首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
A theoretical framework for prediction of the dynamic evolution of chemical species in DNA amplification reactions, for any specified sequence and operating conditions, is reported. Using the polymerase chain reaction (PCR) as an example, we developed a sequence- and temperature-dependent kinetic model for DNA amplification using first-principles biophysical modeling of DNA hybridization and polymerization. We compare this kinetic model with prior PCR models and discuss the features of our model that are essential for quantitative prediction of DNA amplification efficiency for arbitrary sequences and operating conditions. Using this model, the kinetics of PCR is analyzed. The ability of the model to distinguish between the dynamic evolution of distinct DNA sequences in DNA amplification reactions is demonstrated. The kinetic model is solved for a typical PCR temperature protocol to motivate the need for optimization of the dynamic operating conditions of DNA amplification reactions. It is shown that amplification efficiency is affected by dynamic processes that are not accurately represented in the simplified models of DNA amplification that form the basis of conventional temperature cycling protocols. Based on this analysis, a modified temperature protocol that improves PCR efficiency is suggested. Use of this sequence-dependent kinetic model in a control theoretic framework to determine the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is discussed.  相似文献   

3.
A theoretical framework for prediction of the dynamic evolution of chemical species in DNA amplification reactions, for any specified sequence and operating conditions, is reported. Using the polymerase chain reaction (PCR) as an example, we developed a sequence- and temperature-dependent kinetic model for DNA amplification using first-principles biophysical modeling of DNA hybridization and polymerization. We compare this kinetic model with prior PCR models and discuss the features of our model that are essential for quantitative prediction of DNA amplification efficiency for arbitrary sequences and operating conditions. Using this model, the kinetics of PCR is analyzed. The ability of the model to distinguish between the dynamic evolution of distinct DNA sequences in DNA amplification reactions is demonstrated. The kinetic model is solved for a typical PCR temperature protocol to motivate the need for optimization of the dynamic operating conditions of DNA amplification reactions. It is shown that amplification efficiency is affected by dynamic processes that are not accurately represented in the simplified models of DNA amplification that form the basis of conventional temperature cycling protocols. Based on this analysis, a modified temperature protocol that improves PCR efficiency is suggested. Use of this sequence-dependent kinetic model in a control theoretic framework to determine the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is discussed.  相似文献   

4.
Enhancing PCR amplification and sequencing using DNA-binding proteins   总被引:1,自引:0,他引:1  
The polymerase chain reaction (PCR) is a powerful core molecular biology technique, which when coupled to chain termination sequencing allows gene and DNA sequence information to be derived rapidly. A number of modifications to the basic PCR format have been developed in an attempt to increase amplification efficiency and the specificity of the reaction. We have applied the use of DNA-binding protein, gene 32 protein from bacteriophage T4 (T4gp32) to increase amplification efficiency with a number of diverse templates. In addition, we have found that using single-stranded DNA-binding protein (SSB) or recA protein in DNA sequencing reactions dramatically increases the resolution of sequencing runs. The use of DNA-binding proteins in amplification and sequencing may prove to be generally applicable in improving the yield and quality of a number of templates from various sources.  相似文献   

5.
6.
7.
检测猪FGL2基因cDNA末端序列并对该基因结构初步分析。α-32P dCTP放射性同位素标记cDNA探针筛选猪基因组DNA文库;cDNA末端快速扩增(rapid amplification of cDNA end,RACE)。以猪正常小肠及心脏组织提取新鲜总RNA,反转录后作为模板,设计基因特异性引物,采用Advantage 2 聚合酶混合物进行PCR扩增;依据猪与人FGL2基因3′端已知同源序列设计PCR上游引物,以人FGL2基因3′末端序列设计下游引物,以猪基因组DNA为模板采用Advantage 2 聚合酶混合物进行PCR反应;PCR载体重组质粒DNA亚克隆扩增。同位素探针未能筛选到特异阳性克隆,RACE反应检测到特异性转录起始位置及第一个转录终止位置,但仍未检测到第二个转录终止位置。猪基因组DNA行PCR扩增成功检测到猪FGL2基因3′末端未知序列及第二个转录终止位置。  相似文献   

8.
Ogata N  Miura T 《Biochemistry》2000,39(45):13993-14001
DNA is replicated by DNA polymerase semiconservatively in many organisms. Accordingly, the replicated DNA does not become larger than the original DNA (template DNA), implying that replicative synthesis by DNA polymerase alone cannot explain the diversification of primordial simple DNA. We demonstrate that a single-stranded tandem repetitive oligodeoxyribonucleic acid (oligoDNA) composed of a palindromic or quasi-palindromic motif sequence and 25-50% GC content is elongated in vitro to more than 20,000 bases at 70-74 degrees C by the DNA polymerase of the hyperthermophilic archaeon Thermococcus litoralis without a bimolecular primer-template complex. The efficiency of elongation decreased when the palindromic structure of the oligoDNA was destroyed or when the GC content of the oligoDNA was outside the range of 25-50%. The thermal melting transition profile of the oligoDNA, as observed by ultraviolet spectroscopy, exhibited a biphasic curve, reflecting a duplex-hairpin transition at 31-40 degrees C and a hairpin-coil transition at 70-77 degrees C. The optimal reaction temperature for the elongation, for instance, of oligoDNA (AGATATCT)(6) (72 degrees C) was very close to its hairpin-coil transition melting temperature (70.4 degrees C), but was markedly higher than the temperature at which duplex oligoDNA can exist stably (<35.9 degrees C). These results suggest that a hairpin-based "intramolecular primer-template structure" is formed transiently in the oligoDNA, and it is elongated by the DNA polymerase to long DNA through repeated cycles of folding and melting of the hairpin structure. We discuss the implication of this phenomenon, "hairpin elongation", from the standpoint of potential amplification of simple DNA sequences during the evolution of the genome.  相似文献   

9.
DNA recombination during PCR.   总被引:56,自引:7,他引:49       下载免费PDF全文
PCR co-amplification of two distinct HIV1 tat gene sequences lead to the formation of recombinant DNA molecules. The frequency of such recombinants, up to 5.4% of all amplified molecules, could be decreased 2.7 fold by a 6 fold increase in Taq DNA polymerase elongation time. Crossover sites mapped essentially to three discrete regions suggesting specific Taq DNA polymerase pause or termination sites. PCR mediated recombination may be a problem when studying heterogeneous genetic material such as RNA viruses, multigene families, or repetitive sequences. This phenomenon can be exploited to create chimeric molecules from related sequences.  相似文献   

10.
In its basic concept, in vitro DNA amplification by the polymerase chain reaction (PCR) is restricted to those instances in which segments of known sequence flank the fragment to be amplified. Recently, techniques have been developed for amplification of unknown DNA sequences. These techniques, however, are dependent on the presence of suitable restriction endonuclease sites. Here, we describe a strategy for PCR amplification of DNA that lies outside the boundaries of known sequence. It is based on the use of one specific primer, homologous to the known sequence, and one semi-random primer. Restriction sites in the 5' proximal regions of both primers allow for cloning of the amplified DNA in a suitable sequencing vector or any other vector. It was shown by sequence analysis that the cloned DNA fragments represent contiguous DNA fragments that are flanked at one side by the sequence of the specific primer. When omitting the semi-random primer, a single clone was obtained, which originated from PCR amplification of target DNA by the specific primer in both directions.  相似文献   

11.
Theoretical considerations for extending the application of quantitative competitive polymerase chain reaction (qc-PCR) to include the simultaneous measurement of multiple mRNAs, specifically the mammalian glucose transporters Glut1 and Glut4, are presented with experimental data in which the accuracy and flexibility of the system are examined. This method reliably measures changes in the initial concentration for each of three target DNA sequences. The reaction is not acutely sensitive to variations in either the primer sites or internal sequence, and although the initial concentrations of the target DNAs did affect the relative amplification efficiencies, the effect was limited and did not prohibit quantification. This PCR system was able to reliably detect differences as little as 50% in the initial concentration of the Glut1 target DNA sequence. Therefore, with the appropriate controls, PCR can be extended to include the simultaneous quantification of more than one target DNA with a single internal control.  相似文献   

12.
Nucleotide sequences in Xenopus 5S DNA required for transcription termination   总被引:127,自引:0,他引:127  
D F Bogenhagen  D D Brown 《Cell》1981,24(1):261-270
  相似文献   

13.
14.
Targeted gene walking polymerase chain reaction.   总被引:26,自引:3,他引:23       下载免费PDF全文
We describe a modification of a polymerase chain reaction method called 'targeted gene walking' that can be used for the amplification of unknown DNA sequences adjacent to a short stretch of known sequence by using the combination of a single, targeted sequence specific PCR primer with a second, nonspecific 'walking' primer. This technique can replace conventional cloning and screening methods with a single step PCR protocol to greatly expedite the isolation of sequences either upstream or downstream from a known sequence. A number of potential applications are discussed, including its utility as an alternative to cloning and screening for new genes or cDNAs, as a method for searching for polymorphic sites, restriction endonuclease or regulatory regions, and its adaptation to rapidly sequence DNA of lengthy unknown regions that are contiguous to known genes.  相似文献   

15.
Single base pair mutation analysis by PNA directed PCR clamping.   总被引:14,自引:5,他引:9       下载免费PDF全文
A novel method that allows direct analysis of single base mutation by the polymerase chain reaction (PCR) is described. The method utilizes the finding that PNAs (peptide nucleic acids) recognize and bind to their complementary nucleic acid sequences with higher thermal stability and specificity than the corresponding deoxyribooligonucleotides and that they cannot function as primers for DNA polymerases. We show that a PNA/DNA complex can effectively block the formation of a PCR product when the PNA is targeted against one of the PCR primer sites. Furthermore, we demonstrate that this blockage allows selective amplification/suppression of target sequences that differ by only one base pair. Finally we show that PNAs can be designed in such a way that blockage can be accomplished when the PNA target sequence is located between the PCR primers.  相似文献   

16.
The idea of modifying DNA with bisulfite has paved the way for a variety of polymerase chain reaction (PCR) methods for accurately mapping 5-methylcytosine at specific genes. Bisulfite selectively deaminates cytosine to uracil under conditions where 5-methylcytosine remains unreacted. Following conventional PCR amplification of bisulfite-treated DNA, original cytosines appear as thymine while 5-methylcytosines appear as cytosine. Because the relative thermostability of a DNA duplex increases with increasing content of G:C base pairs, PCR products originating from DNA templates with different contents of 5-methylcytosine differ in melting temperature, i.e., the temperature required to convert the double helix into random coils. We describe two methods that resolve differentially methylated DNA sequences on the basis of differences in melting temperature. The first method integrates PCR amplification of bisulfite-treated DNA and subsequent melting analysis by using a thermal cycler coupled with a fluorometer. By including in the reaction a PCR-compatible, fluorescent dye that specifically binds to double-stranded DNA, the melting properties of the PCR product can be examined directly in the PCR tube by continuous fluorescence monitoring during a temperature transition. The second method relies on resolution of alleles with different 5-methylcytosine contents by analysis of PCR products in a polyacrylamide gel containing a gradient of chemical denaturants. Optimal resolution of differences in melting temperature is achieved by a special design of PCR primers. Both methods allow resolution of "heterogeneous" methylation, i.e., the situation where the content and distribution of 5-methylcytosine in a target gene differ between different molecules in the same sample.  相似文献   

17.
Rapid competitive PCR using melting curve analysis for DNA quantification.   总被引:5,自引:0,他引:5  
S Al-Robaiy  S Rupf  K Eschrich 《BioTechniques》2001,31(6):1382-6, 1388
A rapid competitive PCR method was developed to quantify DNA on the LightCycler. It rests on the quantitative information contained in the melting curves obtained after amplification in the presence of SYBR Green I. Specific hybridization probes are not required. Heterologous internal standards sharing the same primer binding sites and having different melting temperatures to the natural PCR products were used as competitors. After a co-amplification of known amounts of the competitor with a DNA-containing sample, the target DNA can be quantified from the ratio of the melting peak areas of competitor and target products. The method was developed using 16S rDNA fragments from Streptococcus mutans and E. coli and tested against existing PCR-based DNA quantification procedures. While kinetic analysis of real-time PCR is well established for the quantification of pure nucleic acids, competitive PCR on the LightCycler based on an internal standardization was found to represent a rapid and sensitive alternative DNA quantification method for analysis of complex biological samples that may contain PCR inhibitors.  相似文献   

18.
19.
Selective amplification in PCR is principally determined by the sequence of the primers and the temperature of the annealing step. We have developed a new PCR technique for distinguishing related sequences in which additional selectivity is dependent on sequences within the amplicon. A 5′ extension is included in one (or both) primer(s) that corresponds to sequences within one of the related amplicons. After copying and incorporation into the PCR product this sequence is then able to loop back, anneal to the internal sequences and prime to form a hairpin structure—this structure is then refractory to further amplification. Thus, amplification of sequences containing a perfect match to the 5′ extension is suppressed while amplification of sequences containing mismatches or lacking the sequence is unaffected. We have applied Headloop PCR to DNA that had been bisulphite-treated for the selective amplification of methylated sequences of the human GSTP1 gene in the presence of up to a 105-fold excess of unmethylated sequences. Headloop PCR has a potential for clinical application in the detection of differently methylated DNAs following bisulphite treatment as well as for selective amplification of sequence variants or mutants in the presence of an excess of closely related DNA sequences.  相似文献   

20.
A sensitive assay for quantitating DNA damage within individual genes would be a valuable tool for identifying the molecular mechanisms of disease and the sites of action of various carcinogens and anticancer drugs. This report describes a competitive PCR assay that was used to quantitate DNA damage induced by anticancer drugs within a 683-bp region of the c-myc gene in human CEM leukemia cells. Absolute quantitation of gene-specific DNA damage (attomoles or molecules of damaged DNA sequences) was achieved by coamplification of a homologous internal standard that has the same primer binding sites and PCR amplification efficiency as c-myc. The variability (standard error) associated with four separate determinations of the amount of c-myc sequence in 300 ng of DNA from untreated cells (6.80 +/- 0.05 SE amol) was less than 1% of the mean. The assay was capable of quantitating direct DNA damage that was induced by therapeutic concentrations of VM-26 and cisplatin prior to the onset of cellular apoptosis or necrosis. Both VM-26 (1-10 microM) and cisplatin (25-100 microM) induced a dose-dependent decrease in the amount of intact c-myc sequence. This assay should be readily adaptable to current real-time PCR protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号