首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diatoms are one of the most abundant and arguably the most species‐rich group of protists. Diatom species delimitation has often been based exclusively on the recognition of morphological discontinuities without investigation of other lines of evidence. Even though DNA sequences and reproductive experiments have revealed several examples of (pseudo)cryptic diversity, our understanding of diatom species boundaries and diversity remains limited. The cosmopolitan pennate raphid diatom genus Pinnularia represents one of the most taxon‐rich diatom genera. In this study, we focused on the delimitation of species in one of the major clades of the genus, the Pinnularia subgibba group, based on 105 strains from a worldwide origin. We compared genetic distances between the sequences of seven molecular markers and selected the most variable pair, the mitochondrial cox1 and nuclear encoded LSU rDNA, to formulate a primary hypothesis on the species limits using three single‐locus automated species delimitation methods. We compared the DNA‐based primary hypotheses with morphology and with other available lines of evidence. The results indicate that our data set comprised 15 species of the P. subgibba group. The vast majority of these taxa have an uncertain taxonomic identity, suggesting that several may be unknown to science and/or members of (pseudo)cryptic species complexes within the P. subgibba group.  相似文献   

2.
There is an urgent need for more ecologically realistic models for better predicting the effects of climate change on species’ potential geographic distributions. Here we build ecological niche models using MAXENT and test whether selecting predictor variables based on biological knowledge and selecting ecologically realistic response curves can improve cross‐time distributional predictions. We also evaluate how the method chosen for extrapolation into nonanalog conditions affects the prediction. We do so by estimating the potential distribution of a montane shrew (Mammalia, Soricidae, Cryptotis mexicanus) at present and the Last Glacial Maximum (LGM). Because it is tightly associated with cloud forests (with climatically determined upper and lower limits) whose distributional shifts are well characterized, this species provides clear expectations of plausible vs. implausible results. Response curves for the MAXENT model made using variables selected via biological justification were ecologically more realistic compared with those of the model made using many potential predictors. This strategy also led to much more plausible geographic predictions for upper and lower elevational limits of the species both for the present and during the LGM. By inspecting the modeled response curves, we also determined the most appropriate way to extrapolate into nonanalog environments, a previously overlooked factor in studies involving model transfer. This study provides intuitive context for recommendations that should promote more realistic ecological niche models for transfer across space and time.  相似文献   

3.
The use of genetic distances to identify species within the framework of DNA barcoding has to some extent improved the development of biodiversity studies. However, using a fixed empirical threshold to delimit species may lead to overestimating species diversity. In this study, we use a new data set of COI sequences for 366 specimens within the genus of Cletus as well as conduct an analysis on the same genetic data for collected morphologically defined species from previous phylogeographical studies, to test whether high intraspecific genetic divergences are common with the premises of comprehensive sampling. The results indicate C. graminis Hsiao & Cheng 1964 , is the same species with C. punctiger (Dallas, 1852) and should be synonymized and that the distributional record of C. pugnator (Fabricius, 1787) in China is correct. High intraspecific genetic differentiations (0%–4.35%) were found in C. punctiger. Furthermore, as to the mined data, the maximum intraspecific K2P distances of 186 species (48.44% of 384) exceed 3%, and 101 species (26.30%) can be divided into two or more clusters with a threshold of 3% in cluster analysis. If genetic distance is used to delimit species boundaries, the minimum interspecific K2P distance of the congeneric species should be considered rather than only using the fixed empirical value; otherwise, the species richness may be overestimated in some cases.  相似文献   

4.
The analysis of apex predator diet has the ability to deliver valuable insights into ecosystem health, and the potential impacts a predator might have on commercially relevant species. The Australian sea lion (Neophoca cinerea) is an endemic apex predator and one of the world's most endangered pinnipeds. Given that prey availability is vital to the survival of top predators, this study set out to understand what dietary information DNA metabarcoding could yield from 36 sea lion scats collected across 1,500 km of its distribution in southwest Western Australia. A combination of PCR assays were designed to target a variety of potential sea lion prey, including mammals, fish, crustaceans, cephalopods, and birds. Over 1.2 million metabarcodes identified six classes from three phyla, together representing over 80 taxa. The results confirm that the Australian sea lion is a wide‐ranging opportunistic predator that consumes an array of mainly demersal fauna. Further, the important commercial species Sepioteuthis australis (southern calamari squid) and Panulirus cygnus (western rock lobster) were detected, but were present in <25% of samples. Some of the taxa identified, such as fish, sharks and rays, clarify previous knowledge of sea lion prey, and some, such as eel taxa and two gastropod species, represent new dietary insights. Even with modest sample sizes, a spatial analysis of taxa and operational taxonomic units found within the scat shows significant differences in diet between many of the sample locations and identifies the primary taxa that are driving this variance. This study provides new insights into the diet of this endangered predator and confirms the efficacy of DNA metabarcoding of scat as a noninvasive tool to more broadly define regional biodiversity.  相似文献   

5.
6.
The Andean uplift has played a major role in shaping the current Neotropical biodiversity. However, in arthropods other than butterflies, little is known about how this geographic barrier has impacted species historical diversification. Here, we examined the phylogeography of the widespread color polymorphic spider Gasteracantha cancriformis to evaluate the effect of the northern Andean uplift on its divergence and assess whether its diversification occurred in the presence of gene flow. We inferred phylogenetic relationships and divergence times in G. cancriformis using mitochondrial and nuclear data from 105 individuals in northern South America. Genetic diversity, divergence, and population structure were quantified. We also compared multiple demographic scenarios for this species using a model‐based approach (Phrapl ) to determine divergence with or without gene flow. At last, we evaluated the association between genetic variation and color polymorphism. Both nuclear and mitochondrial data supported two well‐differentiated clades, which correspond to populations occurring on opposite sides of the Eastern cordillera of the Colombian Andes. The final uplift of this cordillera was identified as the most likely force that shaped the diversification of G. cancriformis in northern South America, resulting in a cis‐ and trans‐Andean phylogeographic structure for the species. We also found shared genetic variation between the cis‐ and trans‐Andean clades, which is better explained by a scenario of historical divergence in the face of gene flow. This has been likely facilitated by the presence of low‐elevation passes across the Eastern Colombian cordillera. Our work constitutes the first example in which the Andean uplift coupled with gene flow influenced the evolutionary history of an arachnid lineage.  相似文献   

7.
Bacterial endosymbionts are common among arthropods, and maternally inherited forms can affect the reproductive and behavioural traits of their arthropod hosts. The prevalence of bacterial endosymbionts and their role in scorpion evolution have rarely been investigated. In this study, 61 samples from 40 species of scorpion in the family Vaejovidae were screened for the presence of the bacterial endosymbionts Cardinium, Rickettsia, Spiroplasma and Wolbachia. No samples were infected by these bacteria. However, one primer pair specifically designed to amplify Rickettsia amplified nontarget genes of other taxa. Similar off‐target amplification using another endosymbiont‐specific primer was also found during preliminary screenings. Results caution against the overreliance on previously published screening primers to detect bacterial endosymbionts in host taxa and suggest that primer specificity may be higher in primers targeting nuclear rather than mitochondrial genes.  相似文献   

8.
The morphology, ontogenesis, and phylogenetic relationships of a halophile euplotid ciliates, Euplotes qatarensis nov. spec., isolated from the Khor Al‐Adaid Lagoon in Qatar were investigated based on live observation as well as protargol‐ and silver nitrate‐impregnated methods. The new species is characterised by a combination of features: the halophile habitat, a cell size of 50–65 × 33–40 μm, seven dorsal ridges, 10 commonly sized frontoventral cirri, two widely spaced marginal cirri, 10 dorsolateral kineties, and a double silverline pattern. The morphogenesis is similar to that of its congeners: (i) the oral primordium develops hypoapokinetally and the parental oral apparatus is retained; (ii) the frontoventral‐transverse field of five streaks gives rise to the frontal, ventral, and transverse cirri, but not to the cirri I/1 and the marginal cirri; (iii) the dorsal somatic ciliature develops by intrakinetal proliferation of basal bodies in two anlagen per kinety that are just anterior and posterior to the future division furrow; (iv) the caudal cirri are formed by the two rightmost dorsolateral kineties. The SSU rDNA sequence of E. qatarensis branches with full support in the Euplotopsis elegans–Euplotes nobilii–Euplotopsis raikovi clade. The closest related publicly available SSU rDNA sequence is the one of E. nobilii, with which E. qatarensis has 93.4% sequence similarity. Euplotes parawoodruffi Song & Bradbury, 1997 is transferred to the genus Euplotoides based on the absence of frontoventral cirrus VI/3.  相似文献   

9.
Although two plastid regions have been adopted as the standard markers for plant DNA barcoding, their limited resolution has provoked the consideration of other gene regions, especially in taxonomically diverse genera. The genus Gossypium (cotton) includes eight diploid genome groups (A–G, and K) and five allotetraploid species which are difficult to discriminate morphologically. In this study, we tested the effectiveness of three widely used markers (matK, rbcL, and ITS2) in the discrimination of 20 diploid and five tetraploid species of cotton. Sequences were analysed locus‐wise and in combinations to determine the most effective strategy for species identification. Sequence recovery was high, ranging from 92% to 100% with mean pairwise interspecific distance highest for ITS2 (3.68%) and lowest for rbcL (0.43%). At a 0.5% threshold, the combination of matK+ITS2 produced the greatest number of species clusters. Based on ‘best match’ analysis, the combination of matK+ITS2 was best, while based on ‘all species barcodes’ analysis, ITS2 gave the highest percentage of correct species identifications (98.93%). The combination of sequences for all three markers produced the best resolved tree. The disparity index test based on matK+rbcL+ITS2 was significant (< 0.05) for a higher number of species pairs than the individual gene sequences. Although all three barcodes separated the species with respect to their genome type, no single combination of barcodes could differentiate all the Gossypium species, and tetraploid species were particularly difficult.  相似文献   

10.
Since obligate avian brood parasites depend completely on the effort of other host species for rearing their progeny, the availability of hosts will be a critical resource for their life history. Circumstantial evidence suggests that intense competition for host species may exist not only within but also between species. So far, however, few studies have demonstrated whether the interspecific competition really occurs in the system of avian brood parasitism and how the nature of brood parasitism is related to their niche evolution. Using the occurrence data of five avian brood parasites from two sources of nationwide bird surveys in South Korea and publically available environmental/climatic data, we identified their distribution patterns and ecological niches, and applied species distribution modeling to infer the effect of interspecific competition on their spatial distribution. We found that the distribution patterns of five avian brood parasites could be characterized by altitude and climatic conditions, but overall their spatial ranges and ecological niches extensively overlapped with each other. We also found that the predicted distribution areas of each species were generally comparable to the realized distribution areas, and the numbers of individuals in areas where multiple species were predicted to coexist showed positive relationships among species. In conclusion, despite following different coevolutionary trajectories to adapt to their respect host species, five species of avian brood parasites breeding in South Korea occupied broadly similar ecological niches, implying that they tend to conserve ancestral preferences for ecological conditions. Furthermore, our results indicated that contrary to expectation interspecific competition for host availability between avian brood parasites seemed to be trivial, and thus, play little role in shaping their spatial distributions and ecological niches. Future studies, including the complete ranges of avian brood parasites and ecological niches of host species, will be worthwhile to further elucidate these issues.  相似文献   

11.
Integrating information from species occurrence data, environmental variables and molecular markers can provide valuable insights about the processes of population persistence and differentiation. In this study, we present the most comprehensive overview of the evolutionary history of the North African salamander Salamandra algira (Caudata, Salamandridae) to date, including analyses of climatic and topographical variables, and sequences of two mitochondrial and two nuclear DNA fragments, with a special focus on Algerian populations, under‐represented in previous studies. Coalescent‐based phylogenetic analyses of mtDNA data recover four well‐supported population groups corresponding to described subspecies, with a western clade including populations in north‐western Morocco (with two subclades corresponding to the subspecies tingitana and splendens), and an eastern clade including populations from north‐eastern Morocco (subspecies spelaea) and Algeria (subspecies algira). Inferred split times between major clades date back to the Miocene, with additional splits within each major clade in the Plio‐Pleistocene. Present climatic (aridity) and topographical factors account for geographical discontinuities across population groups and help identify potential areas of secondary contact between clades corresponding to the subspecies tingitana and splendens in the Rif mountains in Morocco. Niche analysis indicates the absence of phylogenetic signal in the use of environmental space in this species.  相似文献   

12.
Two new brackish pleurostomatid ciliates, Amphileptus spiculatus sp. n. and A. bellus sp. n. were collected from mangrove wetlands of southern China and their morphology and molecular phylogeny were studied. Amphileptus spiculatus sp. n. can be distinguished from congeners by the presence of 11–14 right and 6–8 left kineties, two macronuclear nodules and a conspicuous beak‐like anterior body end. Amphileptus bellus sp. n. is characterized by the presence of 2–4 macronuclear nodules, 31–35 right and 6 or 7 left kineties and two types of extrusomes. Phylogenetic analyses based on SSU rDNA sequences data indicate that the family Amphileptidae is paraphyletic.  相似文献   

13.
14.
15.
Research has shown species undergoing range contractions and/or northward and higher elevational movements as a result of changing climates. Here, we evaluate how the distribution of a group of cold‐adapted plant species with similar evolutionary histories changes in response to warming climates. We selected 29 species of Micranthes (Saxifragaceae) representing the mountain and Arctic biomes of the Northern Hemisphere. For this analysis, 24,755 data points were input into ecological niche models to assess both present fundamental niches and predicted future ranges under climate change scenarios. Comparisons were made across the Northern Hemisphere between all cold‐adapted Micranthes, including Arctic species, montane species, and species defined as narrow endemics. Under future climate change models, 72% of the species would occupy smaller geographical areas than at present. This loss of habitat is most pronounced in Arctic species in general, but is also prevalent in species restricted to higher elevations in mountains. Additionally, narrowly endemic species restricted to high elevations were more susceptible to habitat loss than those species found at lower elevations. Using a large dataset and modeling habitat suitability at a global scale, our results empirically model the threats to cold‐adapted species as a result of warming climates. Although Arctic and alpine biomes share many underlying climate similarities, such as cold and short growing seasons, our results confirm that species in these climates have varied responses to climate change and that key abiotic variables differ between these two habitats.  相似文献   

16.
17.
18.
Identification of rodents is very difficult mainly due to high similarities in morphology and controversial taxonomy. In this study, mitochondrial cytochrome oxidase subunit I (COI) was used as DNA barcode to identify the Murinae and Arvicolinae species distributed in China and to facilitate the systematics studies of Rodentia. In total, 242 sequences (31 species, 11 genera) from Murinae and 130 sequences (23 species, 6 genera) from Arvicolinae were investigated, of which 90 individuals were novel. Genetic distance, threshold method, tree‐based method, online BLAST and BLOG were employed to analyse the data sets. There was no obvious barcode gap. The average K2P distance within species and genera was 2.10% and 12.61% in Murinae, and 2.86% and 11.80% in Arvicolinae, respectively. The optimal threshold was 5.62% for Murinae and 3.34% for Arvicolinae. All phylogenetic trees exhibited similar topology and could distinguish 90.32% of surveyed species in Murinae and 82.60% in Arvicolinae with high support values. BLAST analyses yielded similar results with identification success rates of 92.15% and 93.85% for Murinae and Arvicolinae, respectively. BLOG successfully authenticated 100% of detected species except Leopoldamys edwardsi based on the latest taxonomic revision. Our results support the species status of recently recognized Micromys erythrotis, Eothenomys tarquinius and E. hintoni and confirm the important roles of comprehensive taxonomy and accurate morphological identification in DNA barcoding studies. We believe that, when proper analytic methods are applied or combined, DNA barcoding could serve as an accurate and effective species identification approach for Murinae and Arvicolinae based on a proper taxonomic framework.  相似文献   

19.
Antitropical distribution is a biogeographical pattern characterized by natural occurrences of the same species or members of the same clade in the middle‐ or middle‐to‐high‐latitudinal habitats of both hemispheres, either on land or in marine environments, without appearing in the intervening tropical environments. For most of the noted examples of Permian antitropical distribution, particularly in marine invertebrates, the causes of disjunctions have been mainly linked to either dispersal or vicariance models. Little attention has been paid to other possible mechanisms. This study investigated the antitropicality of some Permian neospiriferine brachiopods through detailed taxonomic revision, comparison of palaeobiogeographical distribution, and a phylogenetic analysis. Several species, previously assigned to Kaninospirifer, are here reassigned to other genera, especially to Fasciculatia in the northern hemisphere and to Quadrospira in the southern hemisphere during the Permian. Both Kaninospirifer and Fasciculatia appear to have been restricted to north‐western Pangea and north‐eastern Asia during the Permian, but there is no robust evidence to suggest their presence in the southern hemisphere to which Imperiospira and Quadrospira were confined. In spite of the distributional separation between the two pairs of neospiriferine genera in the Permian palaeobiogeographical regime, they share considerable numbers of morphological characters, such as a large shell, subdued fasciculation, and reduction of ventral adminicula. Notwithstanding these morphological similarities, our phylogenetic reconstruction of the neospiriferines does not support a close relationship between these genera. This therefore must indicate that these similar morphological features were independently acquired, probably with these taxa living in spatially separate but ecologically compatible environmental conditions in the mid‐latitudinal area of each hemisphere during the Permian. We regard this as an example of convergent evolution.  相似文献   

20.
Population studies have revealed that the fungal ectomycorrhizal morphospecies Tricholoma scalpturatum consists of at least two genetically distinct groups that occur sympatrically in several geographical areas. This discovery prompted us to examine species boundaries and relationships between members formerly assigned to T. scalpturatum and allied taxa using phylogenetic analyses. Sequence data were obtained from three nuclear DNA regions [internal transcribed spacer (ITS), gpd and tef], from 101 carpophores collected over a large geographical range in Western Europe, and some reference sequences from public databases. The ITS was also tested for its applicability as DNA barcode for species delimitation. Four highly supported phylogenetic clades were detected. The two previously detected genetic groups of T. scalpturatum were assigned to the phylospecies Tricholoma argyraceum and T. scalpturatum. The two remaining clades were referred to as Tricholoma cingulatum and Tricholoma inocybeoides. Unexpectedly, T. cingulatum showed an accelerated rate of evolution that we attributed to narrow host specialization. This study also reveals recombinant ITS sequences in T. inocybeoides, suggesting a hybrid origin. The ITS was a useful tool for the determination of species boundaries: the mean value of intraspecific genetic distances in the entire ITS region (including 5.8S rDNA) was <0.2%, whereas interspecific divergence estimates ranged from 1.78% to 4.22%. Apart from giving insights into the evolution of the T. scalpturatum complex, this study contributes to the establishment of a library of taxonomically verified voucher specimens, an a posteriori correlation between phenotype and genotype, and DNA barcoding of ectomycorrhizal fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号