首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conservation of biodiversity in production forests is crucial for mitigating biodiversity loss in the tropics. The major ecological impacts of selective logging are often the result of small clearings for skid trails, logging roads, log yards, and logging camps; however, their impacts on forest biodiversity have rarely been examined. The purpose of this study was to assess the impacts of these clearings on a forest‐dependent faunal group, dung beetles, and to identify the environmental factors responsible. Abundance and species richness of dung beetles decreased drastically in clearings, but directly increased in forests with the distance from roads/trails; abundance and species richness at 10 m from roads/trails were almost comparable with those detected in further interior forests. Similarly, species composition was significantly different between forests and clearings (except skid trails) but recovered within a short distance from roads/trails. Canopy openness was the most important environmental factor affecting the abundance, and species richness and composition of dung beetles; most dung beetle species were concentrated under closed forest canopy with less than 10 percent of canopy openness, whereas canopy openness ranged from 16 to 53 percent in clearings. Our study demonstrates that even small‐scale, unpaved clearings affect dung beetle communities through increased canopy openness. Although the effective distance was not very large, a considerable portion of logged areas can be affected when road networks are dense therefore minimizing the density of road networks and enhancing canopy recovery after logging are important for retaining biodiversity in tropical production forests.  相似文献   

2.
Selective logging is driving the proliferation of roads throughout tropical rain forests, particularly narrow, unpaved logging roads. However, little is known about the extent of road edge effects or their influence on the movements of tropical understory animal species. Here, we used forest rats to address the following questions: (a) Does the occupancy of rats differ from road edges to forest interior within logged forests? (b) Do roads inhibit the movements of rats within these forests? We established trapping grids along a road edge‐to‐forest interior gradient at four roads and in three control sites within a logged forest in Sabah, Malaysia. To quantify the probability of road crossing, rats were captured, translocated across a road, and then recaptured on subsequent nights. We caught 216 individuals of eight species on 3,024 trap nights. Rat occupancy did not differ across the gradient from road edge to interior, and 48 percent of the 105 translocated individuals crossed the roads and were recaptured. This proportion was not significantly different from that of rats returning in control sites (38% of 60 individuals), suggesting that small roads were not barriers to rat movements within logged forests. Subadults were significantly more likely to return from translocation than adults in both road and control sites. Our results are encouraging for the ecology of small mammal communities in heavily logged forests, because small logging roads do not restrict the movements of rats and therefore are unlikely to create an edge effect or influence habitat selection.  相似文献   

3.
Roads and road-building are among the most important environmental impacts on forests near urban areas, but their effects on ecosystem processes and species distributions remain poorly known. Termites are the primary decomposer organisms in tropical forests and their spatial distribution is strongly affected by vegetation and soil structure. We studied the impacts of road construction on termite community structure in an Amazonian forest fragment near Manaus, Brazil. One leading question was whether the fragment under study was large enough to maintain the termite species pool present in nearby continuous forests. We also asked how soil moisture and canopy openness varied with proximity to roads, and whether these changes were associated with changes in termite species richness and composition in the fragment. While the forest fragment had a termite composition very similar to that of continuous forests, roads caused important changes in soil moisture and canopy openness, especially when close to forest edges. At distances of up to 81 m from roads, changes in soil moisture were significantly related to changes in termite species composition, but there was no correlation between canopy openness and species richness or composition. These results suggest that fragmentation caused by roads impacts termites in a different and less damaging manner than fragmentation caused by other kinds of degradation, and that even fragments bisected by roads can support very diverse communities and even undescribed taxa of termites. We conclude that a buffer zone should be established for conservation purposes in the reserves surrounded by roads.  相似文献   

4.
The negative effects of roads on wildlife in tropical rainforests are poorly understood. Road construction has high priority in Africa, while negative impacts of roads on wildlife movement often are neglected. This study aims at providing information on the effects of roads on crossing behaviour of rainforest wildlife. The probability that wildlife would cross forest roads was analysed for association with ten different factors that were linked to road presence or construction. Factors were divided into three classes: vegetation cover, topography and human influence. A trackplot survey was done in southern Cameroon, Africa. Trackplots were laid along a 32 km unpaved logging road that intersects Campo‐Ma’an National Park. Tracks of several species were found frequently (e.g. genets and porcupines); while others were found only sporadically (e.g. forest duikers and apes). The actual physical obstacles found along the road (e.g. logs, banks, etc.) were highly negatively correlated with crossing probabilities. For all wildlife species high vegetation cover was positively correlated to crossing probability. This study indicates that roads have a large impact on wildlife, and suggests which factors could be altered during road construction and maintenance in order to mitigate these impacts.  相似文献   

5.
Forest degradation accounts for ~70% of total carbon losses from tropical forests. Substantial emissions are from selective logging, a land‐use activity that decreases forest carbon density. To maintain carbon values in selectively logged forests, climate change mitigation policies and government agencies promote the adoption of reduced‐impact logging (RIL) practices. However, whether RIL will maintain both carbon and timber values in managed tropical forests over time remains uncertain. In this study, we quantify the recovery of timber stocks and aboveground carbon at an experimental site where forests were subjected to different intensities of RIL (4, 8, and 16 trees/ha). Our census data span 20 years postlogging and 17 years after the liberation of future crop trees from competition in a tropical forest on the Guiana Shield, a globally important forest carbon reservoir. We model recovery of timber and carbon with a breakpoint regression that allowed us to capture elevated tree mortality immediately after logging. Recovery rates of timber and carbon were governed by the presence of residual trees (i.e., trees that persisted through the first harvest). The liberation treatment stimulated faster recovery of timber albeit at a carbon cost. Model results suggest a threshold logging intensity beyond which forests managed for timber and carbon derive few benefits from RIL, with recruitment and residual growth not sufficient to offset losses. Inclusion of the breakpoint at which carbon and timber gains outpaced postlogging mortality led to high predictive accuracy, including out‐of‐sample R2 values >90%, and enabled inference on demographic changes postlogging. Our modeling framework is broadly applicable to studies that aim to quantify impacts of logging on forest recovery. Overall, we demonstrate that initial mortality drives variation in recovery rates, that the second harvest depends on old growth wood, and that timber intensification lowers carbon stocks.  相似文献   

6.
Mature tropical forests at agricultural frontiers are of global conservation concern as the leading edge of global deforestation. In the Ituri Forest of DRC, as in other tropical forest areas, road creation associated with selective logging results in spontaneous human colonization, leading to the clearing of mature forest for agricultural purposes. Following 1-3 years of cultivation, farmlands are left fallow for periods that may exceed 20 years, resulting in extensive secondary forest areas impacted by both selective logging and swidden agriculture. In this study, we assessed forest structure, tree species composition and diversity and the regeneration of timber trees in secondary forest stands (5-10 and ~40 years old), selectively logged forest stands, and undisturbed forests at two sites in the Ituri region. Stem density was lower in old secondary forests (~40 years old) than in either young secondary or mature forests. Overall tree diversity did not significantly differ between forest types, but the diversity of trees ≥10 cm dbh was substantially lower in young secondary forest stands than in old secondary or mature forests. The species composition of secondary forests differed from that of mature forests, with the dominant Caesalpinoid legume species of mature forests poorly represented in secondary forests. However, in spite of prior logging, the regeneration of high value timber trees such as African mahoganies (Khaya anthotheca and Entandrophragma spp.) was at least 10 times greater in young secondary forests than in mature forests. We argue that, if properly managed and protected, secondary forests, even those impacted by both selective logging and small-scale shifting agriculture, may have high potential conservation and economic value.  相似文献   

7.
K. S. Seshadri 《Biotropica》2014,46(5):615-623
Vast areas of tropical evergreen forests have been selectively logged in the past, and many areas continue to be logged. The impacts of such logging on amphibians are poorly understood. I examined the response of anuran communities to historical selective logging in a wet evergreen forest in south India. Anuran assemblages in unlogged forest were compared with assemblages in selectively logged forest. Forty 10 m × 10 m quadrats in forest, riparian zones, and streams of unlogged and selectively logged forests were searched at night for anurans. Species richness did not appear to be affected by logging. However, anuran density varied significantly and was 42 percent lower in selectively logged forests compared to unlogged forests. Anuran densities also varied significantly across microhabitats, with highest densities in streams of both selectively logged and unlogged forests. Patterns of niche overlap varied with selective logging as niche breadth either expanded, contracted, or remained neutral for different species. Ordination analysis explained 95 percent of the variation in species assemblage across selectively logged and unlogged forests. The assemblage in selectively logged forest was nested within unlogged forest. Among the habitat characteristics, litter thickness and water depth had the highest influence on the assemblage. This was followed by litter/water temperature, air temperature, and lastly relative humidity. It appears that species richness and composition of anurans in selectively logged forests is converging with unlogged forests, but the effects of historical logging seem to persist on anuran densities and their niche characteristics even ca 40 yr since logging ceased.  相似文献   

8.
Habitat modification and biological invasions are key drivers of global environmental change. However, the extent and impact of exotic plant invasions in modified tropical landscapes remain poorly understood. We examined whether logging drives exotic plant invasions and whether their combined influences alter understory plant community composition in lowland rain forests in Borneo. We tested the relationship between understory communities and local‐ and landscape‐scale logging intensity, using leaf area index (LAI) and aboveground biomass (AGB) data from 192 plots across a logging‐intensity gradient from primary to repeatedly logged forests. Overall, we found relatively low levels of exotic plant invasions, despite an intensive logging history. Exotic species were more speciose, had greater cover, and more biomass in sites with more local‐scale canopy loss. Surprisingly, though, exotic species invasion was not related to either landscape‐scale canopy loss or road configuration. Moreover, logging and invasion did not seem to be acting synergistically on native plant composition, except that seedlings of the canopy‐dominant Dipterocarpaceae family were less abundant in areas with higher exotic plant biomass. Current low levels of invasion, and limited association with native understory community change, suggest there is a window of opportunity to manage invasive impacts. We caution about potential lag effects and the possibly severe negative impacts of exotic plant invasions on the long‐term quality of tropical forest, particularly where agricultural plantations function as permanent seed sources for recurrent dispersal along logging roads. We therefore urge prioritization of strategic management plans to counter the growing threat of exotic plant invasions in modified tropical landscapes.  相似文献   

9.
Major roads and highways disrupt ecological flows and create barriers or filters to the movement of many species of wildlife, including gliding mammals. Mitigating these impacts presents major challenges for road authorities. One approach has been the retention of forest vegetation in median strips to serve as ‘stepping stones’ for gliding mammals to cross road gaps otherwise beyond their glide capacity. A recently upgraded section of the Pacific Highway through tall open forest near Bonville in north‐east New South Wales retained forest within two 10‐ to 45‐m‐wide median strips separating each carriageway and a service road. We investigated whether Sugar Gliders (Petaurus breviceps) used these median strips to cross an 85 to 135 m‐wide road corridor. Three radio‐collared Sugar Gliders (one male and two females) moved between both highway medians and forest on either side of the road corridor during 32 days of radio‐tracking. Although the sample size is small, these results suggest that highway median strips, featuring mature vegetation with a major den tree, can provide ‘stepping stones’ for gliding mammals to cross a highway that would otherwise function as a movement barrier or filter. Longer‐term research with greater numbers of animals at this and other sites is required to determine whether such strips would be commonly used when den trees are absent and whether gliding via median strips may also increase road mortality of the species.  相似文献   

10.
Human impacts on tropical forest dynamics   总被引:2,自引:0,他引:2  
People living near or in tropical forest ecosystems have traditionally extracted forest products, i.e. timber, food and medicinal plants for their livelihood. Such practice does not create too much disturbance when the population is still sparse, and the product is used only for their own needs. When population pressure becomes greater, and when the motive of extraction is profit, then the disturbance become serious and created environmental problems. Major exploitation of the Indonesian rain forest for timber began in the 1960s and is continuing today. The lowland rain forests of Sumatra and Kalimantan have been particularly logged. Exploitation has often been destructive because Forest Department rules have been widely ignored. Moreover, once roads have given access to formerly inaccessible areas, farmers have often moved in after the timber companies and then cleared the relict, regenerating forest for either permanent or shifting cultivation. The traditional shifting cultivations have been practised for years, producing millions of ha of impoverished secondary types of forest, degraded lands and alang-alang (Imperata cylindrica) grasslands. Forests have also been lost through conversion of land to plantation agriculture and transmigration programmes, mining, construction roads and railways and also natural disturbances, such as drought and fire. This paper will discuss the human impact upon tropical forest dynamics in general, with examples from Indonesian and other Southeast Asia countries' tropical forests.  相似文献   

11.
The increased global demand for tropical timber has driven vast expanses of tropical forests to be selectively logged worldwide. While logging impacts on wildlife are predicted to change species distribution and abundance, the underlying physiological responses are poorly understood. Although there is a growing consensus that selective logging impacts on natural populations start with individual stress‐induced sublethal responses, this literature is dominated by investigations conducted with vertebrates from temperate zones. Moreover, the sublethal effects of human‐induced forest disturbance on tropical invertebrates have never been examined. To help address this knowledge gap, we examined the body fat content and relative abundance of three dung beetle species (Coleoptera: Scarabaeinae) with minimum abundance of 40 individuals within each examined treatment level. These were sampled across 34 plots in a before‐after control‐impact design (BACI) in a timber concession area of the Brazilian Amazon. For the first time, we present evidence of logging‐induced physiological stress responses in tropical invertebrates. Selective logging increased the individual levels of fat storage and reduced the relative abundance of two dung beetle species. Given this qualitative similarity, we support the measurement of body fat content as reliable biomarker to assess stress‐induced sublethal effects on dung beetles. Understanding how environmental modification impacts the wildlife has never been more important. Our novel approach provides new insights into the mechanisms through which forest disturbances impose population‐level impacts on tropical invertebrates.  相似文献   

12.
Forest-dwelling carabid beetles that have no flight ability were studied using mark-recapture methods in late-June to mid-October 2007. This study was done to determine the effects of narrow roads in Nopporo Forest Park, Hokkaido on carabid beetle movement and habitat use. The investigation was conducted at four sites: one site was an abandoned grassy road with a width of 3.5 m, two sites were gravel roads with widths of 3.5 and 4.5 m, and another site was an asphalt-paved road with a width of 4.5 m. A total of 3,580 individuals from six species of carabid beetles were collected using dry pit-fall traps, and recapture rates ranged from 6.1 to 36.2%. All examined roads acted as barriers against the movement of Leptocarabus arboreus ishikarinus. All roads, except the abandoned grassy road, acted as a barrier against Carabus granulatus yezoensis movement. Forest–roadside verge comparisons demonstrated that some carabid beetles avoid even narrow roadside verges. Harmful effects increase with increasing road width and both paved roads and narrow roads negatively affect the movement of carabid beetles inhabiting the bordering forest. Therefore, forest specialist beetles are influenced by a barrier effect that starts at the forest road verge, and this barrier effect may be exacerbated by vehicular traffic. Therefore, these barrier effects on carabid beetles should be considered when planning and implementing road construction and maintenance in forests.  相似文献   

13.
Responses of an avian community to rain forest degradation   总被引:3,自引:2,他引:1  
Cumulative impacts of logging and road building in a previously undisturbed tract of tropical rain forest in French Guiana were assessed by random sampling of the bird community and 1-km2 plot counts of diurnal raptors. Similar surveys were carried out during road construction and 15 years later within 5km of the road and were also compared with the undisturbed bird community of a nearby primary forest. The main disturbance was the change in forest structure brought about by logging and secondarily the road opening, the roadside second growth and the depletion of large vertebrates by hunting pressure. The responses of different bird guilds were highly divergent according to their natural habitat requirements, their diet and their vulnerability to hunting. They resulted in a moderate decrease in overall species richness and equitability. All species pooled, the abundance of 118 species was lowered, that of 45 species did not change appreciably and 89 were favored or even appeared. The guilds most affected were those with large body sizes, from terrestrial foragers to canopy frugivores, mostly by hunting, and the open understorey specialists, notably large insectivores and mixed flock members, because of changes in forest structure after logging. The guilds favored by logging and road opening were many of the hummingbirds, upper canopy frugivores and omnivores, and gap, edge or low secondary growth specialists. Recommendations to minimize the negative consequences of human exploitation in rain forests include reducing the width of deforested roadsides to no more than 10–15m on either side, implementing much more careful logging practices and strongly limiting hunting pressure in newly opened areas.  相似文献   

14.
Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land‐use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once‐logged and twice‐logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell–cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land‐use changes on the interaction of soil microbes.  相似文献   

15.
Xishuangbanna, situated in the northern margin of the tropical zone in Southeast Asia, maintains large areas of tropical rain forest and contains rich biodiversity. However, tropical rain forests are being rapidly destroyed in this region. This paper analyzed spatial and temporal changes of forest cover and the patterns of forests fragmentation in Xishuangbanna by comparing classified satellite images from 1976, 1988 and 2003 using GIS analyses. The patterns of fragmentation and the effects of edge width were examined using selected landscape indices. The results show that forest cover declined from 69% in 1976 to less than 50% in 2003, the number of forests fragments increased from 6,096 to 8,324, and the mean patch size declined from 217 to 115 ha. It was found that fragment size distribution was strongly skewed towards small values, and fragment size and internal habitat differ strongly among forest types: less fragmented in subtropical evergreen broadleaf forest, but severe in forests that are suitable for agriculture (such as tropical seasonal rain forest and mountain rain forest). Due to fragmentation, the edge width was smaller in 2003 than that in 1976 when the total area of edge habitat exceeded core habitat in different forest types. The core area of tropical seasonal rain forest was smallest among main forest types at any edge width. Fragmentation was severe within 12.5-km buffers around roads. The current forest cover within reserves in Xishuangbanna was comparatively large and less fragmented. However, the tropical rain forest has been degraded inside reserves. For conservation purposes, the approaches to establish forest fragments networks by corridors and stepping stone fragments are proposed. The conservation efforts should be directed first toward the conservation of remaining tropical rain forests.  相似文献   

16.
Tropical forest degradation is a global environmental issue. In degraded forests, seedling recruitment of canopy trees is vital for forest regeneration and recovery. We investigated how selective logging, a pervasive driver of tropical forest degradation, impacts canopy tree seedling recruitment, focusing on an endemic dipterocarp Dryobalanops lanceolata in Sabah, Borneo. During a mast‐fruiting event in intensively logged and nearby unlogged forest, we examined four stages of the seedling recruitment process: seed production, seed predation, and negative density‐dependent germination and seedling survival. Our results suggest that each stage of the seedling recruitment process is altered in logged forest. The seed crop of D. lanceolata trees in logged forest was one‐third smaller than that produced by trees in unlogged forest. The functional role of vertebrates in seed predation increased in logged forest while that of non‐vertebrates declined. Seeds in logged forest were less likely to germinate than those in unlogged forest. Germination increased with local‐scale conspecific seed density in unlogged forest, but seedling survival tended to decline. However, both germination and seedling survival increased with local‐scale conspecific seed density in logged forest. Notably, seed crop size, germination, and seedling survival tended to increase for larger trees in both unlogged and logged forests, suggesting that sustainable timber extraction and silvicultural practices designed to minimize damage to the residual stand are important to prevent seedling recruitment failure. Overall, these impacts sustained by several aspects of seedling recruitment in a mast‐fruiting year suggest that intensive selective logging may affect long‐term population dynamics of D. lanceolata. It is necessary to establish if other dipterocarp species, many of which are threatened by the timber trade, are similarly affected in tropical forests degraded by intensive selective logging.  相似文献   

17.
ABSTRACT

Background: Lianas are an important component of tropical forests that respond to logging disturbance. Determining liana response to selective logging chronosequence is important for understanding long-term logging effects on lianas and tropical forests.

Aims: Our objective was to quantify the response of liana communities to selective logging chronosequence in a moist semi-deciduous forest in Ghana.

Methods: Liana community characteristics were determined in ten 40 m × 40 m plots randomly and homogenously distributed in each of four selectively logged forest stands that had been logged 2, 14, 40 and 68 years before the surveys and in an old-growth forest stand (ca. >200 years).

Results: Liana species composition differed significantly among the forest stands, as a function of logging time span, while species richness fluctuated along the chronosequence. The abundance of liana communities and of reproductive and climbing guilds was lower in the logged forests than in the old-growth forest. The ratio of liana abundance and basal area to those of trees was similar in the logged forests, but significantly lower than those in the old-growth forest.

Conclusions: Logging impacts on liana community structure and functional traits were largely evident, though no clear chronosequence trends were recorded, except for species composition.  相似文献   

18.
Areas allocated for industrial logging and community‐owned forests account for over 50% of all remaining tropical forests. Landscape‐scale conservation strategies that include these forests are expected to have substantial benefits for biodiversity, especially for large mammals and birds that require extensive habitat but that are susceptible to extirpation due to synergies between logging and hunting. In addition, their responses to logging alone are poorly understood due to their cryptic behavior and low densities. In this study, we assessed the effects of logging and hunting on detection and occupancy rates of large vertebrates in a multiple‐use forest on the Guiana Shield. Our study site was certified as being responsibly managed for timber production and indigenous communities are legally guaranteed use‐rights to the forest. We coupled camera‐trap data for wildlife detection with a spatially explicit dataset on indigenous hunting. A multi‐species occupancy model found a weak positive effect of logging on occupancy and detection rates, while hunting had a weak negative effect. Model predictions of species richness were also higher in logged forest sites compared to unlogged forest sites. Density estimates for jaguars and ocelots in our multiple‐use area were similar to estimates reported for fully protected areas. Involvement of local communities in forest management, control of forest access, and nesting production forests in a landscape that includes protected areas seemed important for these positive biodiversity outcomes. The maintenance of vertebrate species bodes well for both biodiversity and the humans that depend on multiple‐use forests.  相似文献   

19.
Habitat destruction and overhunting are two major drivers of mammal population declines and extinctions in tropical forests. The construction of roads can be a catalyst for these two threats. In Southeast Asia, the impacts of roads on mammals have not been well-documented at a regional scale. Before evidence-based conservation strategies can be developed to minimize the threat of roads to endangered mammals within this region, we first need to locate where and how roads are contributing to the conversion of their habitats and illegal hunting in each country. We interviewed 36 experts involved in mammal research from seven Southeast Asian countries to identify roads that are contributing the most, in their opinion, to habitat conversion and illegal hunting. Our experts highlighted 16 existing and eight planned roads - these potentially threaten 21% of the 117 endangered terrestrial mammals in those countries. Apart from gathering qualitative evidence from the literature to assess their claims, we demonstrate how species-distribution models, satellite imagery and animal-sign surveys can be used to provide quantitative evidence of roads causing impacts by (1) cutting through habitats where endangered mammals are likely to occur, (2) intensifying forest conversion, and (3) contributing to illegal hunting and wildlife trade. To our knowledge, ours is the first study to identify specific roads threatening endangered mammals in Southeast Asia. Further through highlighting the impacts of roads, we propose 10 measures to limit road impacts in the region.  相似文献   

20.
Malaria is a significant public health threat in the Brazilian Amazon. Previous research has shown that deforestation creates breeding sites for the main malaria vector in Brazil, Anopheles darlingi, but the influence of selective logging, forest fires, and road construction on malaria risk has not been assessed. To understand these impacts, we constructed a negative binomial model of malaria counts at the municipality level controlling for human population and social and environmental risk factors. Both paved and unpaved roadways and fire zones in a municipality increased malaria risk. Within the timber production states where 90% of deforestation has occurred, compared with areas without selective logging, municipalities where 0–7% of the remaining forests were selectively logged had the highest malaria risk (1.72, 95% CI 1.18–2.51), and areas with higher rates of selective logging had the lowest risk (0.39, 95% CI 0.23–0.67). We show that roads, forest fires, and selective logging are previously unrecognized risk factors for malaria in the Brazilian Amazon and highlight the need for regulation and monitoring of sub-canopy forest disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号