首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Huntington's disease (HD) is an autosomal dominant disease caused by an expansion of CAG repeats in the gene encoding for huntingtin. Brain metabolic dysfunction and altered Akt signaling pathways have been associated with disease progression. Nevertheless, conflicting results persist regarding the role of insulin-like growth factor-1 (IGF-1)/Akt pathway in HD. While high plasma levels of IGF-1 correlated with cognitive decline in HD patients, other data showed protective effects of IGF-1 in HD striatal neurons and R6/2 mice. Thus, in the present study, we investigated motor phenotype, peripheral and central metabolic profile, and striatal and cortical signaling pathways in YAC128 mice subjected to intranasal administration of recombinant human IGF-1 (rhIGF-1) for 2 weeks, in order to promote IGF-1 delivery to the brain. We show that IGF-1 supplementation enhances IGF-1 cortical levels and improves motor activity and both peripheral and central metabolic abnormalities in YAC128 mice. Moreover, decreased Akt activation in HD mice brain was ameliorated following IGF-1 administration. Upregulation of Akt following rhIGF-1 treatment occurred concomitantly with increased phosphorylation of mutant huntingtin on Ser421. These data suggest that intranasal administration of rhIGF-1 ameliorates HD-associated glucose metabolic brain abnormalities and mice phenotype.  相似文献   

2.
Several angiogenesis inhibitors targeting the vascular endothelial growth factor (VEGF) signaling pathway have been approved for cancer treatment. However, VEGF inhibitors alone were shown to promote tumor invasion and metastasis by increasing intratumoral hypoxia in some preclinical and clinical studies. Emerging reports suggest that Delta-like ligand 4 (Dll4) is a promising target of angiogenesis inhibition to augment the effects of VEGF inhibitors. To evaluate the effects of simultaneous blockade against VEGF and Dll4, we developed a bispecific antibody, HD105, targeting VEGF and Dll4. The HD105 bispecific antibody, which is composed of an anti-VEGF antibody (bevacizumab-similar) backbone C-terminally linked with a Dll4-targeting single-chain variable fragment, showed potent binding affinities against VEGF (KD: 1.3 nM) and Dll4 (KD: 30 nM). In addition, the HD105 bispecific antibody competitively inhibited the binding of ligands to their receptors, i.e., VEGF to VEGFR2 (EC50: 2.84 ± 0.41 nM) and Dll4 to Notch1 (EC50: 1.14 ± 0.06 nM). Using in vitro cell-based assays, we found that HD105 effectively blocked both the VEGF/VEGFR2 and Dll4/Notch1 signaling pathways in endothelial cells, resulting in a conspicuous inhibition of endothelial cell proliferation and sprouting. HD105 also suppressed Dll4-induced Notch1-dependent activation of the luciferase gene. In vivo xenograft studies demonstrated that HD105 more efficiently inhibited the tumor progression of human A549 lung and SCH gastric cancers than an anti-VEGF antibody or anti-Dll4 antibody alone. In conclusion, HD105 may be a novel therapeutic bispecific antibody for cancer treatment.  相似文献   

3.
Huntington disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in the Huntington disease gene. The symptomatic stage of the disease is defined by the onset of motor symptoms. However, psychiatric disturbances, including depression, are common features of HD and can occur a decade before the manifestation of motor symptoms. We used the YAC128 transgenic mice (which develop motor deficits at a later stage, allowing more time to study depressive behaviors without the confounding effects of motor impairment) to test the effects of intranasal brain-derived neurotrophic factor (BDNF) treatment for 15 days in the occurrence of depressive-like behaviors. Using multiple well-validated behavioral tests, we found that BDNF treatment alleviated anhedonic and depressive-like behaviors in the YAC128 HD mice. Furthermore, we also investigated whether the antidepressant-like effects of BDNF were associated with an increase in adult hippocampal neurogenesis. However, BDNF treatment only increased cell proliferation and neuronal differentiation in the hippocampal dentate gyrus (DG) of wild-type (WT) mice, without altering these parameters in their YAC128 counterparts. Moreover, BDNF treatment did not cause an increase in the number of dendritic branches in the hippocampal DG when compared with animals treated with vehicle. In conclusion, our results suggest that non-invasive administration of BDNF via the intranasal route may have important therapeutic potential for treating mood disturbances in early-symptomatic HD patients.  相似文献   

4.
ABSTRACT

Huntington's disease (HD) is a monogenic neurodegenerative disorder with a significant peripheral component to the disease pathology. This includes an HD-related cardiomyopathy, with an unknown pathological mechanism. In this study, we aimed to define changes in the metabolism of cardiac nucleotides using the well-established R6/2 mouse model. In particular, we focused on measuring the activity of enzymes that control ATP and other adenine nucleotides in the cardiac pool, including eNTPD, AMPD, e5′NT, ADA, and PNP. We employed HPLC to assay the activities of these enzymes by measuring the concentrations of adenine nucleotide catabolites in the hearts of symptomatic R6/2 mice. We found a reduced activity of AMPD (12.9 ± 1.9 nmol/min/mg protein in control; 7.5 ± 0.5 nmol/min/mg protein in R6/2) and e5′NT (11.9 ± 1.7 nmol/min/mg protein in control; 6.7 ± 0.7 nmol/min/mg protein in R6/2). Moreover, we detected an increased activity of ADA (1.3 ± 0.2 nmol/min/mg protein in control; 5.2 ± 0.5 nmol/min/mg protein in R6/2), while no changes in eNTPD and PNP activities were observed. Analysis of cardiac adenine nucleotide catabolite levels revealed an increased inosine level (0.7 ± 0.01 nmol/mg dry tissue in control; 2.7 ±0.8 nmol/mg dry tissue in R6/2) and a reduced concentration of cardiac adenosine (0.9 ± 0.2 nmol/mg dry tissue in control; 0.2 ± 0.08 nmol/mg dry tissue in R6/2). This study highlights a decreased rate of degradation of cardiac nucleotides in HD mouse model hearts, and an increased capacity for adenosine deamination, that may alter adenosine signaling.  相似文献   

5.
6.
7.

Aim and background

The aim of this study is to analyze the main clinical and pathologic characteristics of radiation-induced breast carcinomas (BC) following treatment for Hodgkin''s disease (HD) and to identify the risk factors for their induction. To create a mathematical model for the prediction of expected age at which a BC might develop based on the age at treatment for HD.

Materials and methods

Thirty-nine cases of women with BC that developed after treatment for HD in puberty or adolescence were analyzed retrospectively. The median age at initiation of treatment for HD was 12.9 years (9–21). The median age at diagnosis of the second malignancy – breast carcinoma was 32.4 years (22.9–39).

Results

The distribution of patients according to the clinical T stage of breast cancer was as follows: 11 patients with T1 stage BC (28%), 22 with T2 stage (56%) and 6 with stage T3 (16%). Prevalent were tumors localized in the lateral breast quadrants. The observed 5 year survival was 95%.

Conclusion

The risk of solid tumors, especially breast cancer, is high among women with HD disease who were treated with radiotherapy in their childhood. In this article, we propose a specific mathematical age formula which could be used as predictive equation when the age of the treatment for HD is in the range between 9 and 21 years. Systematic screening for breast cancer in these patients would be significantly important for their health and could improve their survival.  相似文献   

8.
Reactive oxygen species and oxidative stress are associated with various cell processes, including cell survival and apoptosis. Oxidative stress has been implicated in the pathogenesis of several neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). In the present study, we evaluated the effects of lovastatin chemoprotection against hydrogen peroxide-induced oxidative stress in bone marrow stromal cell-derived neural stem cells (BMSC-derived NSCs) and whether it has protective effects. BMSC-derived NSCs were pretreated with different doses of lovastatin for 48 h and then exposed to 125 μM H2O2 for 30 min. Using MTT, TUNEL assay, and real-time RT-PCR, we evaluated the effects of lovastatin on cell survival, apoptosis, and PGC-1α and Nrf2 expression rates in pretreated BMSC-derived NSCs compared to control groups. Results showed that apoptosis rate in the lovastatin-pretreated BMSC-derived NSCs was significantly decreased compared to the control group. Our findings suggest that lovastatin protects NSCs against oxidative stress-induced cell death, and therefore, it may be used to promote the survival rate of NSCs and can be a candidate for treatment of oxidative stress-mediated neurological diseases.  相似文献   

9.
Patients with Huntington''s disease (HD) are often described as unaware of their motor symptoms, their behavioral disorders or their cognitive deficits, including memory. Nevertheless, because patients with Parkinson''s disease (PD) remain aware of their memory deficits despite striatal dysfunction, we hypothesize that early stage HD patients in whom degeneration predominates in the striatum can accurately judge their own memory disorders whereas more advanced patients cannot. In order to test our hypothesis, we compared subjective questionnaires of memory deficits (in HD patients and in their proxies) and objective measures of memory dysfunction in patients. Forty-six patients with manifest HD attending the out-patient department of the French National Reference Center for HD and thirty-three proxies were enrolled. We found that HD patients at an early stage of the disease (Stage 1) were more accurate than their proxies at evaluating their own memory deficits, independently from their depression level. The proxies were more influenced by patients'' functional decline rather than by patients'' memory deficits. Patients with moderate disease (Stage 2) misestimated their memory deficits compared to their proxies, whose judgment was nonetheless influenced by the severity of both functional decline and depression. Contrasting subjective memory ratings from the patients and their objective memory performance, we demonstrate that although HD patients are often reported to be unaware of their neurological, cognitive and behavioral symptoms, it is not the case for memory deficits at an early stage. Loss of awareness of memory deficits in HD is associated with the severity of the disease in terms of CAG repeats, functional decline, motor dysfunction and cognitive impairment, including memory deficits and executive dysfunction.  相似文献   

10.
Congenital heart disease (CHD) is the most common congenital malformation, with evidence of a strong genetic component. We analyzed data from 223 consecutively ascertained families, each consisting of at least one child affected by a conotruncal defect (CNT) or hypoplastic left heart disease (HLHS) and both parents. The NimbleGen HD2-2.1 comparative genomic hybridization platform was used to identify de novo and rare inherited copy number variants (CNVs). Excluding 10 cases with 22q11.2 DiGeorge deletions, we validated de novo CNVs in 8 % of 148 probands with CNTs, 12.7 % of 71 probands with HLHS and none in 4 probands with both. Only 2 % of control families showed a de novo CNV. We also identified a group of ultra-rare inherited CNVs that occurred de novo in our sample, contained a candidate gene for CHD, recurred in our sample or were present in an affected sibling. We confirmed the contribution to CHD of copy number changes in genes such as GATA4 and NODAL and identified several genes in novel recurrent CNVs that may point to novel CHD candidate loci. We also found CNVs previously associated with highly variable phenotypes and reduced penetrance, such as dup 1q21.1, dup 16p13.11, dup 15q11.2-13, dup 22q11.2, and del 2q23.1. We found that the presence of extra-cardiac anomalies was not related to the frequency of CNVs, and that there was no significant difference in CNV frequency or specificity between the probands with CNT and HLHS. In agreement with other series, we identified likely causal CNVs in 5.6 % of our total sample, half of which were de novo.  相似文献   

11.
Stem cell therapy is a promising treatment for incurable disorders including Huntington''s disease (HD). Adipose-derived stem cell (ASC) is an easily available source of stem cells. Since ASCs can be differentiated into nervous stem cells, it has clinically feasible potential for neurodegenerative disease. In addition, ASCs secrete various anti-apoptotic growth factors, which improve the symptoms of disease from transplanted ASCs. Thus, cell-free extracts of ASCs (ASCs-E) could be a potential candidate for treatment of HD. Here, we investigated effects of ASCs-E on R6/2 HD mouse model and neuronal cells. In R6/2 HD model, injection of ASCs-E improved the performance in Rotarod test. ASCs-E also ameliorated striatal atrophy and mutant huntingtin aggregation in the striatum. In Western blot increased expressions of p-Akt, p-CREB and PGC1α were noted by injection of ASCs-E, when comparing to the R6/2 HD model. Neuro2A neuroblastoma cells treated with ASCs-E showed increased expression of p-CREB and PGC1α. In conclusion, ASCs-E delayed disease progression in animal model of HD by restoring of CREB-PGC1α pathway and could be a potential resource for treatment of HD.  相似文献   

12.
13.
The trinucleotide repeat disorders comprise an ever expanding list of diseases, all of which are caused by an unstable expanded trinucleotide repeat tract. Huntington's disease (HD) is a member of this family of diseases and more specifically, is a Type II trinucleotide repeat disorder. This means that the mutation in HD is an unstable expanded polyglutamine repeat tract, which is expressed at protein level. There is no cure or beneficial treatment for this fatal neurodegenerative disorder, and patients suffer from progressive motor, cognitive and psychiatric dysfunction. Recent years has seen the development of many genetic models of HD, which allow study of the early phases of disease process, at several different levels of cell function. In addition, these models are being used to investigate the potential of a variety of therapeutic agents for clinical use. Here we review these findings, and their implication for HD pathogenesis.  相似文献   

14.
Huntington's disease (HD) is caused by an expansion of CAG repeats in the HTT gene, leading to expression of mutant huntingtin (mHTT) and selective striatal neuronal loss, frequently associated with mitochondrial dysfunction and decreased support of brain-derived neurotrophic factor (BDNF). New neurons derived from the subventricular zone (SVZ) are apparently not able to rescue HD pathological features. Thus, we analyzed proliferation, migration and differentiation of adult SVZ-derived neural stem/progenitor cells (NSPC) from mild (6 month-old (mo)) and late (10 mo) symptomatic HD YAC128 mice expressing full-length (FL)-mHTT versus age-matched wild-type (WT) mice. SVZ cells derived from 6 mo YAC128 mice exhibited higher migratory capacity and a higher number of MAP2 + and synaptophysin + cells, compared to WT cells; MAP2 labeling was enhanced after exposure to BDNF. However, BDNF-evoked neuronal differentiation was not observed in 10 mo YAC128 SVZ-derived cells. Interestingly, 6 mo YAC128 SVZ-derived cells showed increased intracellular Ca2+ levels in response to KCl, which was potentiated by BDNF, evidencing the presence of differentiated neurons. In contrast, KCl depolarization-induced intracellular Ca2+ increase in 10 mo YAC128 SVZ-derived cells was shown to be increased only in BDNF-treated YAC128 SVZ-derived cells, suggestive of decreased differentiation capacity. In addition, BDNF-untreated NSPC from 10 mo YAC128 mice exhibited lower mitochondrial membrane potential and increased mitochondrial Ca2+ accumulation, in relation with NSPC from 6 mo YAC128 mice. Data evidence age-dependent reduced migration and decreased acquisition of a neuronal phenotype, accompanied by decreased mitochondrial membrane potential in SVZ-derived cells from YAC128 mice through HD symptomatic phases.  相似文献   

15.
16.
The Pro12Ala and C161T polymorphisms in peroxisome proliferator-activated receptor γ (PPARγ) have been shown to be associated with carotid artery atherosclerosis. It remains unclear whether these two polymorphisms are associated with risk factors for cardiovascular disease (CVD) in hemodialysis (HD) patients. Therefore, the PPARγ genotypes in 99 HD patients and 149 controls were determined, and clinical characteristics among the different genotypes were compared. We found that the frequency of the Pro12Ala and C161T polymorphisms in HD patients was similar to that in healthy controls, but C161T polymorphism and T allele frequencies in HD patients with CVD were lower than that in HD patients without CVD. Carotid artery plaque (CAP) and carotid intima-media thickness (CIMT) in HD patients with CT + TT or Pro12Ala genotypes were also less than that in patients with CCor Pro12Pro genotypes, respectively. HD patients with CT + TT genotype had lower serum C reactive protein (CRP) levels, as well as higher triceps skin fold (TSF) thickness, mid arm circumference (MAC) and mean mid arm circumference (MMAC) than HD patients with CC genotype (P < 0.05). Moreover, CIMT of the Pro12Ala-CT161 subgroup was less than the Pro12Pro-CC161 and Pro12Pro-CT161 subgroup, and, CAP amounts of the Pro12Ala-CT161 subgroup was less than the Pro12Pro-CC161 subgroup. Our results indicate that the Pro12Ala and C161T polymorphisms were associated with some important risk factors for CVD in HD patients in the Han Chinese population.  相似文献   

17.
ABSTRACT

The aim of the present study was to examine the effect of a nap opportunity during the daytime realized at different times of day on physical and mental performance. Eighteen physically active males (age: 20.5 ± 3.0 years, height: 175.3 ± 5.9 cm, body-mass: 70.0 ± 8.6 kg) were tested under four experimental conditions: no-nap condition, nap at 13h00, nap at 14h00 and nap at 15h00. All nap durations were of 25-min and all tests were performed at 17h00. They performed a 5-m shuttle run test, which generated measures of the highest distance (HD) and total distance (TD). The rating of perceived exertion (RPE) was recorded after each of the six sprints in the 5-m shuttle run test. Vigilance was measured using a digit cancellation test. The results showed that TD at 17h00 was 4% greater after a nap at 14h00 than in the no-nap condition (+28 m, p < .05) or after the nap at 13h00 (+29 m, p < .05). HD was 8% higher (+9 m, p < .001) after a nap at 14h00 than in the no-nap condition and 7% higher after nap at 15h00 than in the no-nap condition (+7 m, p < .05). In addition, HD was 6% higher after nap at 14h00 (+7 m, p < .01) and 5% higher after nap at 15h00 (+9 m, p < .01) than HD after a nap at 13h00. Napping at 13h00 had no effect on physical performance at 17h00. No significant differences were observed between RPE and vigilance scores in the nap and no-nap conditions. In conclusion, napping for 25 min at 14h00 and 15h00 produces meaningful improvements in responses during repeated short-term maximal exercise tests performed at 17h00. Napping at 13h00 does not. Vigilance, as measured using a digit cancellation test, and RPE scores are not influenced by any of the nap opportunities.  相似文献   

18.
Several novel loci have been proved to be associated with coronary artery disease and/or myocardial infarction risk by genome-wide association studies, however, the available coronary artery disease risk variants explain only a small proportion of the predicted genetic heritability of the disease. Recently, a novel coronary artery disease locus on chromosome 6p21.3 in the major histocompatibility complex was identified in an European population. We hereby investigated whether this single nucleotide polymorphisms (rs3869109) confers the risk of premature coronary artery disease in a Chinese Han population. A total of 422 patients were studied including 210 cases with coronary stenosis ≥50 % or previous myocardial infarction (male <55 years and female <65 years) and 212 controls without documented coronary artery disease. Ligase detection reaction was performed to detect rs3869109. The 3 genotypes AA, AG, and GG were present in rs3869109. There were significant differences between the control and premature coronary artery disease groups in the frequencies of the rs3869109 variants and alleles (all P < 0.05). The distribution of 3 genotypes and alleles at rs3869109 does not differ between women and men (all P > 0.05). There was a significant association between rs3869109 genotypes and the severity of premature coronary artery disease (P = 0.038). Multivariate logistic regression showed that carriers with AG and GG genotypes at rs3869109 have a higher risk of premature coronary artery disease than carriers of AA genotype (odds ratio [OR] 1.997, 95 % CI: 1.166–3.419, P = 0.012; OR 1.695, 95 % CI: 1.044–2.752, P = 0.033; respectively). Our results indicate that the rs3869109 variants are associated with premature coronary artery disease in a Chinese Han population, suggesting this genetic risk marker is useful in early coronary artery disease risk prediction.  相似文献   

19.

Background

Genetic modifiers are important clues for the identification of therapeutic targets in neurodegenerative diseases. Huntington disease (HD) is one of the most common autosomal dominant inherited neurodegenerative diseases. The clinical symptoms include motor abnormalities, cognitive decline and behavioral disturbances. Symptom onset is typically between 40 and 50 years of age, but can vary by several decades in extreme cases and this is in part determined by modifying genetic factors. The metabolic master regulator PGC-1α, coded by the PPARGC1A gene, coordinates cellular respiration and was shown to play a role in neurodegenerative diseases, including HD.

Methods

Using a candidate gene approach we analyzed a large European cohort (n?=?1706) from the REGISTRY study for associations between PPARGC1A genotype and age at onset (AO) in HD.

Results

We report that a coding variant (rs3736265) in PPARGC1A is associated with an earlier motor AO in men but not women carrying the HD mutation.

Conclusions

These results further strengthen the evidence for a role of PGC-1α in HD and unexpectedly suggest a gender effect.  相似文献   

20.
Aging likely plays a role in neurodegenerative disorders. In Huntington''s disease (HD), a disorder caused by an abnormal expansion of a polyglutamine tract in the protein huntingtin (Htt), the role of aging is unclear. For a given tract length, the probability of disease onset increases with age. There are mainly two hypotheses that could explain adult onset in HD: Either mutant Htt progressively produces cumulative defects over time or “normal” aging renders neurons more vulnerable to mutant Htt toxicity. In the present study, we directly explored whether aging affected the toxicity of mutant Htt in vivo. We studied the impact of aging on the effects produced by overexpression of an N-terminal fragment of mutant Htt, of wild-type Htt or of a β-Galactosidase (β-Gal) reporter gene in the rat striatum. Stereotaxic injections of lentiviral vectors were performed simultaneously in young (3 week) and old (15 month) rats. Histological evaluation at different time points after infection demonstrated that the expression of mutant Htt led to pathological changes that were more severe in old rats, including an increase in the number of small Htt-containing aggregates in the neuropil, a greater loss of DARPP-32 immunoreactivity and striatal neurons as assessed by unbiased stereological counts.The present results support the hypothesis that “normal” aging is involved in HD pathogenesis, and suggest that age-related cellular defects might constitute potential therapeutic targets for HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号