首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well known that parts of earthworms can survive if they are cut off. Our aim was to link the regeneration capacity of an earthworm, Eisenia fetida (Oligochaeta, Annelida) with the site of the amputation, so we amputated earthworms at different body segment locations along the length of the body to examine the different survival rates and regeneration lengths of the anterior, posterior, and medial sections.
The greatest survival rates occurred for earthworms with the most body segments remaining after amputation. The anterior regeneration lengths were of two types. The lengths of regeneration of amputated from body segment 6/7 to further down the body posteriorly increased gradually (Type LI). However, the regeneration lengths of earthworm which were amputated behind the 23rd segment, with less than a quarter of the total segments remaining, did not increase until the blastema and tail bud formation (Type LII). These treatments were not completely regeneration. There were significant differences in both survival rates and lengths of regeneration lengths between immature earthworms and clitellate adult earthworms during the early stages of regeneration, but not at later stages of regeneration. The immature earthworms had a greater regeneration potential than clitellate adults amputated at the same segment. The survival rates of earthworms were correlated significantly with the number of body segments remaining after amputation, but not with the position of the amputation. The relationships between the survival rates and the numbers of remaining segments could be described by linear regressions. The anterior regeneration lengths were correlated with the position of the amputation, but not with the number of remaining segments; the posterior regeneration lengths, were not correlated with the number of segments remaining nor the amputation position. The anterior regeneration length was not related to the survival rates for all earthworm amputations after 30 days but was related in this way after 60 days.  相似文献   

2.
It is well known that parts of earthworms can survive if they are cut off. Our aim was to link the regeneration capacity of an earthworm, Eisenia fetida (Oligochaeta, Annelida) with the site of the amputation, so we amputated earthworms at different body segment locations along the length of the body to examine the different survival rates and regeneration lengths of the anterior, posterior, and medial sections.
The greatest survival rates occurred for earthworms with the most body segments remaining after amputation. The anterior regeneration lengths were of two types. The lengths of regeneration of amputated from body segment 6/7 to further down the body posteriorly increased gradually (Type LI). However, the regeneration lengths of earthworm which were amputated behind the 23rd segment, with less than a quarter of the total segments remaining, did not increase until the blastema and tail bud formation (Type LII). These treatments were not completely regeneration. There were significant differences in both survival rates and lengths of regeneration lengths between immature earthworms and clitellate adult earthworms during the early stages of regeneration, but not at later stages of regeneration. The immature earthworms had a greater regeneration potential than clitellate adults amputated at the same segment. The survival rates of earthworms were correlated significantly with the number of body segments remaining after amputation, but not with the position of the amputation. The relationships between the survival rates and the numbers of remaining segments could be described by linear regressions. The anterior regeneration lengths were correlated with the position of the amputation, but not with the number of remaining segments; the posterior regeneration lengths, were not correlated with the number of segments remaining nor the amputation position. The anterior regeneration length was not related to the survival rates for all earthworm amputations after 30 days but was related in this way after 60 days.  相似文献   

3.
Eunicidan bristle worm families are commonly identified by the shape of their prostomia and pharyngeal structures. However, current hypotheses of homology among these structures are conflicting, making it difficult to assess morphological evolution, reconstruct phylogeny, and produce a stable classification. To generate more consistent hypotheses of homology among eunicidan anterior structures, the author examined the anterior morphology and the nervous system stained with anti‐α‐tubulin and serotonin antibodies in representative species of Eunicidae, Onuphidae, Oenonidae, Dorvilleidae and Lumbrineridae. The shape of the brain varied conspicuously among families; however, it has mostly the same commissures (usually two of the dorsal and five of the ventral roots of the circumoesophageal connective). The stomatogastric system is also conservative in composition, having two main pairs of stomatogastric nerves which vary in their relative position among the different families. Innervation similarities combined with correspondence and topological morphological similarities made it possible to present explicit hypotheses of primary homology of features, such as buccal lips, pharyngeal fold, and dorsolateral fold anterior extension. Buccal lips are present in all families; however, ventral pads on the prostomium of the Dorvillea line of Dorvilleidae are anterior prolongations of the pharyngeal fold and not buccal lips. All examined taxa, except dorvilleid species, have conspicuous dorsolateral fold anterior extension. In Eunicidae, this anterior extension is a transverse band, while in other families it is a pair of folds. Observed similarities also gave insights on the homology of maxillary elements of Dorvilleidae, providing background knowledge for future studies. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Enchytraeus japonensis is a small terrestrial oligochaete which primarily reproduces asexually by fragmentation and regeneration. In order to introduce a molecular approach to the study of regeneration we developed a whole-mount immunostaining procedure for the worm. Using an antibody directed against acetylated tubulin in conjunction with confocal laser-scanning microscopy, we succeeded in clarifying the three- dimensional structure of the entire nervous system in the full-grown worm and its dynamics during the fragmentation and regeneration process. In addition, we examined the expression of neurotransmitters and neuropeptides in the worm using a fluorescently-labeled antagonist and various antibodies. In particular, we found two circumferential structures in the body wall muscle of each segment that react strongly with α-bungarotoxin, an antagonist of nicotinic acetylcholine receptors, and detected nerve fibers just underneath these structures. During the fragmentation process, the circular body wall muscles contract near one of these circumferential structures in the middle of the segment, which causes constriction and results in fission of the body. This α-bungarotoxin-positive structure was designated the neuromuscular junction of the circular muscle. During the regeneration process nerve fibers grow from the remaining ventral nerve cord and gradually form networks in both the anterior and posterior regeneration buds. The growing fibers extend to the prostomium (a sensory organ) at the anterior end prior to connecting to the presumptive brain rudiment. A neural network appears around the pygidium, and this is followed by growth of the body at the posterior end. The nervous system appears to play an important role in both anterior and posterior regeneration. Received: 9 June 1999 / Accepted: 30 December 1999  相似文献   

5.
The present study describes the major aspects of how monoaminergic (serotonin, dopamine) systems change in the course of regeneration of the brain in the earthworm (Eisenia fetida), investigated by immunocytochemistry, HPLC assay, and ligand binding. Following brain extirpation, the total regeneration time is about 80 days at 10 degrees C. On the 3rd postoperative day serotonin, and on the 11th postoperative day tyrosine hydroxylase-immunoreactive neurons can be observed in the wound tissue. Thereafter the number of the immunoreactive cells increases gradually, and by the 76th-80th postoperative days all serotonin- and tyrosine hydroxylase-immunopositive neurons can be found in their final positions, similarly to those observed in the intact brain. Labeled neurons located in the dorsal part of the regenerated brain appear earlier than the cells in lateral and ventral positions. Both serotonin- and tyrosine hydroxylase-immunoreactive neurons of the newly formed brain seem to originate from undifferentiated neuroblasts situated within and around the ventral ganglia and the pleura. Dopaminergic (tyrosine hydroxylase-immunoreactive) elements may additionally derive from the proliferation of neurons localized in the subesophageal ganglion and the pharyngeal nerve plexus. Following brain extirpation, both serotonin and dopamine levels, assayed by HPLC, first increase in the subesophageal ganglion; by the 25th day of regeneration, the monoamine content decreases in it and increases in the brain. Hence it is suggested that monoamines are at least partly transported from this ganglion to the regenerating brain. At the same time, (3)H-LSD binding can be detected in the regenerating brain from the 3rd postoperative day, showing a continuous increase until the 80th postoperative day, suggesting a guiding role of postsynaptic elements in the monoaminergic reinnervation of the newly formed brain.  相似文献   

6.
The Enchytraeida Oligochaeta Enchytraeus japonensis propagates asexually by spontaneous autotomy. Normally, each of the 5-10 fragments derived from a single worm regenerates a head anteriorly and a tail posteriorly. Occasionally, however, a head is formed posteriorly in addition to the normal anterior head, resulting in a bipolar worm. This phenomenon prompted us to conduct a series of experiments to clarify how the head and the tail are determined during regeneration in this species. The results showed that (1) bipolar head regeneration occurred only after artificial amputation, and not by spontaneous autotomy, (2) anesthesia before amputation raised the frequency of bipolar head regeneration, and (3) an extraordinarily high proportion of artificially amputated head fragments regenerated posterior heads. Close microscopic observation of body segments showed that each trunk segment has one specific autotomic position, while the head segments anterior to the VIIth segment do not. Only the most posterior segment VII in the head has an autotomic position. Examination just after amputation found that the artificial cutting plane did not correspond to the normal autotomic position in most cases. As time passed, however, the proportion of worms whose cutting planes corresponded to the autotomic position increased. It was suspected that the fragments autotomized after the artificial amputation (corrective autotomy). This post-amputation autotomy was probably inhibited by anesthesia. The rate at which amputated fragments did not autotomize corresponded roughly to the rate of bipolar regeneration. It was hypothesized then that the head regenerated posteriorly if a fragment was not amputated at the precise autotomic position from which it regenerated without succeeding in corrective autotomy.  相似文献   

7.
The aim of the present work was to study the character of the change in serotonin level in the anterior and medial basal hypothalamus of adult rats after the effect of testicular hormones had been switched off on the first day of postnatal life. It was shown in our work that in males serotonin level was significantly lower than that in females by 67 and 46% in the anterior and medial basal hypothalamus, respectively. Castration of newborn males resulted in a significant increase in serotonin level in both anterior and medial basal hypothalamus-up to the level observed in females. It is supposed that the male sex hormones affect differentiation of serotoninergic system of the brain.  相似文献   

8.
Tartaglia LJ  Shain DH 《Gene》2008,423(2):135-141
Glacier ice worms, Mesenchytraeus solifugus and related species, are the only known annelids that survive obligately in glacier ice and snow. One fundamental component of cold temperature adaptation is the ability to polymerize tubulin, which typically depolymerizes at low physiological temperatures (e.g., <10 degrees C) in most temperate species. In this study, we isolated two alpha-tubulin (Msalpha1, Msalpha2) and two beta-tubulin (Msbeta1, Msbeta2) subunits from an ice worm cDNA library, and compared their predicted amino acid sequences with homologues from other cold-adapted organisms (e.g., Antarctic fish, ciliate) in an effort to identify species-specific amino acid substitutions that contribute to cold temperature-dependent tubulin polymerization. Our comparisons and predicted protein structures suggest that ice worm-specific amino acid substitutions stabilize lateral contact associations, particularly between beta-tubulin protofilaments, but these substitutions occur at different positions in comparison with other cold-adapted tubulins. The ice worm tubulin gene family appears relatively small, comprising one primary alpha- and one primary beta-tubulin monomers, though minor isoforms and psuedogenes were identified. Our analyses suggest that variation occurs in the strategies (i.e., species-specific amino acid substitutions, gene number) by which cold-adapted taxa have evolved the ability to polymerize tubulin at low physiological temperatures.  相似文献   

9.
A significant negative correlation between the numbers of earthworms and the flatworm was demonstrated in fromalin-sampled lawns. Their distributions, recorded by a transect from a shrub border where the flatworm is suspected to have been introduced, indicated that predation may lead to earthworm extinction. Two different vermarium designs demonstrated a gradation of earthworm vulmerability to the flatworm due to depth within the soil and burrow width rather than perference for specific earthworm species. A strong correlation between the level of earth worm predation and flatworm movement implied active hunting. A predation rate was found to be 0.67 of an earthworm per flatworm per week with a metabolic conversion rate of 10%.  相似文献   

10.
Regeneration, the ability to restore body parts after an injury or an amputation, is a widespread but highly variable and complex phenomenon in animals. While having fascinated scientists for centuries, fundamental questions about the cellular basis of animal regeneration as well as its evolutionary history remain largely unanswered. Here, we present a study of regeneration of the marine annelid Platynereis dumerilii, an emerging comparative developmental biology model, which, like many other annelids, displays important regenerative abilities. When P. dumerilii worms are amputated, they are able to regenerate the posteriormost differentiated part of their body and a stem cell-rich growth zone that allows the production of new segments replacing the amputated ones. We show that posterior regeneration is a rapid process that follows a well reproducible path and timeline, going through specific stages that we thoroughly defined. Wound healing is achieved one day after amputation and a regeneration blastema forms one day later. At this time point, some tissue specification already occurs, and a functional posterior growth zone is re-established as early as three days after amputation. Regeneration timing is only influenced, in a minor manner, by worm size. Comparable regenerative abilities are found for amputations performed at different positions along the antero-posterior axis of the worm, except when amputation planes are very close to the pharynx. Regenerative abilities persist upon repeated amputations without important alterations of the process. We also show that intense cell proliferation occurs during regeneration and that cell divisions are required for regeneration to proceed normally. Finally, 5-ethynyl-2’-deoxyuridine (EdU) pulse and chase experiments suggest that blastemal cells mostly derive from the segment immediately abutting the amputation plane. The detailed characterization of P. dumerilii posterior body regeneration presented in this article provides the foundation for future mechanistic and comparative studies of regeneration in this species.  相似文献   

11.
Little quantitative ecological information exists on the diets of most invertebrate feeding reptiles, particularly nocturnal or elusive species that are difficult to observe. In the UK and elsewhere, reptiles are legally required to be relocated before land development can proceed, but without knowledge of their dietary requirements, the suitability of receptor sites cannot be known. Here, we tested the ability of non-invasive DNA-based molecular diagnostics (454 pyrosequencing) to analyse reptile diets, with the specific aims of determining which earthworm species are exploited by slow worms (the legless lizard Anguis fragilis) and whether they feed on the deeper-living earthworm species that only come to the surface at night. Slow worm faecal samples from four different habitats were analysed using earthworm-specific PCR primers. We found that 86% of slow worms (N=80) had eaten earthworms. In lowland heath and marshy/acid grassland, Lumbricus rubellus, a surface-dwelling epigeic species, dominated slow worm diet. In two other habitats, riverside pasture and calciferous coarse grassland, diet was dominated by deeper-living anecic and endogeic species. We conclude that all species of earthworm are exploited by these reptiles and lack of specialization allows slow worms to thrive in a wide variety of habitats. Pyrosequencing of prey DNA in faeces showed promise as a practical, rapid and relatively inexpensive means of obtaining detailed and valuable ecological information on the diets of reptiles.  相似文献   

12.
13.
Calanoid copepods constitute an important group of marine planktonic crustaceans that often dominate the metazoan biomass of the world’s oceans. In proportion to their ecological importance, little is known about their nervous systems. We have used immunohistochemical techniques in a common North Atlantic calanoid to localize re-identifiable neurons that putatively contain the biogenic amines histamine, dopamine, and serotonin. We have found low numbers of such cells and cell groups (approximately 37 histamine pairs, 22 dopamine pairs, and 12 serotonin pairs) compared with those in previously described crustaceans. These cells are concentrated in the anterior part of the central nervous system, the majority for each amine being located in the three neuromeres that constitute the brain (protocerebrum, deutocerebrum, and tritocerebrum). Extensive histamine labeling occurs in several small compact protocerebral neuropils, three pairs of larger, more posterior, paired, dense neuropils, and one paired diffuse tritocerebral neuropil. The most concentrated neuropil showing dopamine labeling lies in the putative deutocerebrum, associated with heavily labeled commissural connections between the two sides of the brain. The most prominent serotonin neuropil is present in the anterior medial part of the brain. Tracts of immunoreactive fibers of all three amines are prominent in the cephalic region of the nervous system, but some projections into the most posterior thoracic regions have also been noted.  相似文献   

14.
It has been shown for the first time that biogenic amines (catecholamines and tryptophane derivatives) stimulate dose-dependently activity of adenylyl cyclase (AC) and GTP-binding of G-proteins in muscle of the skin-muscle sac of the earthworm Lumbricus terrestris. By efficiency of their stimulating action on the AC activity, biogenic amines can be arranged in the following sequence: octopamine > tyramine > tryptamine ≈ serotonin > dopamine > isoproterenol ≈ adrenalin. The sequence of efficiency of their action on GTP-binding is somewhat different: serotonin > tryptamine > octopamine > dopamine ≈ tyramine > adrenaline > isoproterenol. Sensitivity of AC and G-proteins in the worm muscle to biogenic amines is similar with that in smooth muscle of the mollusc Anodonta cygnea (invertebrates), but differs markedly by this parameter from the rat myocardium (vertebrates). It has also been revealed that AC in the worm muscle is regulated by peptide hormones, relaxin and somatostatin, whose action is comparable with that in the mollusc muscle, but much weaker that the action of these hormones on the rat myocardium AC activity. Use of Cterminal peptides of α-subunits of G-proteins of the stimulatory (385–394 Gαs) and inhibitory (346–355 Gαi2) types that disrupt selectively the hormonal signal transduction realized via Gsand Giproteins, respectively, allowed establishing that the AC-stimulating effects of relaxin, octopamine, tyramine, and dopamine in the worm muscle are realized via the receptors coupled functionally with Gs-protein; the AC-inhibiting effect of somatostatin is realized via the receptor coupled with Gi-protein, whereas serotonin and tryptamine activate both types of G-proteins.  相似文献   

15.
It has been shown for the first time that biogenic amines (catecholamines and tryptophane derivatives) stimulate dose-dependently activity of adenylyl cyclase (AC) and GTP-binding of G-proteins in muscle of the cutaneous-muscle bag of the earthworm Lumbricus terrestris. By efficiency of their stimulating action on the AC activity, biogenic amines can be arranged in the following sequence: octopamine > tyramine > tryptamine = serotonin > dopamine > isoproterenol = adrenalin. The sequence of efficiency of their action on GTP-binding is somewhat different: serotonin > tryptamine > octopamine > dopamine = tyramine > adrenaline > isoproterenol. Sensitivity of AC and G-proteins in the worm muscle to biogenic amines is similar with that in smooth muscle of the molluse Anodonta cygnea (invertebrates), but differs markedly by this parameter from the rat myocardium (vertebrates). It has also been revealed that AC in the worm muscle is regulated by peptide hormones relaxin and somatostatin whose action is comparable with that in the mollusk muscle, but much weaker that the action of these hormones on the rat myocardium AC activity. Use of C-terminal peptides of alpha-subunits of G-proteins of the stimulatory (385-394 Galpha(s)) and inhibitory (346-355 Galpha(i2)) types that disrupt selectively the hormonal signal transduction realized via G(s)- and G(i)-proteins, respectively, allowed establishing that the AC-stimulating effects of relaxin, octopamine, tyramine, and dopamine in the worm muscle are realized via the receptors coupled functionally with G(s)-protein; the AC-inhibiting effect of somatostatin is realized via the receptor coupled with G(i)-protein, whereas serotonin and tryptamine activate both types of G-proteins.  相似文献   

16.
Potential of an oriental composting earthworm: Perionyx excavatus (Perrier) to decompose waste resources generated from agricultural practices (crop residues, farm yard manure, and cattle dung) was studied for 150days under laboratory conditions. At the end of experiment, all vermibeds showed significant decrease in their organic C content ( approximately 21-29%), while increase in total N ( approximately 91-144%), available P ( approximately 63-105%), and exchangeable K ( approximately 45-90%). P. excavatus showed maximum individual live weight (662.05mg) after 120days in MIXED (mixed crop residues+cow dung in 1:1) substrate. The maximum growth rate (mg worm(-1)day(-1)) was between 3.79+/-0.08 and 2.35+/-0.16 on different substrates. The mean number of cocoon production was between 394.3+/-23.2 and 690.7+/-23.2 for different experimental beddings. MIXED bedding showed maximum reproduction rate (0.23+/-0.004 cocoons worm(-1) day(-1)), whereas farmyard manure bedding (FYM) showed least value (0.15+/-0.002 cocoons worm(-1)day(-1)). During vermicomposting, the total mortality in worms' population was recorded between 0% (in MIXED) and 21.7% (in Jowar straw (Sorghum vulgare)+millet straw (Pennisenum typhoides)+sheep manure in 1:1:2 ratio (JMS)). The waste decomposition and earthworm production was associated strongly with the quality of the substrate, especially with their chemical as well as biological composition.  相似文献   

17.
Assembly properties of cod, bovine, and rat brain microtubules were compared. Estramustine phosphate, heparin, poly-L-aspartic acid, as well as NaCl, inhibited the assembly and disassembled both bovine and rat microtubules by inhibition of the binding between tubulin and MAPs. The assembly of cod brain microtubules was in contrast only marginally affected by these agents, in spite of a release of the MAPs. The results suggest that cod tubulin has a high intrinsic ability to assemble. This was confirmed by studies on phosphocellulose-purified cod tubulin, since the critical concentration for assembly was independent of the presence or absence of MAPs. The results show therefore that cod brain tubulin has, in contrast to bovine and rat brain tubulins, a high propensity to assembly under conditions which normally require the presence of MAPs. Even if cod MAPs, which have an unusual protein composition, were not needed for the assembly of cod microtubules, they were able to induce assembly of bovine brain tubulin. Both cod and bovine MAPs bound to cod microtubules, and bovine MAP1 and MAP2 bound to, and substituted at least the 400 kDa cod protein. This suggests that the tubulin-binding sites and the assembly-stimulatory ability of MAPs are common properties of MAPs from different species, independent of the tubulin assembly propensity.  相似文献   

18.
Rats were made hyperammonemic by feeding them a diet containing ammonium acetate. The tubulin content in their brain increased 30% after 20 days on the diet. All the increase was found in polymerized tubulin; no increase in free tubulin was noted. When rats on the ammonium diet were then fed the standard diet, the tubulin increased slightly on the first day but decreased markedly on the second day, reaching control values on the third day. It should be noted that brain tubulin synthesis, was not reduced on the first day of feeding the standard diet but was markedly inhibited (to 40% of control) on the second day, returning to control values on the third day. On the first day of refeeding there is a remarkable disassembly of microtubules with a large, proportional increase (50%) of free tubulin. Both free and polymerized tubulin levels returned to control values on the third day. These results indicate that in hyperammonemia changes in the degree of polymerization of tubulin preceded those in tubulin synthesis.  相似文献   

19.
The origin and extreme diversification of the animal nervous system is a central question in biology. While most of the attention has traditionally been paid to those lineages with highly elaborated nervous systems (e.g. arthropods, vertebrates, annelids), only the study of the vast animal diversity can deliver a comprehensive view of the evolutionary history of this organ system. In this regard, the phylogenetic position and apparently conservative molecular, morphological and embryological features of priapulid worms (Priapulida) place this animal lineage as a key to understanding the evolution of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we characterize the nervous system of the hatching larva and first lorica larva of the priapulid worm Priapulus caudatus by immunolabelling against acetylated and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results show that a circumoral brain and an unpaired ventral nerve with a caudal ganglion characterize the central nervous system of hatching embryos. After the first moult, the larva attains some adult features: a neck ganglion, an introvert plexus, and conspicuous secondary longitudinal neurites. Our study delivers a neuroanatomical framework for future embryological studies in priapulid worms, and helps illuminate the course of nervous system evolution in the Ecdysozoa.  相似文献   

20.
为了探讨视黄酸对蚯蚓再生的影响,用视黄酸处理了从不同部位剪切的蚯蚓体段.观察其存活率、重量和再生长度的变化。结果表明,有头无尾的体段存活率受视黄酸影响较小,而无头有尾的处理受视黄酸影响较大;视黄酸处理后30d,各处理再生长度和存活率均小于对照;视黄酸对蚯蚓再生有明显影响,能延迟和干扰再生,影响头部的形成。视黄酸影响蚯蚓再生的作用方式可能是通过干扰前后体轴的形成,从而影响蚯蚓再生图式形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号