalidopsis cv. CB5 was developed. Calluses derived from phylloclade explants and sub-cultured onto fresh callus induction medium over a period of 9–12 months were co-cultivated with A. tumefaciens LBA4404. Plasmid constructs carrying the nptII gene, as a selectable marker, and the reporter uidA gene were used. Transformed Rhipsalidopsis calluses with a vigorous growth phenotype were obtained by extended culture on media containing 600 mg l−1 kanamycin. After 9 months of a stringent selection pressure, the removal of kanamycin from the final medium together with the culture of the transformed calluses under nutritional stress led to the formation of several transgenic adventitious shoots. Transformation was confirmed by GUS staining (for uidA gene), ELISA analysis and Southern blot hybridization (for the nptII gene). With this approach, a transformation efficiency of 22.7% was achieved. Overall results described in this study demonstrate that Agrobacterium-mediated transformation is a promising approach for this cactus species.  相似文献   

11.
12.
Three methods of transformation of pea (Pisum sativum ssp. sativum L. var. medullare) were tested. The most efficient Agrobacterium tumefaciens-mediated T-DNA transfer was obtained using embryonic segments from mature pea seeds as initial explants. The transformation procedure was based on the transfer of the T-DNA region with the reporter gene uidA and selection gene bar. The expression of β-glucuronidase (GUS) in the regenerated shoots was tested using the histochemical method and the shoots were selected on a medium containing phosphinothricin (PPT). The shoots of putative transformants were rooted and transferred to non-sterile conditions. Transient expression of the uidA gene in the tissues after co-cultivation and in the course of short-term shoot cultivation (confirmed by histochemical analysis of GUS and by RT-PCR of mRNA) was achieved; however, we have not yet succeeded in proving stable incorporation of the transgene in the analysed plants.  相似文献   

13.
Summary Binary Ti plasmid vector systems consist of two plasmids in Agrobacterium, where one plasmid contains the DNA that can be transferred to plant cells and the other contains the virulence (vir) genes which are necessary for the DNA transfer but are not themselves stably transferred. We have constructed two nononcogenic vectors (pARC4 and pARC8) based on the binary Ti plasmid system of Agrobacterium tumefaciens for plant transformation. Each vector contains the left and right termini sequences from pTiT37. These sequences, which determine the extent of DNA transferred to plant cells, flank unique restriction enzyme sites and a marker gene that functions in the plant (nopaline synthase in pARC4 or neomycin phosphotransferase in pARC8). After construction in vitro, the vectors can be conjugatively transferred from E. coli to any of several Agrobacterium strains containing vir genes. Using A. rhizogenes strain A4 containing the resident Ri plasmid plus a vector with the nopaline synthase marker, we found that up to 50% of the hairy roots resulting from the infection of alfalfa or tomato synthesized nopaline. Thus, vector DNA encoding an unselected marker was frequently co-transferred with Ri plasmid DNA to an alfalfa or a tomato cell. In contrast, the frequency of co-transfer to soybean cells was difficult to estimate because we encountered a high background of non-transformed roots using this species. Up to five copies of the vector DNA between the termini sequences were faithfully transferred and maintained in most cases suggesting that the termini sequences and the vir genes from the Ri and Ti plasmids are functionally equivalent.  相似文献   

14.
Establishment of an efficient protocol for regeneration and genetic transformation is required in banana for the incorporation of useful traits. Therefore an efficient method has been developed for somatic embryogenesis, plant regeneration and transformation of Cavendish banana cultivar Robusta (AAA). Embryogenic cell suspension culture (ECS) was established using immature male flowers. Percentage appearance of embryogenic callus and distinct globular embryos was 10.3 and 11.1, respectively. ECS obtained was cocultivated under different cocultivation conditions with Agrobacterium tumefaciens strain EHA105 harboring pCAMBIA 1301 plant expression vector. Up to 30 transgenic plants/50 mg settled cell volume (SCV) was obtained with cocultivation in semisolid medium whereas no transgenics could be obtained with parallel experiments carried out in liquid medium. Histochemical GUS assay in different tissues of putatively transformed plants demonstrated expression of uidA gene. Among the putatively transformed plants obtained, a set of 4 were confirmed by PCR analysis and stable integration of the transgene by Southern analysis. GUS specific activity measured by a MUG (4-methylumbelliferyl-β-d-glucuronide) based flourometric assay revealed increase in transient GUS expression in semisolid as well as liquid cocultivation with centrifugation. This is the first report showing somatic embryogenesis and Agrobacterium tumefaciens mediated transformation using embryogenic cell suspension cultures in an important Cavendish banana cultivar Robusta. The present protocol will make possible agronomic improvement of this important commercially grown cultivar by introduction of disease resistance characteristics and antisense-mediated delayed fruit ripening strategies. Further, it will also assist in functional characterization of new gene or promoter elements isolated from this or other cultivars of banana.  相似文献   

15.
Sesbania drummondii (Rydb.) Cory is a source for phytopharmaceuticals. It also hyperaccumulates several toxic heavy metals. Development of an efficient gene transfer method is an absolute requirement for the genetic improvement of this plant with more desirable traits due to limitations in conventional breeding methods. A simple protocol was developed for Agrobacterium-mediated stable genetic transformation of Sesbania. Agrobacterium tumefaciens strain EHA 101 containing the vector pCAMBIA 1305.1 having hptII and GUS plus genes was used for the gene transfer experiments. Evaluation of various parameters was carried out to assess the transformation frequency by GUS expression analysis. High transformation frequency was achieved by using 7-day-old precultured cotyledonary node (CN) explants. Further, the presence of acetosyringone (150 μM), infection of explants for 30–45 min and 3 days of cocultivation proved to be critical factors for greatly improving the transformation efficiency. Stable transformation of S. drummondii was achieved, and putative transgenic shoots were obtained on medium supplemented with hygromycin (25 mg l−1). GUS histochemical analysis of the putative transgenic tissues further confirmed the transformation event. Genomic Southern blot analysis was performed to verify the presence of transgenes and their stable integration. A transformation frequency of 4% was achieved for CN explants using this protocol.  相似文献   

16.
Efficient and sensitive assay for T-DNA-dependent transient gene expression   总被引:11,自引:2,他引:9  
We describe here a very sensitive and reproducible method to detect the efficiency ofAgrobacterium-mediated T-DNA transfer. This method is based on a quantitative assay of β-glucuronidase activity produced in the plant cell upon transfer of T-DNA carrying a specialuidA gene construct. Analysis of the transfer efficiency of a transfer-proficient bacterium compared with that of the same bacterium diluted at different ratios with a transfer-defective bacterium shows a high sensitivity of the β-glucuronidase activity in the plant. Five orders of magnitude in T-DNA transfer efficiency can be covered when the activity is measured combining the fluorimetric MUG assay (for high activity) and the histochemical X-Gluc assay (very sensitive for low activity).  相似文献   

17.
The DNA transformation in the industrial erythromycin-producing Saccharopolyspora erythraea was investigated as standard protoplast transformation methods are ineffective. Intergeneric conjugal transfer of DNA from E. coli demonstrated transformation efficiencies from 0.05 × 10−8 to 7.2 × 10−8 exconjugants generated per recipient. Electroporation-mediated methodologies were also established. More than 105 transformants were acquired per μg DNA. The proposed protocol provides an alternative route for the introduction of DNA into industrial strains.  相似文献   

18.
Embryogenic tissues of tea were cocultivated withAgrobacterium tumefaciens LBA4404. The plasmid pBi121, which contains the neomycin phosphotransferase II (nptII) gene providing kanamycin resistance as a selectable marker and the β-glucuronidase (uidA) reporter gene, was used as binary vector. The highest transformation frequency (12 transformants/g fresh weight [FW] of treated embryogenic tissue) was obtained with 5-day-old tissues grown in liquid medium and cocultivated withAgrobacterium for 2 d in the same medium but containing 50 μM acetosyringone. There was improvement in the recovery of kanamycin-resistant tissues when tissues were first grown for 10 d on a medium containing 350 mg/L Timentin to prevent bacterial overgrowth, before application of the selection pressure. Resistant tissues obtained after 6 wk on kanamycin-selection medium showed stableuidA expression. Polymerase chain reaction demonstrated the presence of the transgenes, while Southern hybridization confirmed their integration into the genome. Transgenic plants were regenerated from transformed tissues within 4 mo after coculture.  相似文献   

19.
With the completion of the poplar tree genome database, Populus species have become one of the most useful model systems for the study of woody plant biology. Populus tremuloides (quaking aspen) is the most wide-spread tree species in North America, and its rapid growth generates the most abundant wood-based biomass out of any other plant species. To study such beneficial traits, there is a need for easier and more efficient transformation procedures that will allow the study of large numbers of tree genes. We have developed transformation procedures that are suitable for high-throughput format transformations using either Agrobacterium tumefaciens to produce transformed trees or Agrobacterium rhizogenes to generate hairy roots. Our method uses Agrobacterium inoculated aspen seedling hypocotyls followed by direct thidiazuron (TDZ)-mediated shoot regeneration on selective media. Transformation was verified through β-glucuronidase (GUS) reporter gene expression in all tree tissues, PCR amplification of appropriate vector products from isolated genomic DNA, and northern hybridization of incorporated and expressed transgenes. The hairy root protocol follows the same inoculation procedures and was tested using GUS reporter gene integration and antibiotic selection. The benefit of these procedures is that they are simple and efficient, requiring no maintenance of starting materials and allowing fully formed transgenic trees (or hairy roots) to be generated in only 3–4 months, rather than the 6–12 months required by more traditional methods. Likewise, the fact that the protocols are amenable to high-throughput formats makes them better suited for large-scale functional genomics studies in poplars.  相似文献   

20.
An efficient transformation protocol was developed for Eucalyptus tereticornis Sm. using cotyledon and hypocotyl explants. Precultured cotyledon and hypocotyl explants were cocultured with Agrobacterium tumefaciens strain LBA 4404 harboring the binary vector pBI121 containing the uidA and neomycin phosphotransferase II genes for 2 d and transferred to selective regeneration medium containing 0.5 mg/l 6-benzylaminopurine (BAP), 0.1 mg/l naphthalene acetic acid, 40 mg/l kanamycin, and 300 mg/l cefotaxime. After two passages in the selective regeneration medium, the putatively transformed regenerants were transferred to Murashige and Skoog (MS) liquid medium containing 0.5 mg/l BAP and 40 mg/l kanamycin on paper bridges for further development and elongation. The elongated kanamycin-resistant shoots were subsequently rooted on the MS medium supplemented with 1.0 mg/l indole-3-butyric acid and 40 mg/l kanamycin. A strong β-glucuronidase activity was detected in the transformed plants by histochemical assay. Integration of T-DNA into the nuclear genome of transgenic plants was confirmed by polymerase chain reaction and southern hybridization. This protocol allows effective transformation and direct regeneration of E. tereticornis Sm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号