首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome-wide disease association studies contrast genetic variation between disease cohorts and healthy populations to discover single nucleotide polymorphisms (SNPs) and other genetic markers revealing underlying genetic architectures of human diseases. Despite scores of efforts over the past decade, many reproducible genetic variants that explain substantial proportions of the heritable risk of common human diseases remain undiscovered. We have conducted a multispecies genomic analysis of 5,831 putative human risk variants for more than 230 disease phenotypes reported in 2,021 studies. We find that the current approaches show a propensity for discovering disease-associated SNPs (dSNPs) at conserved genomic positions because the effect size (odds ratio) and allelic P value of genetic association of an SNP relates strongly to the evolutionary conservation of their genomic position. We propose a new measure for ranking SNPs that integrates evolutionary conservation scores and the P value (E-rank). Using published data from a large case-control study, we demonstrate that E-rank method prioritizes SNPs with a greater likelihood of bona fide and reproducible genetic disease associations, many of which may explain greater proportions of genetic variance. Therefore, long-term evolutionary histories of genomic positions offer key practical utility in reassessing data from existing disease association studies, and in the design and analysis of future studies aimed at revealing the genetic basis of common human diseases.  相似文献   

2.
In spite of the success of genome-wide association studies (GWASs), only a small proportion of heritability for each complex trait has been explained by identified genetic variants, mainly SNPs. Likely reasons include genetic heterogeneity (i.e., multiple causal genetic variants) and small effect sizes of causal variants, for which pathway analysis has been proposed as a promising alternative to the standard single-SNP-based analysis. A pathway contains a set of functionally related genes, each of which includes multiple SNPs. Here we propose a pathway-based test that is adaptive at both the gene and SNP levels, thus maintaining high power across a wide range of situations with varying numbers of the genes and SNPs associated with a trait. The proposed method is applicable to both common variants and rare variants and can incorporate biological knowledge on SNPs and genes to boost statistical power. We use extensively simulated data and a WTCCC GWAS dataset to compare our proposal with several existing pathway-based and SNP-set-based tests, demonstrating its promising performance and its potential use in practice.  相似文献   

3.
Genome-wide association studies in cancer have already identified over 150 regions associated with two dozen specific cancers. Already, a handful of multi-cancer susceptibility regions have been uncovered, providing new insights into perhaps common mechanisms of carcinogenesis. For each new susceptibility allele, investigators now face the arduous task of interrogating each region beginning with fine mapping prior to pursuing the biological basis for the direct association of one or more variants. It appears that there may be a significant number of common alleles that contribute to the heritability of a specific cancer. Since each region confers a small contribution to the risk for cancer, it is daunting to consider any single nucleotide polymorphism (SNP) as a clinical test. Since the complex genomic architecture of each cancer differs, additional genotyping and sequence analysis will be required to comprehensively catalog susceptibility alleles followed by the formidable task of understanding the interactions between genetic regions as well as the environment. It will be critical to assess the applicability of genetic tests in specific clinical settings, such as when to perform screening tests with calculable risks (e.g., biopsies or chemoprevention), before incorporating SNPs into clinical practice. To advance the current genomic observations to the clinical venue, new studies will need to be designed to validate the utility of known genetic variants in assessing risk for cancer as well as its outcomes.  相似文献   

4.
SNP-specific extraction of haplotype-resolved targeted genomic regions   总被引:1,自引:0,他引:1  
The availability of genotyping platforms for comprehensive genetic analysis of complex traits has resulted in a plethora of studies reporting the association of specific single-nucleotide polymorphisms (SNPs) with common diseases or drug responses. However, detailed genetic analysis of these associated regions that would correlate particular polymorphisms to phenotypes has lagged. This is primarily due to the lack of technologies that provide additional sequence information about genomic regions surrounding specific SNPs, preferably in haploid form. Enrichment methods for resequencing should have the specificity to provide DNA linked to SNPs of interest with sufficient quality to be used in a cost-effective and high-throughput manner. We describe a simple, automated method of targeting specific sequences of genomic DNA that can directly be used in downstream applications. The method isolates haploid chromosomal regions flanking targeted SNPs by hybridizing and enzymatically elongating oligonucleotides with biotinylated nucleotides based on their selective binding to unique sequence elements that differentiate one allele from any other differing sequence. The targeted genomic region is captured by streptavidin-coated magnetic particles and analyzed by standard genotyping, sequencing or microarray analysis. We applied this technology to determine contiguous molecular haplotypes across a ~150 kb genomic region of the major histocompatibility complex.  相似文献   

5.
Primary open angle glaucoma (POAG) is a complex disease and is one of the major leading causes of blindness worldwide. Genome-wide association studies have successfully identified several common variants associated with glaucoma; however, most of these variants only explain a small proportion of the genetic risk. Apart from the standard approach to identify main effects of variants across the genome, it is believed that gene-gene interactions can help elucidate part of the missing heritability by allowing for the test of interactions between genetic variants to mimic the complex nature of biology. To explain the etiology of glaucoma, we first performed a genome-wide association study (GWAS) on glaucoma case-control samples obtained from electronic medical records (EMR) to establish the utility of EMR data in detecting non-spurious and relevant associations; this analysis was aimed at confirming already known associations with glaucoma and validating the EMR derived glaucoma phenotype. Our findings from GWAS suggest consistent evidence of several known associations in POAG. We then performed an interaction analysis for variants found to be marginally associated with glaucoma (SNPs with main effect p-value <0.01) and observed interesting findings in the electronic MEdical Records and GEnomics Network (eMERGE) network dataset. Genes from the top epistatic interactions from eMERGE data (Likelihood Ratio Test i.e. LRT p-value <1e-05) were then tested for replication in the NEIGHBOR consortium dataset. To replicate our findings, we performed a gene-based SNP-SNP interaction analysis in NEIGHBOR and observed significant gene-gene interactions (p-value <0.001) among the top 17 gene-gene models identified in the discovery phase. Variants from gene-gene interaction analysis that we found to be associated with POAG explain 3.5% of additional genetic variance in eMERGE dataset above what is explained by the SNPs in genes that are replicated from previous GWAS studies (which was only 2.1% variance explained in eMERGE dataset); in the NEIGHBOR dataset, adding replicated SNPs from gene-gene interaction analysis explain 3.4% of total variance whereas GWAS SNPs alone explain only 2.8% of variance. Exploring gene-gene interactions may provide additional insights into many complex traits when explored in properly designed and powered association studies.  相似文献   

6.
A great majority of genetic markers discovered in recent genome-wide association studies have small effect sizes, and they explain only a small fraction of the genetic contribution to the diseases. How many more variants can we expect to discover and what study sizes are needed? We derive the connection between the cumulative risk of the SNP variants to the latent genetic risk model and heritability of the disease. We determine the sample size required for case-control studies in order to achieve a certain expected number of discoveries in a collection of most significant SNPs. Assuming similar allele frequencies and effect sizes of the currently validated SNPs, complex phenotypes such as type-2 diabetes would need approximately 800 variants to explain its 40% heritability. Much smaller numbers of variants are needed if we assume rare-variants but higher penetrance models. We estimate that up to 50,000 cases and an equal number of controls are needed to discover 800 common low-penetrant variants among the top 5000 SNPs. Under common and rare low-penetrance models, the very large studies required to discover the numerous variants are probably at the limit of practical feasibility. Under rare-variant with medium- to high-penetrance models (odds-ratios between 1.6 and 4.0), studies comparable in size to many existing studies are adequate provided the genotyping technology can interrogate more and rarer variants.  相似文献   

7.
Omics data integration is becoming necessary to investigate the genomic mechanisms involved in complex diseases. During the integration process, many challenges arise such as data heterogeneity, the smaller number of individuals in comparison to the number of parameters, multicollinearity, and interpretation and validation of results due to their complexity and lack of knowledge about biological processes. To overcome some of these issues, innovative statistical approaches are being developed. In this work, we propose a permutation-based method to concomitantly assess significance and correct by multiple testing with the MaxT algorithm. This was applied with penalized regression methods (LASSO and ENET) when exploring relationships between common genetic variants, DNA methylation and gene expression measured in bladder tumor samples. The overall analysis flow consisted of three steps: (1) SNPs/CpGs were selected per each gene probe within 1Mb window upstream and downstream the gene; (2) LASSO and ENET were applied to assess the association between each expression probe and the selected SNPs/CpGs in three multivariable models (SNP, CPG, and Global models, the latter integrating SNPs and CPGs); and (3) the significance of each model was assessed using the permutation-based MaxT method. We identified 48 genes whose expression levels were significantly associated with both SNPs and CPGs. Importantly, 36 (75%) of them were replicated in an independent data set (TCGA) and the performance of the proposed method was checked with a simulation study. We further support our results with a biological interpretation based on an enrichment analysis. The approach we propose allows reducing computational time and is flexible and easy to implement when analyzing several types of omics data. Our results highlight the importance of integrating omics data by applying appropriate statistical strategies to discover new insights into the complex genetic mechanisms involved in disease conditions.  相似文献   

8.
A polygenic model of inheritance, whereby hundreds or thousands of weakly associated variants contribute to a trait’s heritability, has been proposed to underlie the genetic architecture of complex traits. However, relatively few genetic variants have been positively identified so far and they collectively explain only a small fraction of the predicted heritability. We hypothesized that joint association of multiple weakly associated variants over large chromosomal regions contributes to complex traits variance. Confirmation of such regional associations can help identify new loci and lead to a better understanding of known ones. To test this hypothesis, we first characterized the ability of commonly used genetic association models to identify large region joint associations. Through theoretical derivation and simulation, we showed that multivariate linear models where multiple SNPs are included as independent predictors have the most favorable association profile. Based on these results, we tested for large region association with height in 3,740 European participants from the Health and Retirement Study (HRS) study. Adjusting for SNPs with known association with height, we demonstrated clustering of weak associations (p = 2x10-4) in regions extending up to 433.0 Kb from known height loci. The contribution of regional associations to phenotypic variance was estimated at 0.172 (95% CI 0.063-0.279; p < 0.001), which compared favorably to 0.129 explained by known height variants. Conversely, we showed that suggestively associated regions are enriched for known height loci. To extend our findings to other traits, we also tested BMI, HDLc and CRP for large region associations, with consistent results for CRP. Our results demonstrate the presence of large region joint associations and suggest these can be used to pinpoint weakly associated SNPs.  相似文献   

9.
Kang HM  Zaitlen NA  Wade CM  Kirby A  Heckerman D  Daly MJ  Eskin E 《Genetics》2008,178(3):1709-1723
Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available.  相似文献   

10.
DNA variants, such as single nucleotide polymorphisms (SNPs) and copy number variants (CNVs), are unevenly distributed across the human genome. Currently, dbSNP contains more than 6 million human SNPs, and whole-genome genotyping arrays can assay more than 4 million of them simultaneously. In our study, we first questioned whether published genome-wide association studies (GWASs) assays cover all regions well in the genome. Using dbSNP build 135 data, we identified 50 genomic regions longer than 100 Kb that do not contain any common SNPs, i.e., those with minor allele frequency (MAF)≥1%. Secondly, because conserved regions are generally of functional importance, we tested genes in those large genomic regions without common SNPs. We found 97 genes and were enriched for reproduction function. In addition, we further filtered out regions with CNVs listed in the Database of Genomic Variants (DGV), segmental duplications from Human Genome Project and common variants identified by personal genome sequencing (UCSC). No region survived after those filtering. Our analysis suggests that, while there may not be many large genomic regions free of common variants, there are still some “holes” in the current human genomic map for common SNPs. Because GWAS only focused on common SNPs, interpretation of GWAS results should take this limitation into account. Particularly, two recent GWAS of fertility may be incomplete due to the map deficit. Additional SNP discovery efforts should pay close attention to these regions.  相似文献   

11.
12.
Although intensive studies have attempted to elucidate the genetic background of bronchial asthma (BA), one of the most common of the chronic inflammatory diseases in human populations, genetic factors associated with its pathogenesis are still not well understood. We surveyed 29 possible candidate genes for this disease for single nucleotide polymorphisms (SNPs), the most frequent type of genetic variation, in genomic DNAs from Japanese BA patients. We identified 33 SNPs, only four of which had been reported previously, among 14 of those genes. We also performed association studies using 585 BA patients and 343 normal controls for these SNPs. Of the 33 SNPs tested, 32 revealed no positive association with BA, but a T924C polymorphism in the thromboxane A2 receptor gene showed significant association (chi2=4.71, P=0.030), especially with respect to adult patients (chi2=6.20, P=0.013). Our results suggest that variants of the TBXA2R gene or some nearby gene(s) may play an important role in the pathogenesis of adult BA.  相似文献   

13.
Bronchial asthma is a chronic inflammatory respiratory disease that is caused by the complex interaction of environmental influences and genetic susceptibility. The first genome-wide association study of bronchial asthma discovered a significant association between SNPs within 17q12-21 genomic region and childhood bronchial asthma in individuals of European descent. Association with this genomic region was then replicated in a number of independent samples of European and Asian descent. Here we report results of the first genome-wide association study of bronchial asthma in the Volga-Ural region of Russia. The present study includes 358 unrelated patients with physician-diagnosed bronchial asthma and 369 disease-free control subjects of different ethnic origin (Russians, Tatars and Bashkirs). Genotyping of DNA samples was carried out using the Illumina Human610 quad array as a part of GABRIEL project (contract from the EC No LSHB-CT-2006-018996). After QC filtering procedures, a final set of 550915 SNPs genotyped in 330 cases and 348 controls was tested for association with bronchial asthma. Five markers on chromosome 17q12-21 showed statistically significant association with bronchial asthma (p < or = 4.79 x 10(-7)). SNP rs7216389 with the strongest evidence for association (p = 1.01 x 10(-7)) is located within the first intron of the GSDMB gene. Evidence for association was stronger with childhood-onset asthma (p = 1.97 x 10(-6) for SNP rs7216389) compared to late-onset asthma (p = 1.8 x 10(-4) for SNP rs7216389). Our replication study using three SNPs within GSDMB gene confirmed association with only childhood-onset asthma. In summary, these results suggest an important role for genetic variants within 17q12-q21 region in the development of bronchial asthma in the Volga-Ural region of Russia.  相似文献   

14.
MOTIVATION: Single nucleotide polymorphisms (SNPs) are the most common form of genetic variant in humans. SNPs causing amino acid substitutions are of particular interest as candidates for loci affecting susceptibility to complex diseases, such as diabetes and hypertension. To efficiently screen SNPs for disease association, it is important to distinguish neutral variants from deleterious ones. RESULTS: We describe the use of Pfam protein motif models and the HMMER program to predict whether amino acid changes in conserved domains are likely to affect protein function. We find that the magnitude of the change in the HMMER E-value caused by an amino acid substitution is a good predictor of whether it is deleterious. We provide internet-accessible display tools for a genomewide collection of SNPs, including 7391 distinct non-synonymous coding region SNPs in 2683 genes. AVAILABILITY: http://lpgws.nci.nih.gov/cgi-bin/GeneViewer.cgi  相似文献   

15.
In a sample of 3,187 twins and 3,294 of their parents, we sought to investigate association of both individual variants and a genotype-based height score involving 176 of the 180 common genetic variants with adult height identified recently by the GIANT consortium. First, longitudinal observations on height spanning pre-adolescence through adulthood in the twin sample allowed us to investigate the separate effects of the previously identified SNPs on pre-pubertal height and pubertal growth spurt. We show that the effect of SNPs identified by the GIANT consortium is primarily on prepubertal height. Only one SNP, rs7759938 in LIN28B, approached a significant association with pubertal growth. Second, we show how using the twin data to control statistically for environmental variance can provide insight into the ultimate magnitude of SNP effects and consequently the genetic architecture of a phenotype. Specifically, we computed a genetic score by weighting SNPs according to their effects as assessed via meta-analysis. This weighted score accounted for 9.2% of the phenotypic variance in height, but 14.3% of the corresponding genetic variance. Longitudinal samples will be needed to understand the developmental context of common genetic variants identified through GWAS, while genetically informative designs will be helpful in accurately characterizing the extent to which these variants account for genetic, and not just phenotypic, variance.  相似文献   

16.
Although the introduction of genome-wide association studies (GWAS) have greatly increased the number of genes associated with common diseases, only a small proportion of the predicted genetic contribution has so far been elucidated. Studying the cumulative variation of polymorphisms in multiple genes acting in functional pathways may provide a complementary approach to the more common single SNP association approach in understanding genetic determinants of common disease. We developed a novel pathway-based method to assess the combined contribution of multiple genetic variants acting within canonical biological pathways and applied it to data from 14,000 UK individuals with 7 common diseases. We tested inflammatory pathways for association with Crohn''s disease (CD), rheumatoid arthritis (RA) and type 1 diabetes (T1D) with 4 non-inflammatory diseases as controls. Using a variable selection algorithm, we identified variants responsible for the pathway association and evaluated their use for disease prediction using a 10 fold cross-validation framework in order to calculate out-of-sample area under the Receiver Operating Curve (AUC). The generalisability of these predictive models was tested on an independent birth cohort from Northern Finland. Multiple canonical inflammatory pathways showed highly significant associations (p 10−3–10−20) with CD, T1D and RA. Variable selection identified on average a set of 205 SNPs (149 genes) for T1D, 350 SNPs (189 genes) for RA and 493 SNPs (277 genes) for CD. The pattern of polymorphisms at these SNPS were found to be highly predictive of T1D (91% AUC) and RA (85% AUC), and weakly predictive of CD (60% AUC). The predictive ability of the T1D model (without any parameter refitting) had good predictive ability (79% AUC) in the Finnish cohort. Our analysis suggests that genetic contribution to common inflammatory diseases operates through multiple genes interacting in functional pathways.  相似文献   

17.
Detecting genetic variants under selection using FST outlier analysis (OA) and environmental association analyses (EAAs) are popular approaches that provide insight into the genetic basis of local adaptation. Despite the frequent use of OA and EAA approaches and their increasing attractiveness for detecting signatures of selection, their application to field‐based empirical data have not been synthesized. Here, we review 66 empirical studies that use Single Nucleotide Polymorphisms (SNPs) in OA and EAA. We report trends and biases across biological systems, sequencing methods, approaches, parameters, environmental variables and their influence on detecting signatures of selection. We found striking variability in both the use and reporting of environmental data and statistical parameters. For example, linkage disequilibrium among SNPs and numbers of unique SNP associations identified with EAA were rarely reported. The proportion of putatively adaptive SNPs detected varied widely among studies, and decreased with the number of SNPs analysed. We found that genomic sampling effort had a greater impact than biological sampling effort on the proportion of identified SNPs under selection. OA identified a higher proportion of outliers when more individuals were sampled, but this was not the case for EAA. To facilitate repeatability, interpretation and synthesis of studies detecting selection, we recommend that future studies consistently report geographical coordinates, environmental data, model parameters, linkage disequilibrium, and measures of genetic structure. Identifying standards for how OA and EAA studies are designed and reported will aid future transparency and comparability of SNP‐based selection studies and help to progress landscape and evolutionary genomics.  相似文献   

18.
Susceptibility to common human diseases is influenced by both genetic and environmental factors. The explosive growth of genetic data, and the knowledge that it is generating, are transforming our biological understanding of these diseases. In this review, we describe the technological and analytical advances that have enabled genome-wide association studies to be successful in identifying a large number of genetic variants robustly associated with common disease. We examine the biological insights that these genetic associations are beginning to produce, from functional mechanisms involving individual genes to biological pathways linking associated genes, and the identification of functional annotations, some of which are cell-type-specific, enriched in disease associations. Although most efforts have focused on identifying and interpreting genetic variants that are irrefutably associated with disease, it is increasingly clear that—even at large sample sizes—these represent only the tip of the iceberg of genetic signal, motivating polygenic analyses that consider the effects of genetic variants throughout the genome, including modest effects that are not individually statistically significant. As data from an increasingly large number of diseases and traits are analysed, pleiotropic effects (defined as genetic loci affecting multiple phenotypes) can help integrate our biological understanding. Looking forward, the next generation of population-scale data resources, linking genomic information with health outcomes, will lead to another step-change in our ability to understand, and treat, common diseases.  相似文献   

19.
Phenotypic variation in natural populations results from a combination of genetic effects, environmental effects, and gene-by-environment interactions. Despite the vast amount of genomic data becoming available, many pressing questions remain about the nature of genetic mutations that underlie functional variation. We present the results of combining genome-wide association analysis of 41 different phenotypes in ∼5,000 inbred maize lines to analyze patterns of high-resolution genetic association among of 28.9 million single-nucleotide polymorphisms (SNPs) and ∼800,000 copy-number variants (CNVs). We show that genic and intergenic regions have opposite patterns of enrichment, minor allele frequencies, and effect sizes, implying tradeoffs among the probability that a given polymorphism will have an effect, the detectable size of that effect, and its frequency in the population. We also find that genes tagged by GWAS are enriched for regulatory functions and are ∼50% more likely to have a paralog than expected by chance, indicating that gene regulation and gene duplication are strong drivers of phenotypic variation. These results will likely apply to many other organisms, especially ones with large and complex genomes like maize.  相似文献   

20.
Stringer S  Wray NR  Kahn RS  Derks EM 《PloS one》2011,6(11):e27964
Complex diseases are often highly heritable. However, for many complex traits only a small proportion of the heritability can be explained by observed genetic variants in traditional genome-wide association (GWA) studies. Moreover, for some of those traits few significant SNPs have been identified. Single SNP association methods test for association at a single SNP, ignoring the effect of other SNPs. We show using a simple multi-locus odds model of complex disease that moderate to large effect sizes of causal variants may be estimated as relatively small effect sizes in single SNP association testing. This underestimation effect is most severe for diseases influenced by numerous risk variants. We relate the underestimation effect to the concept of non-collapsibility found in the statistics literature. As described, continuous phenotypes generated with linear genetic models are not affected by this underestimation effect. Since many GWA studies apply single SNP analysis to dichotomous phenotypes, previously reported results potentially underestimate true effect sizes, thereby impeding identification of true effect SNPs. Therefore, when a multi-locus model of disease risk is assumed, a multi SNP analysis may be more appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号