首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the vertical gradient in lung expansion in rabbits in the prone and supine body positions. Postmortem, we used videomicroscopy to measure the size of surface alveoli through transparent parietal pleural windows at dependent and nondependent sites separated in height by 2-3 cm at functional residual capacity (FRC). We compared the alveolar size measured in situ with that measured in the isolated lungs at different deflationary transpulmonary pressures to obtain transpulmonary pressure (pleural surface pressure) in situ. The vertical gradient in transpulmonary pressure averaged 0.48 +/- 0.16 (SD) cmH2O/cm height (n = 10) in the supine position and 0.022 +/- 0.014 (SD) cmH2O/cm (n = 5) in the prone position. In mechanically ventilated rabbits, we used the rib capsule technique to measure pleural liquid pressure at different heights of the chest in prone and supine positions. At FRC, the vertical gradient in pleural liquid pressure averaged 0.63 cmH2O/cm in the supine position and 0.091 cmH2O/cm in the prone position. The vertical gradients in pleural liquid pressure were all less than the hydrostatic value (1 cmH2O/cm), which indicates that pleural liquid is not generally in hydrostatic equilibrium. Both pleural surface pressure and pleural liquid pressure measurements show a greater vertical gradient in the supine than in the prone position. This suggests a close relationship between pleural surface pressure and pleural liquid pressure. Previous results in the dog and pony showed relatively high vertical gradients in the supine position and relatively small gradients in the prone position. This behavior is similar to the present results in rabbits. Thus the vertical gradient is independent of animal size and might be related to chest shape and weight of heart and abdominal contents.  相似文献   

2.
We determined the configuration of lungs and chest in six healthy young subjects using anteroposterior and lateral technetium-99m-labeled scintigraphic images obtained in upright and in 90 degree head-down posture at 0, 25, 50, 75, and 100% vital capacity (VC). The lung shape was evaluated from curves relating vertical height vs. cumulative volume of 20 apicodiaphragmatic lung zones of equal height. S-shaped curves were obtained, which, after size normalization, were largely independent of volume or posture (P greater than 0.1). However, the apical zones tended to become relatively wider and the diaphragmatic zones relatively smaller with increasing volume, especially between 0 and 25% VC in upright posture and 0-50% VC in head-down posture. Changing posture from upright to head-down also tended to slightly widen the apical zones and to narrow the diaphragmatic zones, which is in line with a greater intrathoracic penetration of the diaphragm/abdomen. The shape of the chest was evaluated from the ratio of the transverse-thoracic and anteroposterior distances over height. These ratios did not clearly change with posture (P greater than or equal to 0.05) but increased by approximately 30% with decreasing volume (P less than 0.01). The fact that these shape changes of the chest were not accompanied by similar changes in lung shape can be explained mainly by widening of the mediastinum when volume decreases. In conclusion, the shape of the lung and chest are similar in head-down and upright humans, in contrast to the reversal of the apicodiaphragmatic differences in alveolar expansion and in transpulmonary pressure.  相似文献   

3.
This review evaluates the progress that has been made in describing the lung as a deformable solid and in using the methods of solid mechanics to answer questions about nonuniform lung deformations and parenchymal interdependence. The interdependence effect on the large intrapulmonary vessels has been successfully analyzed by these methods, but the modeling and analysis of the effects of gravity and chest wall shape on lung expansion are far from complete.  相似文献   

4.
Adequate pulmonary function at birth depends upon a mature surfactant system and lungs of normal size. Surfactant is controlled primarily by hormonal factors, especially from the hypophysis, adrenal, and thyroid; but these have little influence on fetal lung growth. In contrast, current data indicate that lung growth is determined by the following physical factors that permit the lungs to express their inherent growth potential. (a) Adequate intrathoracic space: lesions that decrease intrathoracic space impede lung growth, apparently by physical compression. (b) Adequate amount of amniotic fluid: oligohydramnios retards lung growth, possibly by lung compression or by affecting fetal breathing movements or the volume of fluid within the potential airways and airspaces. (c) Fetal breathing movements of normal incidence and amplitude: fetal breathing movements stimulate lung growth, possibly by stretching the pulmonary tissue, and do not affect mean pulmonary blood flow but do induce small changes in phasic flow; these changes are probably too slight to influence lung growth. (d) Normal balance of volumes and pressures within the potential airways and airspaces: in the fetus, tracheal pressure greater than amniotic pressure greater than pleural pressure. This differential produces a distending pressure which may promote lung growth. Disturbing the normal pressure relationships alters the volume of fluid in the lungs and distorts lung growth, which is stimulated by distending the lungs and is impeded by decreasing lung fluid volume. The mechanisms by which these factors affect lung growth remain to be defined. Fetal lung growth also depends on at least a small amount of blood flow through the pulmonary arteries.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Using 133Xe measured the regional distribution of FRC and of boluses administered at FRC in seated subjects during relaxation, lateral compression of the lower rib cage, and contraction of the inspiratory muscles so that mouth pressure was 50 cmH2O subatmospheric. Lateral compression increased apex-to-base differences of volume and bolus distribution, suggesting an increase of the apex-to-base gradient of pleural surface pressure. Changes in rib cage shape were measured with magnetometers and were qualitatively similar to those associated with increases in apex-to-base difference of pleural surface pressure in animals. Inspiratory effort decreased apex-to-base difference in volume and induced a similar trend in bolus distribution. Though changes in the rib cage shape were directionally similar, they were much smaller than those associated with decreased pleural surface pressure gradients in animals, and the changes in regional volume we observed were more likely due to forces generated by diaphragmatic contraction. These results were compatible with the apex-to-base gradient of pleural pressure being strongly influenced by shape adaptation between lung and chest wall.  相似文献   

6.
The volume-pressure relationship of the lung was studied in six subjects on changing the gravity vector during parabolic flights and body posture. Lung recoil pressure decreased by approximately 2.7 cmH(2)O going from 1 to 0 vertical acceleration (G(z)), whereas it increased by approximately 3.5 cmH(2)O in 30 degrees tilted head-up and supine postures. No substantial change was found going from 1 to 1.8 G(z). Matching the changes in volume-pressure relationships of the lung and chest wall (previous data), results in a decrease in functional respiratory capacity of approximately 580 ml at 0 G(z) relative to 1 G(z) and of approximately 1,200 ml going to supine posture. Microgravity causes a decrease in lung and chest wall recoil pressures as it removes most of the distortion of lung parenchyma and thorax induced by changing gravity field and/or posture. Hypergravity does not greatly affect respiratory mechanics, suggesting that mechanical distortion is close to maximum already at 1 G(z). The end-expiratory volume during quiet breathing corresponds to the mechanical functional residual capacity in each condition.  相似文献   

7.
The mechanics of the pleural space has long been controversial. We summarize recent research pertaining to pleural mechanics within the following conceptual framework, which is still not universally accepted. Pleural pressure, the force acting to inflate the lung within the thorax, is generated by the opposing elastic recoils of the lung and chest wall and the forces generated by respiratory muscles. The spatial variation of pleural pressure is a result of complex force interactions among the lung and other structures that make up the thorax. Gravity contributes one of the forces that act on these structures, and regional lung expansion and pleural pressure distribution change with changes in body orientation. Forces are transmitted directly between the chest wall and the lung through a very thin but continuous pleural liquid space. The pressure in pleural liquid equals the pressure acting to expand the lung. Pleural liquid is not in hydrostatic equilibrium, and viscous flow of pleural liquid is driven by the combined effect of the gravitational force acting on the liquid and the pressure distribution imposed by the surrounding structures. The dynamics of pleural liquid are considered an integral part of a continual microvascular filtration into the pleural space. Similar concepts apply to the pulmonary interstitium. Regional differences in lung volume expansion also result in regional differences in interstitial pressure within the lung parenchyma and thus affect regional lung fluid filtration.  相似文献   

8.
At functional residual capacity, lung expansion is more uniform in the prone position than in the supine position. We examined the effect of positive airway pressure (Paw) on this position-dependent difference in lung expansion. In supine and prone rabbits postmortem, we measured alveolar size through dependent and nondependent pleural windows via videomicroscopy at Paw of 0 (functional residual capacity), 7, and 15 cmH2O. After the chest was opened, alveolar size was measured in the isolated lung at several transpulmonary pressures (Ptp) on lung deflation. Alveolar mean linear intercept (Lm) was measured from the video images taken in situ. This was compared with those measured in the isolated lung to determine Ptp in situ. In the supine position, the vertical Ptp gradient increased from 0.52 cmH2O/cm at 0 cmH2O Paw to 0.90 cmH2O/cm at 15 cmH2O Paw, while the vertical gradient in Lm decreased from 2.17 to 0.80 microns/cm. In the prone position, the vertical Ptp gradient increased from 0.06 cmH2O/cm at 0 cmH2O Paw to 0.35 cmH2O/cm at 15 cmH2O Paw, but there was no change in the vertical Lm gradient. In anesthetized paralyzed rabbits in supine and prone positions, we measured pleural liquid pressure directly at 0, 7, and 15 cmH2O Paw with dependent and nondependent rib capsules. Vertical Ptp gradients measured with rib capsules were similar to those estimated from the alveolar size measurements. Lung inflation during mechanical ventilation may reduce the vertical nonuniformities in lung expansion observed in the supine position, thereby improving gas exchange and the distribution of ventilation.  相似文献   

9.
The delicate mesothelial surfaces of the pleural space and other serosal cavities slide relative to each, lubricated by pleural fluid. In the absence of breathing motion, differences between lung and chest wall shape could eventually cause the lungs and chest wall to come into contact. Whether sliding motion keeps lungs and chest wall separated by a continuous liquid layer is not known. To explore the effects of hydrodynamic pressures generated by mesothelial sliding, we measured the thickness of the liquid layer beneath the peritoneal surface of a 3-cm disk of rat abdominal wall under a normal stress of 2 cm H2O sliding against a glass plate rotating at 0-1 rev/s. Thickness of the lubricating layer was determined microscopically from the appearance of fluorescent microspheres adherent to the tissue and glass. Usually, fluid thickness near the center of the tissue disk increased with the onset of glass rotation, increasing to 50-200 microm at higher rotation rates, suggesting hydrodynamic pumping. However, thickness changes often differed substantially among tissue samples and between clockwise and counter-clockwise rotation, and sometimes thickness decreased with rotation, suggesting that topographic features of the tissue are important in determining global hydrodynamic effects. We conclude that mesothelial sliding induces local hydrodynamic pressure gradients and global hydrodynamic pumping that typically increases the thickness of the lubricating fluid layer, moving fluid against the global pressure gradient. A similar phenomenon could maintain fluid continuity in the pleural space, reducing frictional force and shear stress during breathing.  相似文献   

10.
Chest wall distortion is common in infants and is especially visible in preterm infants. It has been suggested that this distortion increases the volume displacement of the diaphragm during inspiration, which may be associated with muscular fatigue and apnea. We studied 10 preterm infants who had no evidence of lung disease, investigating the effect of chest wall distortion on the volume displacement and work of the diaphragm. The volume changes of the respiratory system were partitioned using an inductance plethysmograph. The minute volume displacement and the work of the diaphragm were calculated using the partitioned abdominal volume change and the gastric and esophageal pressures. The paradoxical movement of the chest wall lasted an average of 36% of inspiration. The minute volume displacement of the diaphragm ranged from 72 to 176% of the minute pulmonary ventilation, and diaphragmatic work ranged from 94 to 793% of that performed on the lungs. The amount of chest wall distortion, as reflected by the duration of the paradoxical chest wall movement, the minute volume excursion, or work of the diaphragm, was not related to the mechanical properties of the lungs. This estimated work load may represent a significant expenditure of calories in these infants and may contribute to the development of diaphragmatic fatigue, apnea, and a prolonged need for mechanical ventilation.  相似文献   

11.
To determine alveolar pressure-volume relationships, alveolar three-dimensional reconstructions were prepared from lungs fixed by vascular perfusion at various points on the pressure-volume curve. Lungs from male Sprague-Dawley rats were fixed by perfusion through the pulmonary artery following a pressure-volume maneuver to the desired pressure point on either the inflation or deflation curve. Tissue samples from lungs were serially sectioned for determination of the volume fraction of alveoli and alveolar ducts and reconstruction of alveoli. Alveoli from lungs fixed at 5 cmH2O on the deflation curve (approximating functional residual volume) had a volume of 173 X 10(3) microns3, a surface area of 11,529 microns2, a mouth opening diameter of 72.7 microns, and a mean caliper diameter of 91.8 micron (SE). Alveolar shape changes during deflation from total lung capacity to residual volume was first (30 to 10 cmH2O) associated with little change in the diameter of the alveoli (102.7 +/- 2.4 to 100.3 +/- 3.3 microns). In the range overlapping normal breathing (10 to 0 cmH2O) there was a substantial decrease in diameter (100.3 +/- 3.3 to 43.3 +/- 2.3 microns). These measurements and others made on the relative changes in the dimensions of the alveolus suggest that the elastic network, particularly around the alveolar ducts, are predominant in determining lung behavior near the volume expansion limits of the lung while the elastic and surface tension properties of the alveoli are predominant in the volume range around functional residual capacity.  相似文献   

12.
Motivated by single lung transplantation, we studied the mechanics of the chest wall during single lung inflations in recumbent dogs and baboons and determined how pleural pressure (Ppl) is coupled between the hemithoraces. In one set of experiments, the distribution of Ppl was inferred from known volumes and elastic properties of each lung. In a second set of experiments, costal pleural liquid pressure (Pplcos) was measured with rib capsules. Both methods revealed that the increase in Ppl over the ipsilateral or inflated lung (delta Ppli) is greater than that over the contralateral or noninflated lung (delta Pplc). Mean d(delta Pplc)/d(delta Ppli) and its 95% confidence interval was 0.7 +/- 0.1 in dogs and 0.5 +/- 0.1 in baboons. In a third set of experiments in three dogs and three baboons, we prevented sternal displacement and exposed the abdominal diaphragm to atmospheric pressure during unilateral lung inflation. These interventions had no significant effect on Ppl coupling between the hemithoraces. We conclude that lungs of unequal size and mechanical properties need not be exposed to the same surface pressure, because thoracic midline structures and the lungs themselves resist displacement and deformation.  相似文献   

13.
The maximal expiratory-flow volume (MEFV) curve in normal subjects is thought to be relatively effort independent over most of the vital capacity (VC). We studied seven normal males and found positive effort dependence of maximal expiratory flow between 50 and 80% VC in five of them, as demonstrated by standard isovolume pressure-flow (IVPF) curves. We then attempted to distinguish the effects of chest wall conformational changes from possible mechanisms intrinsic to the lungs as an explanation for positive effort dependence. IVPF curves were repeated in four of the subjects who had demonstrated positive effort dependence. Transpulmonary pressure was varied by introducing varied resistances at the mouth but effort, as defined by pleural pressure, was maintained constant. By this method, chest wall conformation at a given volume would be expected to remain the same despite changing transpulmonary pressures. When these four subjects were retested in this way, no increases in flow with increasing transpulmonary pressure were found. In further studies, voluntarily altering the chest wall pattern of emptying (as defined by respiratory inductive plethysmography) did however alter maximal expiratory flows, with transpulmonary pressure maintained constant. We conclude that maximal expiratory flow can increase with effort over a larger portion of the vital capacity than is commonly recognized, and this effort dependence may be the result of changes in central airway mechanical properties that occur in relation to changes in chest wall shape during forced expiration.  相似文献   

14.
We measured regional lung volumes from apex to base in humans during changes in thoracoabdominal shape which we monitored with magnetometers. In erect subjects, voluntary changes of shape at FRC did not change regional volume distribution. In supine subjects, the effect of negative pressure applied to the abdomen and a similar thoracoabdominal configuration achieved by voluntary means were studied. The distribution of regional volumes in both situations was the same as that measured during relaxation at the same overall lung volumes. We concluded that neither voluntary changes in shape nor negative abdominal pressure influenced the human pleural pressure gradient. This result, which differed from findings in animals, was probably because the human chest was relatively stiff and behaved with one degree of freedom; all parts of the human rib cage changed dimensions proportionally while negative abdominal pressure distorted the rib cage of animals.  相似文献   

15.
We measured lung impedance in rats in closed chest (CC), open chest (OC), and isolated lungs (IL) at four transpulmonary pressures with a optimal ventilator waveform. Data were analyzed with an homogeneous linear or an inhomogeneous linear model. Both models include tissue damping and elastance and airway inertance. The homogeneous linear model includes airway resistance (Raw), whereas the inhomogeneous linear model has a continuous distribution of Raw characterized by the mean Raw and the standard deviation of Raw (SDR). Lung mechanics were compared with tissue strip mechanics at frequencies and operating stresses comparable to those during lung impedance measurements. The hysteresivity (eta) was calculated as tissue damping/elastance. We found that 1) airway and tissue parameters were different in the IL than in the CC and OC conditions; 2) SDR was lowest in the IL; and 3) eta in IL at low transpulmonary pressure was similar to eta in the tissue strip. We conclude that eta is primarily determined by lung connective tissue, and its elevated estimates from impedance data in the CC and OC conditions are a consequence of compartment-like heterogeneity being greater in CC and OC conditions than in the IL.  相似文献   

16.
Throughout life, most mammals breathe between maximal and minimal lung volumes determined by respiratory mechanics and muscle strength. In contrast, competitive breath-hold divers exceed these limits when they employ glossopharyngeal insufflation (GI) before a dive to increase lung gas volume (providing additional oxygen and intrapulmonary gas to prevent dangerous chest compression at depths recently greater than 100 m) and glossopharyngeal exsufflation (GE) during descent to draw air from compressed lungs into the pharynx for middle ear pressure equalization. To explore the mechanical effects of these maneuvers on the respiratory system, we measured lung volumes by helium dilution with spirometry and computed tomography and estimated transpulmonary pressures using an esophageal balloon after GI and GE in four competitive breath-hold divers. Maximal lung volume was increased after GI by 0.13-2.84 liters, resulting in volumes 1.5-7.9 SD above predicted values. The amount of gas in the lungs after GI increased by 0.59-4.16 liters, largely due to elevated intrapulmonary pressures of 52-109 cmH(2)O. The transpulmonary pressures increased after GI to values ranging from 43 to 80 cmH(2)O, 1.6-2.9 times the expected values at total lung capacity. After GE, lung volumes were reduced by 0.09-0.44 liters, and the corresponding transpulmonary pressures decreased to -15 to -31 cmH(2)O, suggesting closure of intrapulmonary airways. We conclude that the lungs of some healthy individuals are able to withstand repeated inflation to transpulmonary pressures far greater than those to which they would normally be exposed.  相似文献   

17.
Comarisons have been made of the structure of layers lining the lungs of lungfish, frog and rat using material fixed by perfusion of the pulmonary circulation of physiological pressures and at normal air pressures within the lung. The lining consists of a thin densely osmiophilic surface layer which covers a much thicker hypophase of generally floccular appearance. Tubular myelin, present in the frog and rat lung lining, was not observed in the layers lining the lung of Lepidosiren.  相似文献   

18.
Data on the shape of the chest wall at total lung capacity (TLC) and functional residual capacity (FRC) were used as boundary conditions in an analysis of the deformation of the dog lung. The lung was modeled as an elastic body, and the deformation of the lung from TLC to FRC caused by the change in chest wall shape and gravity were calculated. Parenchymal distortions, distributions of regional volume at FRC as a fraction of the volume at TLC, and distributions of surface pressure at FRC are reported. In the prone dog there are minor variations in fractional volume along the cephalocaudal axis. In transverse planes opposing deformations are caused by the change of shape of the transverse section and the gravitational force on the lung, and the resultant fractional volume and pleural pressure distributions are nearly uniform. In the supine dog, there is a small cephalocaudal gradient in fractional volume, with lower fractional volume caudally. In transverse sections the heart and abdomen extend farther dorsally at FRC, squeezing the lung beneath them. The gradients in fractional volume and pleural pressure caused by shape changes are in the same direction as the gradients caused by the direct gravitational force on the lung, and these two factors contribute about equally to the large resultant vertical gradients in fractional volume and pleural pressure. In the prone position the heart and upper abdomen rest on the rib cage. In the supine posture much of their weight is carried by the lung.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Aquaporin-5 (AQP5), a major water channel in lung epithelial cells, plays an important role in maintaining water homeostasis in the lungs. Cell surface expression of AQP5 is regulated by not only mRNA and protein synthesis but also changes in subcellular distribution. We investigated the effect of lipopolysaccharide (LPS) on the subcellular distribution of AQP5 in a mouse lung epithelial cell line (MLE-12). LPS caused significant increases in AQP5 in the plasma membrane at 0.5-2 h. Immunofluorescence and Western blotting strongly suggested that LPS altered AQP5 subcellular distribution from an intracellular vesicular compartment to the plasma membrane. The specific p38 MAP kinase inhibitor SB 203580 apparently prevented LPS-induced changes in AQP5 distribution. Furthermore, LPS increased the osmotic water permeability of MLE-12 cells. These findings demonstrate that LPS increases cell surface AQP5 expression by changing its subcellular distribution and increases membrane osmotic water permeability through activation of p38 MAP kinase.  相似文献   

20.
There is considerable physiological evidence that the regional variation in pleural pressure and expansion of the lung is largely determined by gravity. In this paper a method is given based on the technique of finite elements which determines theoretically the mechanical behaviour of a lung-shaped body loaded by its own weight. The results of this theoretical analysis have been compared with actual measurements of alveolar size and pleural pressures in animal lungs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号