首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: Despite the biodiversity values of the freshwater floodplains of northern Australia being widely recognized, there has not been a concomitant investment in developing the extent of knowledge of the basic functions and ecological processes that underpin the ecological character of these habitats. This review addresses the extent of our knowledge on the plant ecology of these wetlands and covers: the relationships between the climate and the hydrological regime on the floodplain; the vegetation patterns, succession and adaptation; and primary production. SCOPE: Information is available on the seasonal, but less regularly on the inter-annual, dynamics of the macrophytic vegetation and its evident inter-relationship with the extent, depth and duration of inundation by seasonal flooding. The available scientifically collected information on plant distribution and relationship with the water regime could be complemented by more attention to traditional knowledge. The productivity of the vegetation is high-the dominant wetland grass species have an annual dry weight production of 0.5-2.1 kg m-2 and the surrounding riparian (Melaleuca) trees contribute litterfall of 0.7-1.5 kg (dry weight) m-2 year-1, approximately 70% due to leaf-fall. The availability of dissolved oxygen in the water is known to vary diurnally and seasonally, at least in some habitats. The importance of seasonal differences in the availability of dissolved oxygen for the growth of micro- and macrophytic vegetation has not been investigated. The seasonal distribution and growth of plant species on a few floodplains have been investigated, and maps at scales of 1:10,000 to 1:100,000 are available for these. However, only on a few occasions have longer term analyses been conducted and long-term changes in the vegetation measured and assessed. Species lists and categorization of growth strategies and forms are available and provide a basis for further ecological investigation. CONCLUSIONS: Despite the large investment in managing the many pressures that have degraded the ecological character of these highly valued wetlands, the fundamental ecological processes that underpin the biodiversity values have not received the same level of attention. Further information on plant growth and the environmental factors that drive seasonal and annual changes in vegetation distribution and productivity is required to assist managers in attending to changes due to increasing invasive species and changes in fire regimes.  相似文献   

2.
3.
1. We examined the effect of the exotic macrophyte, para grass (Urochloa mutica), on benthic and epiphytic macroinvertebrates of a tropical floodplain in northern Australia. Macroinvertebrates were sampled from four grass communities: (1) para grass, (2) hymenachne (Hymenachne acutigluma), a native perennial; (3) rice (Oryza meridionalis), a native annual, and (4) areas where para grass had been sprayed with herbicide. 2. Macroinvertebrate richness, abundance and community similarity showed very few differences among the grass communities, particularly in the epiphytic habitat. Benthic invertebrates showed some differences among grasses, with lower richness and abundance and different community structure associated with hymenachne. Herbicide control of para grass had no apparent effect on benthic invertebrates but reduced the abundance of epiphytic invertebrates in the short term. 3. The results of this study indicate that para grass has very little impact on macroinvertebrate communities, despite the changes to macrophyte communities. This is probably because para grass has similar physical structure to the native grasses and because none of these grasses contribute directly to aquatic food webs. Control of para grass using herbicide has little impact on aquatic invertebrates. This suggests that predicting the impact of weed invasion in wetlands requires an understanding of both the functional properties of macrophytes and the habitat preferences of the macroinvertebrates.  相似文献   

4.
5.
Certain factors influencing phytoplankton productivity are accentuated in turbid waters. They include mixing, spectral quality shifts, scattering, light fluctuations, and overall light attenuation. Measurements of productivity is influenced by the presence of inorganic turbidity. Together with the above factors high turbidity causes difficulties to assess and model phytoplankton productivity. Estimations of B, Pm B, Ik and m only reflect on the physiological condition of the phytoplankton, which differs little between water types of temperate regions. Measurement of integral vertical productivity, efficiency and fractional absorption by the phytoplankton of light energy conversion, however, are greatly influenced by inorganic turbidity. Because of high ratios of mixing to euphotic depth, the critical mixing depth is one of the most important factors influencing overall productivity in turbid waters.  相似文献   

6.
1. Floodplains and their water bodies are typical ecotopes of large lowland rivers. The lowland Oder River, Germany, provided a rare opportunity to study fish assemblages of comparable floodplain water bodies differing by >50 years of isolation history. We hypothesised that true floodplain specialists peak in rarely connected water bodies, while frequently flooded waters support tolerant generalists. 2. Three macrohabitats, main channel (MC), temporarily connected and isolated floodplain water bodies, were sampled by electro‐fishing and their fish assemblage characters recorded. 3. Long‐term isolation of floodplain water bodies had a significant effect on the fish assemblage by promoting species preferring still water. Limnophilic and floodplain specialist species significantly increased with isolation. 4. Fish densities, species richness and diversity clearly differed between MC sites and floodplain water bodies. Shannon’s species diversity index peaked in both the MC and isolated waters and was lowest in the temporarily flooded waters where eurytopic fish dominated. 5. The significant gain in abundance and numbers of limnophilic species in the isolated compared to the temporarily flooded water bodies underpinned the significant contribution of long‐term isolated waters to the gamma‐diversity of large floodplain rivers, which should be considered in floodplain rehabilitation.  相似文献   

7.
Macrophyte net primary productivity (NPP) is a significant but understudied component of the carbon budget in large Amazonian floodplains. Annual NPP is determined by the interaction between stem elongation (vertical growth) and plant cover changes (horizontal expansion), each affected differently by flood duration and amplitude. Therefore, hydrological changes as predicted for the Amazon basin could result in significant changes in annual macrophyte NPP. This study investigates the responses of macrophyte horizontal expansion and vertical growth to flooding variability, and its possible effects on the contribution of macrophytes to the carbon budget of Amazonian floodplains. Monthly macrophyte cover was estimated using satellite imagery for the 2003–2004 and 2004–2005 hydrological years, and biomass was measured in situ between 2003 and 2004. Regression models between macrophyte variables and river‐stage data were used to build a semiempirical model of macrophyte NPP as a function of water level. Historical river‐stage records (1970–2011) were used to simulate variations in NPP, as a function of annual flooding. Vertical growth varied by a factor of ca. 2 over the simulated years, whereas minimum and maximum annual cover varied by ca. 3.5 and 1.5, respectively. Results suggest that these processes act in opposite directions to determine macrophyte NPP, with larger sensitivity to changes in vertical growth, and thus maximum flooding levels. Years with uncommonly large flooding amplitude resulted in the highest NPP values, as both horizontal expansion and vertical growth were enhanced under these conditions. Over the simulated period, annual NPP varied by ca. 1.5 (1.06–1.63 TgC yr?1). A small increasing trend in flooding amplitude, and by extension NPP, was observed for the studied period. Variability in growth rates caused by local biotic and abiotic factors, and the lack of knowledge on macrophyte physiological responses to extreme hydrological conditions remain the major sources of uncertainty.  相似文献   

8.
In the last two decades, the relationship between diversity and stability/ecosystem functioning has been widely discussed and has become a central issue in ecology. Here, we assessed the relationship between wetland plant diversity and community resilience after a disturbance. Our study area was located in the Upper Paraná River floodplain (Brazil). An experiment was carried out in situ (18 1 m × 1 m plots with richness varying from 1 to 18 species). In each plot, we recorded the number of species, total per cent vegetation cover and per cent age cover of each species. The above‐ground biomass of wetland plants was removed, simulating a disturbance by animal trampling or an extreme flood. The recovery of vegetation was monitored over 3 months. According to a linear regression, the recovery of wetland plants was positively correlated with diversity. Comparisons with plots containing monocultures of one of the dominant species (Polygonum stelligerum) suggested that this species did not overyield in mixed cultures. Thus, our experiments indicate that the higher resilience in richer plots after a disturbance is mainly due to the fact that species have different resource use requirements (complementarity effect) and not due to the presence of a single, more productive species. Our experiment carried out in a more real condition (in situ) showed that biodiversity is important to wetland functioning and stability, paralleling the results obtained in laboratory and mesocosms experiments. These results also suggest that the loss of plant diversity in our study area could compromise community recovery following strong disturbances.  相似文献   

9.
This study examined the use of freshwater wetland restoration and enhancement projects ( i.e . non-estuarine wetlands subject to seasonal drying) by fish populations. To quantify fish use of freshwater emergent wetlands and assess the effect of wetland enhancement ( i.e . addition of water control structures), two enhanced and two unenhanced emergent wetlands were compared, as well as two oxbow habitats within the Chehalis River floodplain. Eighteen fish species were captured using fyke nets and emigrant traps from January to the beginning of June, with the most abundant being three-spined stickleback Gasterosteus aculeatus and Olympic mudminnow Novumbra hubbsi . Coho salmon Oncorhynchus kisutch was the dominant salmonid at all sites. Enhanced wetlands, with their extended hydroperiods, had significantly higher abundances of yearling coho salmon than unenhanced wetlands. Both enhanced and unenhanced emergent wetlands yielded higher abundances of non-game native fishes than oxbow habitats. Oxbow habitats, however, were dominated by coho salmon. Fish survival in the wetland habitats was dependent on emigration to the river before dissolved oxygen concentrations decreased and wetlands became isolated and stranding occurred. This study suggests that wetland enhancement projects with an outlet to the river channel appear to provide fishes with important temporary habitats if they have the opportunity to leave the wetland as dissolved oxygen levels deteriorate.  相似文献   

10.
Hydrological and land use changes can affect species in human altered landscapes. Typically the impacts of hydrological and land use changes are examined separately, with hydrological determinants used to explain the distribution of species in water dependent and aquatic habitats and land use factors used to examine terrestrial species. However, given the connectedness of aquatic and terrestrial habitats, stressors originating in one domain may be important in the other. To explore the importance of integrating both hydrological and land use factors, we tested the relative contribution of hydrological factors and land use context as determinants of the dominant riparian tree species, Eucalyptus camaldulensis Dehn. throughout wetlands of the Condamine catchment, southern Queensland, Australia. The occurrence of E. camaldulensis was modelled against hydrological and land use factors using generalized linear models (GLMs) and validated using internal bootstrapping procedures. Validated models which included both hydrological (distance from weir, wetland–river connectivity and groundwater depth) and land use factors (agricultural land cover and grazing intensity) performed better than those developed using only hydrological factors. The study results highlight the importance of an integrated perspective which considers both hydrological and land use factors in order to understand occurrence patterns of riparian and floodplain tree species in a range of settings. This approach could be especially important when assessing changes to hydrology and land use which may be triggered by climatic changes.  相似文献   

11.
Functioning of land-water ecotones in relation to nutrient cycling   总被引:2,自引:0,他引:2  
Preliminary results of the study on the functioning of the littoral zone of the Gooimeer, The Netherlands, are presented. The results comprise data on the chemical composition of the open water and the aquatic littoral zone, the composition of phytoplankton, metaphyton and epiphyton. On the basis of these data, the Gooimeer littoral zone is characterized as an eutrophic land-water ecotone dominated by a few species of primary producers. Some data on characteristic processes concerning the decomposition of organic matter in rooted littoral sediments are also discussed. Enzyme activities, relevant to mineralization of macrophytic polymers, appear to be highly stimulated in the reed belt of the littoral zone. A first impression of the distribution and the efflux of oxygen in the rhizosphere of reed is given.  相似文献   

12.
1. This paper explores soil seed bank composition and its contribution to the vegetation dynamics of a hydrologically variable desert floodplain in central Australia: the Cooper Creek floodplain. We investigated patterns in soil seed bank composition both temporally, in response to flooding (and drying), and spatially, with relation to flood frequency. Correlations between extant vegetation and soil seed bank composition are explored with respect to flooding. 2. A large and diverse germinable soil seed bank was detected comprising predominantly annual monocot and annual forb species. Soil seed bank composition did not change significantly in response to a major flood event but some spatial patterns were detected along a broad flood frequency gradient. Soil seed bank samples from frequently flooded sites had higher total germinable seed abundance and a greater abundance of annual monocots than less frequently flooded sites. In contrast, germinable seeds of perennial species belonging to the Poaceae family were most abundant in soil seed bank samples from rarely flooded sites. 3. Similarity between the composition of the soil seed bank and extant vegetation increased following flooding and was greatest in more frequently flooded areas of the floodplain, reflecting the establishment of annual species. The results indicate that persistent soil seed banks enable vegetation in this arid floodplain to respond to unpredictable patterns of flooding and drying.  相似文献   

13.
Joint management at Kakadu National Park has been marked by conflict and discontent among the major actors, its Traditional Aboriginal Owners and the White rangers (and other staff) of the state. Despite such conflict, and structured differences between these groups of actors, the park continues to function. In this article I argue that the structures and actions perpetuating difference and conflict are usually more or less balanced by opposing structures and actions that draw the two groups of actors together. I further argue that the most important of such cohering structures and actions, what I call ‘common discourse’, derives from the work that both Aboriginal and White rangers perform in the field. This form of under‐recognised discourse acts against the corrosive discourses of the separate groups that tend to perpetuate separateness.  相似文献   

14.
白洋淀附着藻类的初级生产力及其与水质的关系   总被引:4,自引:0,他引:4  
附着藻类是湖泊中主要的生产者,尤其是草型湖泊。但与浮游藻类相比,针对附着藻类初级生产的研究还相对较少。采用原位调查与实验模拟相结合的方法测定2014—2015年间白洋淀附植藻类和附泥藻类的现存量和初级生产力,并对附着藻类初级生产与白洋淀水体理化参数的关系进行分析。结果表明,不同采样季节的附植藻类和附泥藻类的叶绿素a分别为34.83—245.22μg/cm~2和26.08—297.40μg/cm~2,无灰干重分别为0.46—5.21g/m~2和0.61—5.81g/m~2。两种附着藻类的生物量都在8月最高,4月和11月最低。空间分布上,南刘庄、府河入口的附着藻类生物量显著高于采蒲台和枣林庄。白洋淀附植藻类和附泥藻类的年均总初级生产分别为494.20mg C m~(-2)d~(-1)和474.45mg C m~(-2)d~(-1),呼吸速率为522.63mg C m~(-2)d~(-1)和508.98mg C m~(-2)d~(-1),净初级生产为-28.44mg C m~(-2)d~(-1)和-34.52mg C m~(-2)d~(-1)。白洋淀附着藻类初级生产力具有明显的时空分布规律,8月最高,6月次之,4月和11月最低,空间分布呈自西向东递减的趋势,在府河入淀口和南刘庄处最高,枣林庄和采蒲台最低。水质较好的区域的净初级生产力为正值,表明这些区域附着藻类以自养型群落为主,水质较差区域的净初级生产力为负值,则该区域以异养型群落为主。运用冗余分析法(RDA)探讨附着藻类与水质因子之间的关系,并采用向前引入法对水质因子进行逐步筛选,Monte Carlo置换检验结果显示,总磷、浮游植物叶绿素a、高锰酸盐指数、氨氮、水温、透明度、溶解氧和氮磷比是影响附着藻类生物量和初级生产的关键水质因子。附着藻类的总初级生产与水体富营养化程度呈正相关关系。  相似文献   

15.
We compared a number of techniques to measure water column autotroph production in a shallow, hypereutrophic wetland: diurnal oxygen changes; light and dark bottle incubations; chlorophyll a concentrations; daily changes in pH; and algal volume. Productivity from diurnal oxygen changes calculated at 0.25, 0.5, 1, 2, 3, and 4 h intervals give similar estimates, but not 12 h intervals (dawn-dusk-dawn). Net productivity in bottles was slightly lower than that indicated by diurnal oxygen changes, and gross productivity in bottles was much lower than diurnal changes. Changes in pH correlated well with gross and net productivity measurements, as well as algal volume. Chlorophyll a is correlated with diurnal and bottle net productivity measurements and pH changes, but not algal volume. Since daily pH flux and oxygen changes provide a better overall assessment of ecosystem processes than standing crop or bottle incubations, they could be useful measurements for ecological engineers interested in assessing the ecosystem function.  相似文献   

16.
The influence of primary production (PP) on the dynamics of organic carbon in Lake Onego was analyzed. The daily, seasonal, and annual contribution of PP to the content of organic matter (OM) is assessed. It is shown that the contribution of the PP to the increase in the carbon content in the ecosystem is inconsiderable, while the allochthonous OM included in cycling by the bacterial link plays an important role.  相似文献   

17.
The literature and original data on the primary production of phytoplankton in the White Sea are analyzed. By this parameter, the White Sea is significantly inferior only to the Chukchi Sea; it is similar to the Barents Sea, and exceeds other Russian Arctic seas by two to three times (the Kara Sea, Laptev Sea, and East Siberian Sea).  相似文献   

18.
永定河水系人工湿地系统中的生物多样性与水质变化   总被引:1,自引:0,他引:1  
对永定河水系官厅水库黑土洼人工湿地系统的生物多样性、水质变化及其相关性进行了研究。在该系统中共检出浮游藻类8门、94种,平均密度为980.93×104cells/L,与TP呈线性正相关。群落中绿藻(Chlorophyta)占36.8%,硅藻(Bacillario-phyta)占31.0%,蓝藻(Cyanophyta)占23.4%。密度去除率为72.7%;水生维管束植物有7科、13种,分别构成不同的挺水或沉水植物群落;浮游动物群落由原生动物(Protozoa)、轮虫类(Rotifera)、枝角类(Cladocera)、桡足类(Copepoda)构成,共检出70种。平均密度为4883ind./L。以原生动物和轮虫为主,呈现出小型化、物种多样性低的特点。密度去除率为81.9%,与浮游藻类呈二次曲线相关;底栖动物群落由寡毛类(Olisochaeta)、水生昆虫(Uniramia)、甲壳类(Crustacea)和软体动物(Mollusca)构成,共检出15种。平均密度为5670ind./m2(水生昆虫占62.3%),密度去除率为92.4%。黑土洼湿地系统通过物理、化学和生物的协同作用,对永定河水中的污染物有显著的净化作用,主要表现为对CODMn、BOD5、TN、NH4-N、NO3-N、TP、PO4-P和SS的去除率为52.9%~99.1%。TP与BOD5呈线性正相关。  相似文献   

19.
F. Vegter 《Hydrobiologia》1977,52(1):67-71
The Grevelingen estuary was cut off from the sea in May 1971, and changed into stagnat lake Grevelingen. After the closure nitrate concentrations decreased to extremely low values (less than 2 μgat NH3-N/1). Ammonia concentrations varied between 10–30 μgat NH3-N/1, comparable with the situation before the closure. Phosphate concentrations fluctuated between1–2 μgat PO4-P/1 in the estuarine phase, and increased to μgat after the closure, presumably caused by decomposition of biological material and release of phosphates from the bottom. Phytoplankton primary production was not markedly affected by the damming up, and amounted to 175 g C/m2 in 1971. Communication no. 147 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherlands  相似文献   

20.
Senescent, naturally dried leaves of Typha domingensis were incubated inthe littoral region of a coastal lagoon and epiphytic bacterial volume,abundance, biomass and secondary productivity were measured during 127 daysof decomposition. The peak of cell abundance was registered at t =127 days when expressed per leaf surface area (10.07×107cells cm-2; 7.26 µgC cm-2), and at t= 26 days when expressed per biofilm dry mass (38.10 ×107 cells (mgDM biofilm)-1, 30.52 µgC(mgDM biofilm)-1). The highest values of bacterial biovolumesand lower turnover time were usually obtained in the beginning of thecolonization. Leu:Tdr ratios were also higher in the beginning of thecolonization, when bacterial community presented unbalanced metabolism.Consequently, the highest discrepancies between the bacterial secondaryproduction estimated by leu and Tdr incorporation were observed in the first2 days of decomposition. On average, the bacterial secondary productivityestimated by leu incorporation was 2.1 times higher than the valuesestimated by Tdr incorporation when the empirical factor for Tdr wasobtained from the relationship between Tdr and biomass increment. Thisdifference increased to 4.2 when the empirical factor was obtained from therelationship between Tdr and cell numbers increment. An average of bothmethods (0.0037 to 0.1397 µgC cm-2 h-1)produced results that fall within the range reported in the literature forepiphytic bacteria of freshwater ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号