首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic renal failure patients on long-term hemolysis are found to be under increased oxidative stress, caused by antioxidant deficiency, neutrophil activation during hemodialysis (HD), platelet activation and/or chronic inflammation. Increased levels of oxidants (e.g. malondialdehyde, 4-hydroxynonenal, hydrocarbons, lipohydroperoxides, oxycholesterols, carbonyls) in HD patients are thought to play an important role in the development of endothelial dysfunction, atherogenesis and cardiovascular disease, which is a frequent condition in end-stage renal disease. F2-isoprostanes have been established as chemically stable, highly specific and reliable biomarkers of in vivo oxidative stress which can very sensitively measured by gas chromatography-mass spectrometry (Morrow et al. [17]). An up to 6-fold increase of plasma F2-isoprostanes in HD patients is accompanied by an enhanced formation of indicators of inflammation (e.g. C-reactive protein) and decreases of endogenous antioxidants (e.g. ascorbate, alpha-tocopherol). In their esterified form F2-isoprostanes may be a useful criteria to evaluate the effectiveness of clinical interventions to diminish oxidant stress and associated inflammation. Furthermore, F2-isoprostanes possess potent biological activities (e.g. 8-iso-PGF2alpha is known as a renal vasoconstrictor) suggesting that they may also act as mediators of the cellular effects of oxidative stress and inflammation.  相似文献   

2.
Vitamin C is a potent antioxidant in vitro and has been reported to act as a vasodilator, possibly by increasing nitric oxide bioavailability. This study examined the antioxidant and vascular effects of a single large oral dose of vitamin C in 26 healthy human volunteers. Haemodynamic and oxidative DNA and lipid damage markers were measured for 8 h following an oral dose of 2 g vitamin C or placebo. Vitamin C had no effect on vasodilation (measured by augmentation index (mean change=0.04%, 90% CI=? 2.20% to 2.28%) or forearm blood flow (?0.19%/min (?0.68, 0.30)), in comparison to placebo) or on several markers of oxidative stress including DNA base oxidation products in blood cells, 8-hydroxy-2’-deoxyguanosine (8O HdG) in urine (0.068 (?0.009, 0.144)) or urinary or plasma total F2-isoprostanes (?0.005 ng/ml (?0.021, 0.010), ?0.153 ng/mg (?0.319, 0.014), respectively).  相似文献   

3.
There is growing evidence that oxidative stress contributes to the pathogenesis of hypertension. Our aim was to measure markers of oxidative stress in hypertensive subjects, and assess the potential confounding influences of antihypertensive therapy, other cardiovascular risk factors, gender, lifestyle, and nutrition. Markers of oxidative stress, including plasma and 24 h urinary F2-isoprostanes, were measured in 70 untreated (men = 43, women = 27) and 85 treated (men = 43, women = 42) hypertensive subjects and 40 normotensive controls (men = 20, women = 20). Overall, F2-isoprostanes were not elevated in hypertensive subjects compared with controls. However, urinary and plasma F2-isoprostanes were significantly lower in treated compared with untreated hypertensive men, but not women. In hypertensive men, the number of antihypertensive drugs taken was inversely associated with both urinary and plasma F2-isoprostanes (p <.05). Self-reported alcohol intake and biomarkers of alcohol consumption (gamma-glutamyl transpeptidase and high-density lipoprotein cholesterol) were positively associated with plasma but not urinary, F2-isoprostanes in men. Several nutrients were independently associated with plasma and urinary F2-isoprostanes in women. The results do not support the hypothesis that treated or untreated hypertensive subjects are under increased oxidative stress compared with normotensive controls.  相似文献   

4.
Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status a cellular adaptive response occurs requiring functional chaperones, antioxidant production and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring plasma reduced and oxidized glutathione, as well as pentosidine, protein carbonyls lipid oxidation products 4-hydroxy-2-nonenal and F2-isoprostanes in plasma, and lymphocytes, whereas the lymphocyte levels of the heat shock proteins (HSP) HO-1, Hsp72, Sirtuin-1, Sirtuin-2 and thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. Plasma GSH/GSSG showed a significant decrease in type 2 diabetes as compared to control group, associated with increased pentosidine, F2-isoprostanes, carbonyls and HNE levels. In addition, lymphocyte levels of HO-1, Hsp70, Trx and TrxR-1 (P<0.05 and P<0.01) in diabetic patients were higher than in normal subjects, while sirtuin-1 and sirtuin-2 protein was significantly decreased (p<0.05). In conclusion, patients affected by type 2 diabetes are under condition of systemic oxidative stress and, although the relevance of downregulation in sirtuin signal has to be fully understood, however induction of HSPs and thioredoxin protein system represent a maintained response in counteracting systemic pro-oxidant status. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

5.
In this study we investigated the effects of ageing on the carbonyl stress (protein carbonyls and 4-hydroxy-2-nonenal groups) and glutathione antioxidant defense in red blood cells (RBCs) of obese Type 2 diabetic patients with/without hypertensive complications. To this purpose the following methods were used: spectrophotometry (protein carbonyls, glutathione and glutathione peroxidase assays), immunofluorescence (4-hydroxy-2-nonenal localization), western blotting (immunodetection of carbonylated proteins). The results showed that compared to RBCs of healthy subjects, in obese Type 2 diabetics, ageing is associated with: (i) an increase in the concentration and expression of carbonylated proteins, a marker of oxidative stress; (ii) a decrease of both non-enzymatic and enzymatic endogenous glutathione defenses; (iii) a severely disturbed oxidant/antioxidant balance when obesity was associated with hypertension. The simultaneous insults of high blood pressure, obesity, and diabetes conducted to the highest carbonyl stress, exposure of 4-hydroxy-2-nonenal Michel adducts at the outer leaflet of RBCs plasmalemma, and the lowest glutathione antioxidant potential, particularly in elderly patients. These results can explain the gradual age-dependent diminishment of the detoxification potential of RBCs that at the old age can not overcome the deleterious effects of the high systemic oxidative stress.  相似文献   

6.
Exercise training (ET) or the antioxidant R(+)-alpha-lipoic acid (R-ALA) individually increases insulin action in the insulin-resistant obese Zucker rat. The purpose of the present study was to determine the interactions of ET and R-ALA on insulin action and oxidative stress in skeletal muscle of the obese Zucker rat. Animals either remained sedentary, received R-ALA (30 mg x kg body wt(-1) x day(-1)), performed ET (treadmill running), or underwent both R-ALA treatment and ET for 6 wk. During an oral glucose tolerance test, ET alone or in combination with R-ALA resulted in a significant lowering of the glucose (26-32%) and insulin (29-30%) responses compared with sedentary controls. R-ALA alone decreased (19%) the glucose-insulin index (indicative of increased insulin sensitivity), and this parameter was reduced (48-52%) to the greatest extent in the ET and combined treatment groups. ET or R-ALA individually increased insulin-mediated glucose transport activity in isolated epitrochlearis (44-48%) and soleus (37-57%) muscles. The greatest increases in insulin action in these muscles (80 and 99%, respectively) were observed in the combined treatment group. Whereas the improvement in insulin-mediated glucose transport in soleus due to R-ALA was associated with decreased protein carbonyl levels (an index of oxidative stress), improvement because of ET was associated with decreased protein carbonyls as well as enhanced GLUT-4 protein. However, there was no interactive effect of ET and R-ALA on GLUT-4 protein or protein carbonyl levels. These results indicate that ET and R-ALA interact in an additive fashion to improve insulin action in insulin-resistant skeletal muscle. Because the further improvement in muscle glucose transport in the combined group was not associated with additional upregulation of GLUT-4 protein or a further reduction in oxidative stress, the mechanism for this interaction must be due to additional, as yet unidentified, factors.  相似文献   

7.
In vitro studies have shown that alpha-lipoic acid (LA) is an antioxidant. There is a paucity of studies on LA supplementation in humans. Therefore, the aim of this study was to assess the effect of oral supplementation with LA alone and in combination with alpha-tocopherol (AT) on measures of oxidative stress. A total of 31 healthy adults were supplemented for 2 months either with LA (600 mg/d, n = 16), or with AT (400 IU/d, n = 15) alone, and then with the combination of both for 2 additional months. At baseline, after 2 and 4 months of supplementation, urine for F2-isoprostanes, plasma for protein carbonyl measurement and low-density lipoprotein (LDL) oxidative susceptibility was collected. Plasma oxidizability was assessed after incubation with 100 mM 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) for 4 h at 37 degrees C. LDL was subjected to copper- and AAPH-catalyzed oxidation at 37 degrees C over 5 h and the lag time was computed. LA significantly increased the lag time of LDL lipid peroxide formation for both copper-catalyzed and AAPH-induced LDL oxidalion (p < .05), decreased urinary F2-isoprostanes levels (p < .05), and plasma carbonyl levels after AAPH oxidation (p < .001). AT prolonged LDL lag time of lipid peroxide formation (p < .01 ) and conjugated dienes (p < .01) after copper-catalyzed LDL oxidation, decreased urinary F2-isoprostanes (p < .001), but had no effect on plasma carbonyls. The addition of LA to AT did not produce an additional significant improvement in the measures of oxidative stress. In conclusion, LA supplementation functions as an antioxidant, because it decreases plasma- and LDL-oxidation and urinary isoprostanes.  相似文献   

8.
Abnormal mitochondrial function is present in patients with peripheral arterial disease and may contribute to its clinical manifestations. However, the specific biochemical mitochondrial defects and their association with increased oxidative stress have not been fully characterized. Gastrocnemius muscle was obtained from peripheral arterial disease patients (n = 25) and age-matched controls (n = 16) and mitochondrial parameters were measured. Complexes I through IV of the electron transport chain were individually evaluated to assess for isolated defects. Muscle was also evaluated for protein and lipid oxidative changes by measuring the levels of protein carbonyls, lipid hydroperoxides, and total 4-hydroxy-2-nonenal binding and for the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. Mitochondrial electron transport chain complexes I, III, and IV in arterial disease patients demonstrated significant reductions in enzymatic activities and mitochondrial respiration compared to controls. Oxidative stress biomarker analysis demonstrated significantly increased levels of protein carbonyls, lipid hydroperoxides, and 4-hydroxy-2-nonenal compared to control muscle. Antioxidant enzyme activities were altered, with a significant decrease in superoxide dismutase activity and significant increases in catalase and glutathione peroxidase. Peripheral arterial disease is associated with abnormal mitochondrial function and evidence of significant oxidative stress.  相似文献   

9.
Oxidative and nitrative stress responses resulting from inflammation exacerbate liver injury associated with nonalcoholic steatohepatitis (NASH) by inducing lipid peroxidation and protein nitration. The objective of this study was to investigate whether the anti-inflammatory properties of green tea extract (GTE) would protect against NASH by suppressing oxidative and nitrative damage mediated by proinflammatory enzymes. Obese mice (ob/ob) and their 5-week-old C57BL6 lean littermates were fed 0%, 0.5% or 1% GTE for 6 weeks (n=12-13 mice/group). In obese mice, hepatic lipid accumulation, inflammatory infiltrates and serum alanine aminotransferase activity were markedly increased, whereas these markers of hepatic steatosis, inflammation and injury were significantly reduced among obese mice fed GTE. GTE also normalized hepatic 4-hydroxynonenal and 3-nitro-tyrosine (N-Tyr) concentrations to those observed in lean controls. These oxidative and nitrative damage markers were correlated with alanine aminotransferase (P<.05; r=0.410-0.471). Improvements in oxidative and nitrative damage by GTE were also associated with lower hepatic nicotinamide adenine dinucleotide phosphate oxidase activity. Likewise, GTE reduced protein expression levels of hepatic myeloperoxidase and inducible nitric oxide synthase and decreased the concentrations of nitric oxide metabolites. Correlative relationships between nicotinamide adenine dinucleotide phosphate oxidase and hepatic 4-hydroxynonenal (r=0.364) as well as nitric oxide metabolites and N-Tyr (r=0.598) suggest that GTE mitigates lipid peroxidation and protein nitration by suppressing the generation of reactive oxygen and nitrogen species. Further study is warranted to determine whether GTE can be recommended as an effective dietary strategy to reduce the risk of obesity-triggered NASH.  相似文献   

10.
The present study was designed to investigate the modulatory effects of black tea polyphenols (Polyphenon-B) on phase I and phase II xenobiotic-metabolizing enzymes and oxidative stress in a rat model of hepatocellular carcinoma (HCC). Liver tumours induced in male Sprague-Dawley rats by dietary administration of rho-dimethylaminoazobenzene (DAB) increased cytochrome P450 (total and CYP1A1, 1A2 and 2B isoforms), cytochrome b(5), cytochrome b(5) reductase, glutathione S-transferase (GST total and GST-P isoform) and gamma-glutamyltranspeptidase (GGT) with decrease in quinone reductase (QR). This was accompanied by enhanced lipid and protein oxidation and compromised antioxidant defences associated with increased expression of the oxidative stress markers 4-hydroxynonenal (4-HNE), anti-hexanoyl lysine (HEL), dibromotyrosine (DiBrY) and 8-hydroxy 2-deoxyguanosine (8-OHdG). Dietary administration of Polyphenon-B effectively suppressed DAB-induced hepatocarcinogenesis, as evidenced by reduced preneoplastic and neoplastic lesions, modulation of xenobiotic-metabolizing enzymes and amelioration of oxidative stress. Thus, it can be concluded that Polyphenon-B acts as an effective chemopreventive agent by modulating xenobiotic-metabolizing enzymes and mitigating oxidative stress in an in vivo model of hepatocarcinogenesis.  相似文献   

11.
《Biomarkers》2013,18(3):183-195
Abstract

Manufacturers have developed prototype cigarettes yielding reduced levels of some tobacco smoke toxicants, when tested using laboratory machine smoking under standardised conditions. For the scientific assessment of modified risk tobacco products, tests that offer objective, reproducible data, which can be obtained in a much shorter time than the requirements of conventional epidemiology are needed. In this review, we consider whether biomarkers of biological effect related to oxidative stress can be used in this role. Based on published data, urinary 8-oxo-7,8-dihydro-2-deoxyguanosine, thymidine glycol, F2-isoprostanes, serum dehydroascorbic acid to ascorbic acid ratio and carotenoid concentrations show promise, while 4-hydroxynonenal requires further qualification.  相似文献   

12.
Vitamin C is a potent antioxidant in vitro and has been reported to act as a vasodilator, possibly by increasing nitric oxide bioavailability. This study examined the antioxidant and vascular effects of a single large oral dose of vitamin C in 26 healthy human volunteers. Haemodynamic and oxidative DNA and lipid damage markers were measured for 8 h following an oral dose of 2 g vitamin C or placebo. Vitamin C had no effect on vasodilation (measured by augmentation index (mean change=0.04%, 90% CI=- 2.20% to 2.28%) or forearm blood flow (-0.19%/min (-0.68, 0.30)), in comparison to placebo) or on several markers of oxidative stress including DNA base oxidation products in blood cells, 8-hydroxy-2'-deoxyguanosine (8O HdG) in urine (0.068 (-0.009, 0.144)) or urinary or plasma total F(2)-isoprostanes (-0.005 ng/ml (-0.021, 0.010), -0.153 ng/mg (-0.319, 0.014), respectively).  相似文献   

13.
《Biomarkers》2013,18(2):154-158
Abstract

Oxidative stress biomarkers may have a role in the future to assist clinical decisions regarding the use of antioxidant therapies and their efficacy. The aims of this study were to evaluate the within and between-individual variability of plasma oxidative stress biomarkers and investigate factors affecting their variability. Plasma F2-isoprostanes and protein carbonyls were measured in 14 hemodialysis patients every 2 weeks for 10 weeks. Within-individual coefficients of variation (CVs) were isoprostanes?=?30.4% (range?=?6.1–66.7%) and protein carbonyls?=?16.3% (8.4–29.5%). Between-individual CVs were isoprostanes?=?34.4% (28.9–40.2%) and protein carbonyls?=?19.5% (15.6–24.5%). There were no significant (p?>?0.05) relationships between the oxidative stress biomarkers and dietary antioxidant intake, medications, clinical and demographic parameters.  相似文献   

14.
We previously demonstrated that black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. To investigate potential mechanisms of this effect, we examined plasma catechins and systemic markers of oxidation, inflammation, and antioxidant protection from 66 subjects enrolled in that study. We collected samples at baseline, 2 h after 450 ml of black tea (acute), after 4 weeks of 900 ml of black tea per day (chronic), and after acute and chronic consumption of water. Total catechins increased 33% after acute tea (P < 0.05) and 29% after chronic tea (P < 0.05). Of individual catechins, plasma epicatechin gallate (ECG) concentration significantly increased with acute tea consumption, and plasma epicatechin (EC) increased with chronic tea consumption. Tea consumption did not improve plasma antioxidant capacity and did not reduce urinary 8-hydroxy-2'-deoxyguanosine, or urinary 8-isoprostane levels. Changes in catechin levels did not correlate with changes in endothelial function, plasma markers of oxidative stress, or C-reactive protein. In contrast, endothelial function at baseline correlated with dietary flavonoid intake (beta = 0.32, P = 0.02) and with baseline plasma EC concentration after adjusting for confounding variables (beta = 0.39, P = 0.03). These findings suggest that the benefits of black tea consumption on endothelial function may not be attributable to tea catechins or a systemic antioxidant or anti-inflammatory effect. Chronic dietary flavonoid status appears to relate to endothelial function, possibly suggesting that other flavonoids or polyphenolic components of tea favorably influence vascular health and risk for cardiovascular disease.  相似文献   

15.
16.
Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status, a cellular-adaptive response occurs requiring functional chaperones, antioxidant production, and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes-induced nephropathy and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring advanced glycation end-products (pentosidine), protein oxidation (protein carbonyls [DNPH]), and lipid oxidation (4-hydroxy-2-nonenal [HNE] and F2-isoprostanes) in plasma, lymphocytes, and urine, whereas the lymphocyte levels of the heat shock proteins (Hsps) heme oxygenase-1 (HO-1), Hsp70, and Hsp60 as well as thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. We found increased levels of pentosidine (P < 0.01), DNPH (P < 0.05 and P < 0.01), HNE (P < 0.05 and P < 0.01), and F2-isoprostanes (P < 0.01) in all the samples from type 2 diabetic patients with nephropathy with respect to control group. This was paralleled by a significant induction of cellular HO-1, Hsp60, Hsp70, and TrxR-1 (P < 0.05 and P < 0.01). A significant upregulation of both HO-1 and Hsp70 has been detected also in lymphocytes from type 2 diabetic patients without uraemia. Significant positive correlations between DNPH and Hsp60, as well as between the degree of renal failure and HO-1 or Hsp70, also have been found in diabetic uremic subjects. In conclusion, patients affected by type 2 diabetes complicated with nephropathy are under condition of systemic oxidative stress, and the induction of Hsp and TrxR-1 is a maintained response in counteracting the intracellular pro-oxidant status.  相似文献   

17.
Cigarette smoking predisposes to the development of multiple diseases involving oxidative damage. We measured a range of oxidative damage biomarkers to understand which differ between smokers and nonsmokers and if the levels of these biomarkers change further during the act of smoking itself. Despite overnight abstinence from smoking, smokers had higher levels of plasma total and esterified F(2)-isoprostanes, hydroxyeicosatetraenoic acid products (HETEs), F(4)-neuroprostanes, 7-ketocholesterol, and 24- and 27-hydroxycholesterol. Levels of urinary F(2)-isoprostanes, HETEs, and 8-hydroxy-2'-deoxyguanosine were also increased compared with age-matched nonsmokers. Several biomarkers (plasma free F(2)-isoprostanes, allantoin, and 7β-hydroxycholesterol and urinary F(2)-isoprostane metabolites) were not elevated. The smokers were then asked to smoke a cigarette; this acute smoking elevated plasma and urinary F(2)-isoprostanes, plasma allantoin, and certain cholesterol oxidation products compared to presmoking levels, but not plasma HETEs or urinary 8-hydroxy-2'-deoxyguanosine. Smokers showed differences in plasma fatty acid composition. Our findings confirm that certain oxidative damage biomarkers are elevated in smokers even after a period of abstinence from smoking, whereas these plus some others are elevated after acute smoking. Thus, different biomarkers do not measure identical aspects of oxidative stress.  相似文献   

18.
The involvement of reactive oxygen species (ROS) and oxidative stress in pediatric diseases is an important concern, but oxidative stress status in healthy young subjects and appropriate methods for its measurement remain unclear. This study evaluated a comprehensive set of urinary biomarkers for oxidative stress in healthy children, adolescents and young adults. Results show that urinary excretion of acrolein–lysine, 8-hydroxy-2′-deoxyguanosine (8-OHdG), nitrite/nitrate and pentosidine were highest in the youngest subjects and decreased to constant levels by early adolescence. Urinary acrolein–lysine, 8-OHdG, nitrite/nitrate and pentosidine showed significant inverse correlations with age, but pyrraline did not change significantly with age. No significant differences in biomarkers were apparent between males and females. Younger subjects grow rapidly and sustain immune activation, and are probably exposed to high concentrations of ROS and nitric oxide. Consequently, they are more vulnerable to oxidation of lipids, proteins, DNA and carbohydrates. Normal reported values in this study are a basis for future studies of disease mechanisms involving oxidative stress and for future trials using antioxidant therapies for oxidative stress-related diseases in the pediatric field.  相似文献   

19.
In species that provide parental care, care for offspring is often accompanied by an increase in locomotor activity and a decrease in feeding opportunities which can negatively impact endogenous energy reserves. Depletion of parental energy stores and declines in nutritional condition can cause physiological disturbances, such as an imbalance between free radical production and available antioxidants, known as oxidative stress. Using the teleost smallmouth bass (Micropterus dolomieu) as a model, we tested if the energetic challenge associated with sole paternal care was associated with oxidative stress. Blood samples from parental males were collected throughout parental care, during egg, embryo, and larval stages of offspring development, and assayed for both antioxidant capacity and oxidative damage. A reduction in oxygen radical absorbance capacity was observed during the parental care period, indicating a decrease in resistance to oxidative stress. Although no change was observed in the reduced:total thiol ratio, a significant increase in the concentration of both oxidized and total thiols occurred during the parental care period. No increase in the oxidative stress markers 8-hydroxy-2-deoxyguanosine, protein carbonyls and lipid peroxides was observed. We concluded that oxidative stress did not occur as a result of parental care in the male smallmouth bass. This study provides evidence that participation in energetically taxing activities, such as parental care, can result in a decrease in antioxidant resources, but may not always result in oxidative stress.  相似文献   

20.
We have recently demonstrated (Saengsirisuwan V, Kinnick TR, Schmit MB, and Henriksen EJ, J Appl Physiol 91: 145-153, 2001) that exercise training (ET) and the antioxidant R-(+)-alpha-lipoic acid (R-ALA) interact in an additive fashion to improve insulin action in insulin-resistant obese Zucker (fa/fa) rats. The purpose of the present study was to assess the interactions of ET and R-ALA on insulin action and oxidative stress in a model of normal insulin sensitivity, the lean Zucker (fa/-) rat. For 6 wk, animals either remained sedentary, received R-ALA (30 mg. kg body wt(-1). day(-1)), performed ET (treadmill running), or underwent both R-ALA treatment and ET. ET alone or in combination with R-ALA significantly increased (P < 0.05) peak oxygen consumption (28-31%) and maximum run time (52-63%). During an oral glucose tolerance test, ET alone or in combination with R-ALA resulted in a significant lowering of the glucose response (17-36%) at 15 min relative to R-ALA alone and of the insulin response (19-36%) at 15 min compared with sedentary controls. Insulin-mediated glucose transport activity was increased by ET alone in isolated epitrochlearis (30%) and soleus (50%) muscles, and this was associated with increased GLUT-4 protein levels. Insulin action was not improved by R-ALA alone, and ET-associated improvements in these variables were not further enhanced with combined ET and R-ALA. Although ET and R-ALA caused reductions in soleus protein carbonyls (an index of oxidative stress), these alterations were not significantly correlated with insulin-mediated soleus glucose transport. These results indicate that the beneficial interactive effects of ET and R-ALA on skeletal muscle insulin action observed previously in insulin-resistant obese Zucker rats are not apparent in insulin-sensitive lean Zucker rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号