首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carnivorous plants avoid below-ground competition for nitrogen by utilizing an alternative nitrogen resource—invertebrate prey, but it remains unclear if sympatric carnivorous plants compete for prey resources. The aim of this study was to investigate if exploitative prey-resource competition occurs between the two sympatric pitcher plant species, Nepenthes rafflesiana and N. gracilis in Singapore. We first investigated if prey-resource partitioning occurs between these two species, and then investigated niche shift in N. gracilis by examining its pitcher contents along an in situ gradient of N. rafflesiana interspecific competition. Our results showed clear evidence of resource partitioning between the two species, but contrary to the expectation of competition, proximity to N. rafflesiana pitchers correlated with higher total prey numbers in N. gracilis pitchers. Our multivariate model of prey assemblages further suggested that N. rafflesiana facilitates N. gracilis prey capture, especially in several ant taxa that are trapped by both species. Concurrently, we found strong evidence for intraspecific competition between N. gracilis pitchers, suggesting that prey resources are exhaustible by pitcher-predation. Our results show that resource partitioning can be associated with facilitative interactions, instead of competition as is usually assumed. Facilitation is more typically expected between phylogenetically distant species, but divergences in resource acquisition strategies can permit facilitation between congeners.  相似文献   

2.
Ant-hemipteran mutualisms are widespread interactions in terrestrial food webs with far-reaching consequences for arthropod communities. Several hypotheses address the behavioral mechanisms driving the impacts of this mutualism, but relatively few studies have considered multiple ant species simultaneously as well as interspecific and intraspecific variation in ant behavior. In a series of field experiments that manipulated ant diet, this work examines the role of induced behaviors of forest ant species actively engaged in mutualism with Hemiptera. Based on other work in ant mutualisms, we predicted a higher frequency of aggressive behaviors towards prey and competitors by ants in the presence of honeydew-producing Hemiptera. We specifically compared Camponotus chromaoides and Formica neogagates (Formicidae), two abundant species in temperate forests of the northeastern U.S.A. After manipulating ant diet and interactions with sap-feeders experimentally, we observed 494 one-on-one interactions between ants and competitors, ladybird beetles and caterpillar prey. We found that C. chromaoides, exhibited behavioral dominance over F. neogagates, and C. chromaoides was more likely to attack ladybird beetles, competing ants, and caterpillar prey. However, contrary to other work in ant-Hemipteran mutualisms, we observed no evidence that food rewards provided by sap-feeders induced changes in ant behavior for either ant species examined. These results reveal the importance of considering interspecific differences in behavior as a mechanism underlying the ecological impacts of ant-Hemipteran protection mutualisms.  相似文献   

3.

Background and Aims

Nepenthes pitchers are sophisticated traps that employ a variety of mechanisms to attract, capture and retain prey. The underlying morphological structures and physiological processes are subject to change over the lifetime of a pitcher. Here an investigation was carried out on how pitcher properties and capture efficiency change over the first 2 weeks after pitcher opening.

Methods

Prey capture, trapping efficiency, extrafloral nectar secretion, pitcher odour, as well as pH and viscoelasticity of the digestive fluid in N. rafflesiana pitchers were monitored in the natural habitat from pitcher opening up to an age of 2 weeks.

Key Results

Pitchers not only increased their attractiveness over this period by becoming more fragrant and secreting more nectar, but also gained mechanical trapping efficiency via an enhanced wettability of the upper pitcher rim (peristome). Consistently, natural prey capture was initially low and increased 3–6 d after opening. It was, however, highly variable within and among pitchers. At the same time, the pH and viscoelasticity of the digestive fluid decreased, suggesting that the latter is not essential for effective prey capture.

Conclusions

Prey capture and attraction by Nepenthes are dynamic processes strongly influenced by the changing properties of the pitcher. The results confirm insect aquaplaning on the peristome as the main capture mechanism in N. rafflesiana.Key words: Carnivorous plants, pitcher development, prey attraction, prey capture, insect aquaplaning, extrafloral nectar, Nepenthes rafflesiana  相似文献   

4.
Feeding of predatory mites (Phytoseiulus persimilis, Galendromus occidentalis, and Neoseiulus cucumeris) on different life stages of Tetranychus atlanticus under optimal conditions was studied. Daily and total consumption of prey by predators and selection of prey of different life stages were studied for 5 days and for the entire feeding period. Average daily food consumption [number of individuals] for the entire life period of mature mite females constituted 0.43 females + 5.0 [nymphs and males] + 3.4 eggs of Tetranychus atlanticus in P. persimilis; 0.12 females + 3.70 [nymphs and males] + 3.10 eggs in G. occidentalis; and 0.19 females + 4.10 [nymphs and males] + 3.50 eggs in N. cucumeris. During the entire period of feeding, P. persimilis preferred large individuals and at the postembryonic stages selected prey to a greater extent than G. occidentalis and N. cucumeris (61.8 and 55.1%, respectively). The use of a 5-day express-method is possible for estimation of some biological characteristics of phytoseiids that previously consumed the same food for a long period. In other cases, analysis of characteristics for the entire life period is necessary.  相似文献   

5.
Many animals are considered to be specialists because they have feeding structures that are fine-tuned for consuming specific prey. For example, “smasher” mantis shrimp have highly specialized predatory appendages that generate forceful strikes to break apart hard-shelled prey. Anecdotal observations suggest, however, that the diet of smashers may include soft-bodied prey as well. Our goal was to examine the diet breadth of the smasher mantis shrimp, Neogonodactylus bredini, to determine whether it has a narrow diet of hard-shelled prey. We combined studies of prey abundance, feeding behavior, and stable isotope analyses of diet in both seagrass and coral rubble to determine if N. bredini’s diet was consistent across different habitat types. The abundances of hard-shelled and soft-bodied prey varied between habitats. In feeding experiments, N. bredini consumed both prey types. N. bredini consumed a range of different prey in the field as well and, unexpectedly, the stable isotope analysis demonstrated that soft-bodied prey comprised a large proportion (29–53 %) of the diet in both habitats. Using a Bayesian mixing model framework (MixSIAR), we found that this result held even when we used uninformative, or generalist, priors and informative priors reflecting a specialist diet on hard-shelled prey and prey abundances in the field. Thus, contrary to expectation, the specialized feeding morphology of N. bredini corresponds to a broad diet of both hard-shelled and soft-bodied prey. Using multiple lines of study to describe the natural diets of other presumed specialists may demonstrate that specialized morphology often broadens rather than narrows diet breadth.  相似文献   

6.
The social pseudoscorpion Paratemnoides nidificator is a common species in the Brazilian tropical savannah (Cerrado), where colonies are found under the bark of trees. In this environment, colonies hunt for large insects, subduing them by cooperative effort. Small insects are offered as food to nymphs, but large prey tends to be shared by colony members. We investigated the cooperative capture of large prey (Scarabaeidae beetles) by colonies of P. nidificator. During this process, some adults are involved in the immobilization and killing of prey. However, other adults stay as profiteers and do not offer help to subdue the prey. After prey immobilization, pseudoscorpions perform a hierarchical food share in which the attackers begin sucking the prey. These individuals favor the nymphs, offering them the prey and protection during feeding. Profiteer individuals are the last to feed on the carcass. In P. nidificator, obligatory parental care probably favors the evolution of behavioral strategies that prioritize the feeding of juveniles. This mechanism can provide better-quality food for the attackers but offers food to all colony members.  相似文献   

7.
An aphidophagous ladybird, Platynaspidius maculosus (Weise) (Coleoptera: Coccinellidae), is originally distributed in China, Taiwan, and Vietnam. The ladybird has recently intruded into the southern and central parts of Japan. The present study found that the larvae of this ladybird preyed on three aphid species, Aphis spiraecola, Aphis gossypii, and Toxoptera citricidus (all Hemiptera: Aphididae), feeding on young shoots of various Citrus species in August to early October in Shizuoka Prefecture, central Japan. Laboratory rearing of the sampled larvae confirmed that the larvae completed their development (adult emergence) by consuming each of the three aphid species. The ladybird larvae were observed foraging in aphid colonies attended by one of the four ants, Lasius japonicus, Pristomyrmex punctatus, Formica japonica, and Camponotus japonicus (all Hymenoptera: Formicidae). Field observations revealed that the foraging/feeding larvae were almost completely ignored by honeydew-collecting ants even when they physically contacted each other. Thus, in Japan, the larvae of the exotic ladybird exploit colonies of the three aphid species attended by one of the four ant species on many Citrus species. On the basis of the results, I discuss the possibility of the ladybird’s reproduction on citrus trees in Japan, probable adaptations of the ladybird larvae to aphid-attending ants, and potential impacts of the ladybird on native insect enemies attacking ant-attended aphids on citrus.  相似文献   

8.
Macaranga is a tree genus that includes many species of myrmecophytes, which are plants that harbor ant colonies within hollow structures known as domatia. The symbiotic ants (plant–ants) protect their host plants against herbivores; this defense mechanism is called ‘ant defense’. A Bornean phasmid species Orthomeria cuprinus feeds on two myrmecophytic Macaranga species, Macaranga beccariana and Macaranga hypoleuca, which are obligately associated with Crematogaster ant species. The phasmids elude the ant defense using specialized behavior. However, the mechanisms used by the phasmid to overcome ant defenses have been insufficiently elucidated. We hypothesized that O. cuprinus only feeds on individual plants with weakened ant defenses. To test the hypothesis, we compared the ant defense intensity in phasmid-infested and non-infested M. beccariana trees. The number of plant–ants on the plant surface, the ratio of plant–ant biomass to tree biomass, and the aggressiveness of plant–ants towards experimentally introduced herbivores were significantly lower on the phasmid-infested trees than on the non-infested trees. The phasmid nymphs experimentally introduced into non-infested trees, compared with those experimentally introduced into phasmid-infested trees, were more active on the plant surface, avoiding the plant–ants. These results support the hypothesis and suggest that ant defenses on non-infested trees effectively prevent the phasmids from remaining on the plants. Thus, we suggest that O. cuprinus feeds only on the individual M. beccariana trees having decreased ant defenses, although the factors that reduce the intensity of the ant defenses remain unclear.  相似文献   

9.
The pseudoscorpion Paratemnoides nidificator is a generalist predator that captures large arthropods that live on tree trunks. Few pseudoscorpions species show some degree of sociality. We investigated how colonies of the pseudoscorpion P. nidificator adjust their cooperative capture behavior under a situation of changing prey types as a simulation of variation in prey availability. We hypothesized that colonies would be more efficient at prey capture under repeated exposure to the same prey, and that the change in the availability of prey would be followed by new behavioral adjustments to adequately exploit the new prey. Eight experimental colonies housed in the laboratory received repetitions of three different ant species as prey. The number of pseudoscorpions attacking the prey, the number of behavioral acts, and the time expended subduing prey were evaluated as measures of prey capture performance, in relation to repetitive exposure to the same prey and also in relation to prey type changes. However, only individuals’ recruitment significantly responded to prey type exposure. Prey capture behavior was heterogeneous among colonies, resulting in highly variable behavioral responses. Colonies showed a tendency toward increasing capture success through repeated prey type exposure. However, 50% of the colonies were unable to capture the new prey type and died of starvation. Although it is a generalist predator, prey capture behavior could depend on different coordination components for subduing and handling large prey. Therefore, changes in prey availability could cause the attenuation of a cooperative relationship in some colonies, making them more prone to failure during capture.  相似文献   

10.
Social insect colonies are high-value foraging targets for insectivores, prompting the evolution of complex colony defensive adaptations as well as specialized foraging tactics in social insect predators. Predatory ants that forage on other social insects employ a diverse range of behaviors targeted at specific prey species. Here, we describe a solitary foraging strategy of the ant Ectatomma tuberculatum, on nest guards of the stingless bee Tetragonisca angustula. We observed multiple instances of E. tuberculatum ambushing and successfully capturing the hovering and standing guards of T. angustula near nest entrances. The unique hovering behavior of the guard caste of this bee species, an adaptation to frequent cleptoparasitism by other stingless bees, may make these guards particularly vulnerable to ground-based, ambush attacks by E. tuberculatum. Likewise, the behavior of the foraging ants appears to adaptively exploit the defensive formations and activity patterns of these bees. These observations suggest an adaptive and targeted predatory strategy aimed at gathering external guard bees as prey from these heavily fortified nests.  相似文献   

11.
Nesidiocoris tenuis, an omnivorous arthropod, infests plants in either the absence or presence of prey arthropods. We studied whether plant-infestation experience of N. tenuis affected its subsequent prey-finding behavior. We used sesame plants and eggplants as food plants for N. tenuis, and common cutworm (CCW) (Spodoptera litura larvae) as prey. We focused on their olfactory response to CCW-infested sesame plants versus CCW-infested eggplants in a Y-tube olfactometer. When N. tenuis adults experienced the infestation of sesame plants for one day, they preferred volatiles from CCW-infested sesame plants to those from CCW-infested eggplants. By contrast, when N. tenuis experienced the infestation of eggplants for one day, they showed no difference in their preference between the two odor sources. When the duration of the infestation of plants was increased to four days, N. tenuis that had experienced sesame plants showed a reversed response: they preferred CCW-infested eggplant volatiles, while those that had infested eggplants again showed no difference in their preference. Next, we studied the olfactory preference of N. tenuis that had previously infested plants with moth (Ephestia kuehniella) eggs. We found that irrespective of plant species and of duration of experience (either one or four days), N. tenuis adults that had previously experienced one plant species showed a significant preference for volatiles from CCW-infested plants of the same species. The blends of the volatiles emitted from CCW-infested sesame plants and those from CCW-infested eggplants were qualitatively different. Possibility to control the olfactory response of N. tenuis to certain prey-infested plant volatiles by adjusting their feeding history is discussed.  相似文献   

12.
The annual routines and seasonal ecology of herbivorous zooplankton species are relatively well known due to their tight coupling with their pulsed food source, the primary production. For higher trophic levels of plankton, these seasonal interactions are less well understood. Here, we study the mid-winter feeding of chaetognaths in high-Arctic fjord ecosystems. Chaetognaths are planktivorous predators which comprise high biomass in high-latitude seas. We investigated the common species Parasagitta elegans around the Svalbard archipelago (78–81°N) during the winters of 2012 and 2013. Our samples consisted of individuals (body lengths 9–55 mm) from three fjords, which were examined for gut contents (n = 903), stable isotopes, fatty acid composition, and maturity status (n = 352). About a quarter of the individuals contained gut contents, mainly lipid droplets and chitinous debris, whilst only 4 % contained identifiable prey, chiefly the copepods Calanus spp. and Metridia longa. The δ15N content of P. elegans, and its average trophic level of 2.9, confirmed its carnivorous position and its fatty acid profile [in particular its high levels of 20:1(n-9) and 22:1(n-11)] confirmed carnivory on Calanus. Observations of undeveloped gonads in many of the larger P. elegans, and the absence of small individuals <10 mm, suggested that reproduction had not started this early in the year. Its average feeding rate across fjords and years was 0.12 prey ind.?1 day?1, which is low compared to estimates of spring and summer feeding in high-latitude environments. Our findings suggest reduced feeding activity during winter and that predation by P. elegans had little impact on the mortality of copepods.  相似文献   

13.
Generalist predators have to deal with prey with sometimes very different morphologies and defensive behaviors. Therefore, such predators are expected to express plasticity in their predation strategy. Here we investigated the predatory behavior of the recluse spider Loxosceles rufipes (Araneae, Sicariidae) when attacking prey with different morphologies and defensive mechanisms. We expected L. rufipes to show different prey capture strategies and variable acceptance towards each prey type. Potential prey species were collected directly from the web or in the surroundings of the web-building site of L. rufipes. We collected and used the following in our experiments: termite workers (Nasutitermes sp.), lepidopteran larvae (Eurema salome), ants (Camponotus sp.) and isopods (Tylidae). We paired these prey with L. rufipes and recorded their behavior in captivity, quantifying acceptance rate, immobilization time and the sequence of behaviors by the predator. The acceptance rate was lower for isopods but not different among other prey. The immobilization time was higher for isopods than for termites and similar for the other pairwise comparisons. The behavioral sequence was similar for all prey except for isopods, which were also bit more often. Our combined results show plasticity in the behavior of L. rufipes and also show it subdues a potentially dangerous prey (ant) and an armored prey (isopod).  相似文献   

14.
Investigations were carried out in June–August 2012 and 2013 in broadleaf forests and planted stands of the northern red oak Quercus rubra in Kiev. The ant visitation rates of 3–6 most abundant plant species within each vegetation layer were analyzed. In all, 16 species of ants were found in the broadleaf forest (Quercus robur + Acer spp. + Carpinus betulus), with the dominance of three species: Formica rufa, Lasius fuliginosus, and L. emarginatus. Eight ant species occurred in Q. rubra stands with the undergrowth of Acer campestre and A. platanoides; the dominant species were Lasius fuliginosus and L. emarginatus. The northern red oak stands with conspecific undergrowth had only four ant species with no dominants among them. Plants with the highest ant visitation rates in the herbage layer of the broadleaf forest were the invasive Impatiens parviflora and the native Aegopodium podagraria. Ants were rare or absent on the remaining herbs: Impatiens noli-tangere, Carex sylvatica, Stellaria holostea, and Galium odoratum. The herbage layer was mostly visited by influents, the dominants being represented only by Lasius emarginatus. Within the shrub layer, ants most frequently visited the undergrowth of the maple Acer platanoides, often harboring colonies of the aphid Periphyllus lyropictus; the highest visitation rates were recorded in the dominants L. emarginatus and L. fuliginosus. The arboreal layer had the highest visitation rate and was most often visited by the dominants Lasius fuliginosus, L. emarginatus, and F. rufa. The common oak Q. robur was the most visited tree in broadleaf forests. In addition to providing ants with food (colonies of the aphids Lachnus roboris and Stomaphis quercus, and also phytophagous insects and other invertebrates), these trees were used for nesting by the dominants L. fuliginosus and L. emarginatus. The presence of aphid colonies was also typical of ripe trees and undergrowth of the maple A. platanoides, the second-visited tree in broadleaf forests. The common hornbeam Carpinus betulus was the least frequently visited, though some ant species, usually L. emarginatus, nested in the trunks and branches of old trees. The vertical distribution of ants in broadleaf forests and red oak stands formed two clusters: the influents occupied the lower (herbage and shrub) vegetation layers, while the subdominants and dominants occupied the upper (shrub and arboreal) ones. The smallest number of ant species (1 or 2) in all the vegetation layers was recorded in the areas with F. rufa; areas with L. fuliginosus had twice as many species; the greatest numbers of ant species were found in the areas with L. emarginatus and in those without dominants. This pattern may result from different territoriality of the dominants: the strongest in F. rufa (defending the whole territory) and the weaker in the other two species (defending only a part of the territory). Plants of all the vegetation layers varied in their attractiveness to ants. As a result, the layers had a mosaic structure in their vertical (between-layer) and horizontal (between different plant species within one layer) arrangement. From 60 to 100% of plants of certain species were visited by ants while plants of other species were not visited at all. The main reason for visiting plants by ants was the presence of aphid colonies.  相似文献   

15.
16.
Parasites often alter host physiology and behavior, which can enhance predation risk for infected hosts. Higher consumption of parasitized prey can in turn lead to a less parasitized prey population (the healthy herd hypothesis). Loxothylacus panopaei is a non-native castrating barnacle parasite on the mud crab Eurypanopeus depressus along the Atlantic coast. Through prey choice mesocosm experiments and a field tethering experiment, we investigated whether the predatory crab Callinectes sapidus and other predators preferentially feed on E. depressus infected with L. panopaei. We found that C. sapidus preferentially consumed infected E. depressus 3 to 1 over visibly uninfected E. depressus in the mesocosm experiments. Similarly, infected E. depressus were consumed 1.2 to 1 over uninfected conspecifics in field tethering trials. We evaluated a mechanism behind this skewed prey choice, specifically whether L. panopaei affects E. depressus movement, making infected prey more vulnerable to predator attack. Counter to our expectations, infected E. depressus ran faster during laboratory trials than uninfected E. depressus, suggesting that quick movement may not decrease predation risk and seems instead to make the prey more vulnerable. Ultimately, the preferential consumption of L. panopaei-infected prey by C. sapidus highlights how interactions between organisms could affect where novel parasites are able to thrive.  相似文献   

17.
Examining the functional response of predators can provide insight into the role of predation in structuring prey populations and ecological communities. This study explored feeding behaviour and functional responses of planktivorous damselfishes when offered captive reared larvae of crown-of-thorns starfish, Acanthaster sp., with the aim of determining whether these predators could ever play a role in moderating outbreaks of Acanthaster sp. We examined predatory behaviour of 11 species of planktivorous damselfish, testing: (1) the relationship between predator size and predation rate, both within and among fish species; (2) consumption rates on larvae of Acanthaster sp. versus larvae of a common, co-occurring coral reef asteroid Linckia laevigata; (3) maximal feeding rates upon both Acanthaster sp. and L. laevigata; and (4) functional responses of planktivorous fishes to increasing densities of Acanthaster sp. Consumption rates of crown-of-thorns larvae by damselfishes were independent of predator size; however, there was a significant negative relationship between predator size and consumption rate of L. laevigata, when pooling across all predatory species. Some damselfishes, including Acanthochromis polyacanthus and Amblyglyphidodon curacao, consumed larval Acanthaster sp. at a greater rate than for L. laevigata. Most predatory species (all except A. curacao and Pomacentrus amboinensis) exhibited a Type II functional response whereby the increasing feeding rate decelerated with increasing prey density. In addition to revealing that a wide range of planktivorous fishes can prey upon larvae of Acanthaster sp., these data suggest that planktivorous damselfishes may have the capacity to buffer against population fluctuations of Acanthaster sp. Importantly, predators with Type II functional responses often contribute to stability of prey populations, though planktivorous fishes may be swamped by an abnormally high influx of larvae, potentially contributing to the characteristic population fluctuations of Acanthaster sp.  相似文献   

18.
In social insects, task allocation can be more complex than workers merely falling into discrete task groups. Any activity performed by the colony cannot be fully understood in isolation from other activities because they may be interrelated. Investigating activities other than foraging is crucial to understanding the global functioning and organization of ant colonies. This study attempts to characterize the nest maintenance activity of the ponerine queenless ant, Dinoponera quadriceps, in its natural environment to determine the effects of environmental variables on the variations in both seasonal and daily rhythms and to discuss its differences and possible relationships to foraging. Four colonies of D. quadriceps were observed in an area of Atlantic Forest in northeastern Brazil. Data collection was performed over a period of 72 h every three months during an entire annual cycle. Nest maintenance activity in D. quadriceps colonies was observed during both the light and dark phases of the day. There was no significant difference between the day phases in the number of workers involved in this task. On the other hand, D. quadriceps colonies exhibited seasonal variation in nest maintenance activity, peaking in the early rainy season. The seasonal rhythm of nest maintenance was positively correlated with relative humidity and negatively correlated with prey availability and rainfall. Our results indicate the existence of an annual variation in the nest maintenance activity of D. quadriceps associated with environmental variables. However, it occurs equally both at night and day, countering the hypothesis that there is a daily rhythm.  相似文献   

19.
Data on distribution of Lasius neglectus Van Loon et al. in Crimea are reported. The structure of foraging areas of 111 monocalic and polycalic colonies, the daily activity rhythm, and the visiting of 26 species of trees by L. neglectus workers were studied; over a third of the visited tree species were conifers. Most colonies of L. neglectus in Crimea are monocalic. No replacement of the 12 native ant species present in the territories of the monocalic and polycalic colonies of L. neglectus was observed. Invasion of L. neglectus to Crimea probably started in the early 1970s.  相似文献   

20.
Understanding habitat requirements of species is important in conservation. As an obligate ant nest associate, the survival of the globally vulnerable shining guest ant, Formicoxenus nitidulus, is strictly tied to that of its hosts (mound building Formica ants). We investigated how host species, nest density, inter-nest distance and nest mound size relate to the occurrence of F. nitidulus. In total, 166 red wood ant nests were surveyed in SW Finland (120 Formica polyctena, 25 F. rufa, 14 F. aquilonia, 5 F. pratensis, and 2 F. lugubris). Overall, F. nitidulus was found in 60% of the nests. For the actual analysis, only F. polyctena and F. rufa nests were included due to the small number of other nests. F. nitidulus was more likely to be found among F. polyctena than F. rufa. Also, while inter-nest distance was not important, a high nest density, commonly found in polydomous (multi-nest) wood ant colonies, was beneficial for F. nitidulus. The guest ant was also more likely to be found in large host nests than small nests. Thus, our results show that the best habitat for the guest ant is a dense population of host nest mounds with a high proportion of large mounds. Conservation efforts should be directed at keeping the quality of the red wood ant habitats high to preserve their current populations and to increase colonization. This will not only benefit the guest ant, but also a plethora of other species, and help in maintaining the biodiversity of forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号